c – 逐个打开盒子顶部

我被要求制作一个盒子,上面有4个三角形,按下o和c,盒子顶部的4个三角形应逐个打开和关闭.

我用它上面的三角形制作了盒子,它们一下子移动,我试图操纵每个三角形的步骤,希望一个接一个地打开和关闭,但我陷入了算法和代码的困境.

这是完整的代码:

#include <GL/glut.h>
#include <math.h>
#include <stdio.h>
#include <stdlib.h>

#define PI 3.14159265
static int step = 0, step1, step2, step3, step4;

/* camera location in longitude and latitude */
static float alpha = 0.0;
static float beta = PI / 6.0;

/* position of camera */
static GLdouble cpos[3];

/* position of light source */
static GLfloat lpos[] = { -2.5, 2.5, 3.0, 1.0 };

/* vectors to specify material properties */
static GLfloat black[] = { 0.0, 0.0, 0.0, 1.0 };
static GLfloat white[] = { 1.0, 1.0, 1.0, 1.0 };
static GLfloat gray[] = { 0.5, 0.5, 0.5, 1.0 };
static GLfloat red[] = { 1.0, 0.0, 0.0, 1.0 };
static GLfloat green[] = { 0.0, 1.0, 0.0, 1.0 };
static GLfloat blue[] = { 0.0, 0.0, 1.0, 1.0 };
static GLfloat yellow[] = { 1.0, 1.0, 0.0, 1.0 };
static GLfloat magenta[] = { 1.0, 0.0, 1.0, 1.0 };
static GLfloat cyan[] = { 0.0, 1.0, 1.0, 1.0 };
static GLfloat darkcyan[] = { 0.0, 0.4, 0.4, 1.0 };

static bool topFinishedOpening = false;
static float stepBefore = step;
void writemessage()
{
        printf("HW-1");
}

void init(void)
{
        writemessage();

        glClearColor(0.0, 0.0, 0.0, 0.0);
        glEnable(GL_DEPTH_TEST);
        glShadeModel(GL_SMOOTH);

        /* initially GL_FILL mode (default), later GL_LINE to show wireframe */
        glPolygonMode(GL_FRONT_AND_BACK, GL_FILL);

        glEnable(GL_LIGHTING);
        glLightModeli(GL_LIGHT_MODEL_TWO_SIDE, GL_TRUE);
        glEnable(GL_LIGHT0);
}


void reshape(int w, int h)
{
        glViewport(0, 0, (GLsizei)w, (GLsizei)h);

        glMatrixMode(GL_PROJECTION);
        glLoadIdentity();
        gluPerspective(45.0, (GLfloat)w / (GLfloat)h, 1.0, 20.0);

        glMatrixMode(GL_MODELVIEW);
}

void display(void)
{
        static int i;
        static double angle1, angle2, angle3, angle4, Y1, Z1, normalY1, normalZ1, Y2, Z2, normalY2, normalZ2, X3, Y3, normalX3, normalY3, X4, Y4, normalX4, normalY4;
        glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

        /* initialize (modelview) matrix */
        glLoadIdentity();

        /* update camera position */
        cpos[0] = 15.0 * cos(beta) * sin(alpha);
        cpos[1] = 15.0 * sin(beta);
        cpos[2] = 15.0 * cos(beta) * cos(alpha);
        gluLookAt(cpos[0], cpos[1], cpos[2], 0.0, 1.0, 0.0, 0.0, 1.0, 0.0);

        /* set current light source position */
        glLightfv(GL_LIGHT0, GL_POSITION, lpos);

        /* draw sphere to show light source */
        glMaterialfv(GL_FRONT, GL_EMISSION, white);
        glPushMatrix();
        glTranslatef(lpos[0], lpos[1], lpos[2]);
        glutSolidSphere(0.1, 10, 8);
        glPopMatrix();

        /* remaining objects do not look as if they emit light */
        glMaterialfv(GL_FRONT, GL_EMISSION, black);

        /* draw a tabletop */
        glMaterialfv(GL_FRONT_AND_BACK, GL_AMBIENT_AND_DIFFUSE, gray);
        glMaterialfv(GL_FRONT_AND_BACK, GL_SPECULAR, white);
        glMaterialf(GL_FRONT_AND_BACK, GL_SHININESS, 64);
        glNormal3f(0.0, 1.0, 0.0);
        glBegin(GL_POLYGON);
        glVertex3f(-5.0, -0.001, -3.0);
        glVertex3f(-5.0, -0.001, 5.0);
        glVertex3f(5.0, -0.001, 5.0);
        glVertex3f(5.0, -0.001, -3.0);
        glEnd();

        printf("Angle Number 1: %f\n", (angle1 * (180.0 / PI)));
        printf("Angle Number 2: %f\n", (angle2 * (180.0 / PI)));
        printf("Angle Number 3: %f\n", (angle3 * (180.0 / PI)));
        printf("Angle Number 4: %f\n", (angle4 * (180.0 / PI)));
        printf("\n");

        if ((step - stepBefore) > 0){

                step1 = step;           step2 = step;
                step3 = step;
                step4 = step;

        }
        else if ((step - stepBefore) < 0){
                step1 = step;           step2 = step;
                step3 = step;
                step4 = step;

        }
        else{
                step1 = step;           step2 = step;
                step3 = step;
                step4 = step;

        }

        // first
        glMaterialfv(GL_FRONT, GL_EMISSION, black);
        glMaterialfv(GL_BACK, GL_EMISSION, black);
        glMaterialfv(GL_FRONT_AND_BACK, GL_AMBIENT_AND_DIFFUSE, red);
        angle1 = ((float)step1 / 180) * PI;
        Y1 = 2.0 + 2.0 * sin(angle1);
        Z1 = -1.0 + 2.0 * cos(angle1);
        normalY1 = cos(angle1);
        normalZ1 = -sin(angle1);
        glNormal3f(0, normalY1, normalZ1);
        glBegin(GL_POLYGON);
        glVertex3f(-3.0, 2.0, -1.0);
        glVertex3f(3.0, 2.0, -1.0);
        glVertex3f(0, Y1, Z1);
        glEnd();

        // second
        glMaterialfv(GL_FRONT, GL_EMISSION, black);
        glMaterialfv(GL_BACK, GL_EMISSION, black);
        glMaterialfv(GL_FRONT_AND_BACK, GL_AMBIENT_AND_DIFFUSE, red);
        angle2 = ((float)step2 / 180) * PI;
        Y2 = 2.0 + 2.0 * sin(angle2);
        Z2 = 3.0 + -2.0 * cos(angle2);
        normalY2 = cos(angle2);
        normalZ2 = sin(angle2);
        glNormal3f(0, normalY2, normalZ2);
        glBegin(GL_POLYGON);
        glVertex3f(-3.0, 2.0, 3.0);
        glVertex3f(3.0, 2.0, 3.0);
        glVertex3f(0, Y2, Z2);
        glEnd();

        // third
        glMaterialfv(GL_FRONT, GL_EMISSION, black);
        glMaterialfv(GL_BACK, GL_EMISSION, black);
        glMaterialfv(GL_FRONT_AND_BACK, GL_AMBIENT_AND_DIFFUSE, red);
        angle3 = ((float)step3 / 180) * PI;
        X3 = 3.0 - 3.0 * cos(angle3);
        Y3 = 2.0 + 2.0 * sin(angle3);
        normalX3 = sin(angle3);
        normalY3 = cos(angle3);
        glNormal3f(normalX3, normalY3, 0);
        glBegin(GL_POLYGON);
        glVertex3f(3.0, 2.0, 3.0);
        glVertex3f(3.0, 2.0, -1.0);
        glVertex3f(X3, Y3, 1);
        glEnd();

        // fourth
        glMaterialfv(GL_FRONT, GL_EMISSION, black);
        glMaterialfv(GL_BACK, GL_EMISSION, black);
        glMaterialfv(GL_FRONT_AND_BACK, GL_AMBIENT_AND_DIFFUSE, red);
        angle4 = ((float)step4 / 180) * PI;
        X4 = -3.0 + 3.0 * cos(angle4);
        Y4 = 2.0 + 2.0 * sin(angle4);
        normalX4 = sin(angle4);
        normalY4 = cos(angle4);
        glNormal3f(normalX4, normalY4, 0);
        glBegin(GL_POLYGON);
        glVertex3f(-3.0, 2.0, 3.0);
        glVertex3f(-3.0, 2.0, -1.0);
        glVertex3f(X4, Y4, 1);
        glEnd();


        // back
        glMaterialfv(GL_FRONT, GL_EMISSION, black);
        glMaterialfv(GL_BACK, GL_EMISSION, black);
        glMaterialfv(GL_FRONT_AND_BACK, GL_AMBIENT_AND_DIFFUSE, red);
        glBegin(GL_POLYGON);
        glVertex3f(3.0, 0.0, -1.0);
        glVertex3f(3.0, 2.0, -1.0);
        glVertex3f(-3.0, 2.0, -1.0);
        glVertex3f(-3.0, 0.0, -1.0);
        glEnd();

        // front
        glMaterialfv(GL_FRONT, GL_EMISSION, black);
        glMaterialfv(GL_BACK, GL_EMISSION, black);
        glMaterialfv(GL_FRONT_AND_BACK, GL_AMBIENT_AND_DIFFUSE, red);
        glBegin(GL_POLYGON);
        glVertex3f(3.0, 0.0, 3.0);
        glVertex3f(3.0, 2.0, 3.0);
        glVertex3f(-3.0, 2.0, 3.0);
        glVertex3f(-3.0, 0.0, 3.0);
        glEnd();

        // right
        glMaterialfv(GL_FRONT, GL_EMISSION, black);
        glMaterialfv(GL_BACK, GL_EMISSION, black);
        glMaterialfv(GL_FRONT_AND_BACK, GL_AMBIENT_AND_DIFFUSE, red);
        glBegin(GL_POLYGON);
        glVertex3f(3.0, 2.0, -1.0);
        glVertex3f(3.0, 2.0, 3.0);
        glVertex3f(3.0, 0.0, 3.0);
        glVertex3f(3.0, 0.0, -1.0);
        glEnd();

        // left
        glMaterialfv(GL_FRONT, GL_EMISSION, black);
        glMaterialfv(GL_BACK, GL_EMISSION, black);
        glMaterialfv(GL_FRONT_AND_BACK, GL_AMBIENT_AND_DIFFUSE, red);
        glBegin(GL_POLYGON);
        glVertex3f(-3.0, 2.0, -1.0);
        glVertex3f(-3.0, 2.0, 3.0);
        glVertex3f(-3.0, 0.0, 3.0);
        glVertex3f(-3.0, 0.0, -1.0);
        glEnd();

        // buttom
        glMaterialfv(GL_FRONT, GL_EMISSION, black);
        glMaterialfv(GL_BACK, GL_EMISSION, black);
        glMaterialfv(GL_FRONT_AND_BACK, GL_AMBIENT_AND_DIFFUSE, red);
        glBegin(GL_POLYGON);
        glVertex3f(-3.0, 0.0, -1.0);
        glVertex3f(-3.0, 0.0, 3.0);
        glVertex3f(3.0, 0.0, 3.0);
        glVertex3f(3.0, 0.0, -1.0);
        glEnd();


        glFlush();
        glutSwapBuffers();
}


void keyboard(unsigned char key, int x, int y)
{
        static int polygonmode[2];

        switch (key) {
        case 27:
                exit(0);
                break;

                /* open and close the top */
        case 'o':
                if (step < 90) { stepBefore = step*1.0; step = step + 2; }
                glutPostRedisplay();
                break;
        case 'c':
                if (step > 0) {
                        stepBefore = step*1.0; step = step - 2;
                }
                glutPostRedisplay();
                break;
                /* w for switching between GL_FILL and GL_LINE
                * Using a query command glGetIntegerv() we obtain two integers
                * indicating the current GL_POLYGON_MODE for FRONT and BACK faces.
                * Look up glIsEnabled() that may be found useful. */
        case 'w':
                glGetIntegerv(GL_POLYGON_MODE, polygonmode);
                if (polygonmode[0] == GL_FILL)
                        glPolygonMode(GL_FRONT_AND_BACK, GL_LINE);
                else glPolygonMode(GL_FRONT_AND_BACK, GL_FILL);
                glutPostRedisplay();
                break;

                /* control lpos */
        case 'x':
                lpos[0] = lpos[0] + 0.2;
                glutPostRedisplay();
                break;
        case 'X':
                lpos[0] = lpos[0] - 0.2;
                glutPostRedisplay();
                break;
        case 'y':
                lpos[1] = lpos[1] + 0.2;
                glutPostRedisplay();
                break;
        case 'Y':
                lpos[1] = lpos[1] - 0.2;
                glutPostRedisplay();
                break;
        case 'z':
                lpos[2] = lpos[2] + 0.2;
                glutPostRedisplay();
                break;
        case 'Z':
                lpos[2] = lpos[2] - 0.2;
                glutPostRedisplay();
                break;

        default:
                break;
        }
}
void specialkey(GLint key, int x, int y)
{
        switch (key) {
        case GLUT_KEY_RIGHT:
                alpha = alpha + PI / 180;
                if (alpha > 2 * PI) alpha = alpha - 2 * PI;
                glutPostRedisplay();
                break;
        case GLUT_KEY_LEFT:
                alpha = alpha - PI / 180;
                if (alpha < 0) alpha = alpha + 2 * PI;
                glutPostRedisplay();
                break;
        case GLUT_KEY_UP:
                if (beta < 0.45*PI) beta = beta + PI / 180;
                glutPostRedisplay();
                break;
        case GLUT_KEY_DOWN:
                if (beta > 0.05*PI) beta = beta - PI / 180;
                glutPostRedisplay();
                break;

        default:
                break;
        }
}

int main(int argc, char** argv)
{
        glutInit(&argc, argv);
        glutInitDisplayMode(GLUT_DOUBLE | GLUT_RGB | GLUT_DEPTH);
        glutInitWindowSize(800, 800);
        glutInitWindowPosition(100, 100);
        glutCreateWindow(argv[0]);
        init();
        glutDisplayFunc(display);
        glutReshapeFunc(reshape);
        glutKeyboardFunc(keyboard);
        glutSpecialFunc(specialkey);
        glutMainLoop();
        return 0;
}

截图:

最佳答案 我通过逐步表达4个三角形的角度状态,为您的代码添加了一个简单的技巧.具体来说:代替[0,90]的范围,我将范围变为你的变量步[0,360],其中[0,90]部分用于step1,[90,180]用于step2,等等.

请参阅下面的代码.搜索/ *修改代码* /查看我添加的内容.
代码已经过测试并按预期工作.

请注意,我不认为我的技巧是解决这个问题的好设计.我只是提供某种提示,你应该自己编写代码. 🙂

#include <GL/glut.h>
#include <math.h>
#include <stdio.h>
#include <stdlib.h>

#define PI 3.14159265
static int step = 0, step1, step2, step3, step4;

/* camera location in longitude and latitude */
static float alpha = 0.0;
static float beta = PI / 6.0;

/* position of camera */
static GLdouble cpos[3];

/* position of light source */
static GLfloat lpos[] = { -2.5, 2.5, 3.0, 1.0 };

/* vectors to specify material properties */
static GLfloat black[] = { 0.0, 0.0, 0.0, 1.0 };
static GLfloat white[] = { 1.0, 1.0, 1.0, 1.0 };
static GLfloat gray[] = { 0.5, 0.5, 0.5, 1.0 };
static GLfloat red[] = { 1.0, 0.0, 0.0, 1.0 };
static GLfloat green[] = { 0.0, 1.0, 0.0, 1.0 };
static GLfloat blue[] = { 0.0, 0.0, 1.0, 1.0 };
static GLfloat yellow[] = { 1.0, 1.0, 0.0, 1.0 };
static GLfloat magenta[] = { 1.0, 0.0, 1.0, 1.0 };
static GLfloat cyan[] = { 0.0, 1.0, 1.0, 1.0 };
static GLfloat darkcyan[] = { 0.0, 0.4, 0.4, 1.0 };

static bool topFinishedOpening = false;
static float stepBefore = step;
void writemessage()
{
        printf("HW-1");
}

void init(void)
{
        writemessage();

        glClearColor(0.0, 0.0, 0.0, 0.0);
        glEnable(GL_DEPTH_TEST);
        glShadeModel(GL_SMOOTH);

        /* initially GL_FILL mode (default), later GL_LINE to show wireframe */
        glPolygonMode(GL_FRONT_AND_BACK, GL_FILL);

        glEnable(GL_LIGHTING);
        glLightModeli(GL_LIGHT_MODEL_TWO_SIDE, GL_TRUE);
        glEnable(GL_LIGHT0);
}


void reshape(int w, int h)
{
        glViewport(0, 0, (GLsizei)w, (GLsizei)h);

        glMatrixMode(GL_PROJECTION);
        glLoadIdentity();
        gluPerspective(45.0, (GLfloat)w / (GLfloat)h, 1.0, 20.0);

        glMatrixMode(GL_MODELVIEW);
}

void display(void)
{
        static int i;
        static double angle1, angle2, angle3, angle4, Y1, Z1, normalY1, normalZ1, Y2, Z2, normalY2, normalZ2, X3, Y3, normalX3, normalY3, X4, Y4, normalX4, normalY4;
        glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

        /* initialize (modelview) matrix */
        glLoadIdentity();

        /* update camera position */
        cpos[0] = 15.0 * cos(beta) * sin(alpha);
        cpos[1] = 15.0 * sin(beta);
        cpos[2] = 15.0 * cos(beta) * cos(alpha);
        gluLookAt(cpos[0], cpos[1], cpos[2], 0.0, 1.0, 0.0, 0.0, 1.0, 0.0);

        /* set current light source position */
        glLightfv(GL_LIGHT0, GL_POSITION, lpos);

        /* draw sphere to show light source */
        glMaterialfv(GL_FRONT, GL_EMISSION, white);
        glPushMatrix();
        glTranslatef(lpos[0], lpos[1], lpos[2]);
        glutSolidSphere(0.1, 10, 8);
        glPopMatrix();

        /* remaining objects do not look as if they emit light */
        glMaterialfv(GL_FRONT, GL_EMISSION, black);

        /* draw a tabletop */
        glMaterialfv(GL_FRONT_AND_BACK, GL_AMBIENT_AND_DIFFUSE, gray);
        glMaterialfv(GL_FRONT_AND_BACK, GL_SPECULAR, white);
        glMaterialf(GL_FRONT_AND_BACK, GL_SHININESS, 64);
        glNormal3f(0.0, 1.0, 0.0);
        glBegin(GL_POLYGON);
        glVertex3f(-5.0, -0.001, -3.0);
        glVertex3f(-5.0, -0.001, 5.0);
        glVertex3f(5.0, -0.001, 5.0);
        glVertex3f(5.0, -0.001, -3.0);
        glEnd();

        printf("Angle Number 1: %f\n", (angle1 * (180.0 / PI)));
        printf("Angle Number 2: %f\n", (angle2 * (180.0 / PI)));
        printf("Angle Number 3: %f\n", (angle3 * (180.0 / PI)));
        printf("Angle Number 4: %f\n", (angle4 * (180.0 / PI)));
        printf("\n");

#if 0
        if ((step - stepBefore) > 0){

                step1 = step;           step2 = step;
                step3 = step;
                step4 = step;

        }
        else if ((step - stepBefore) < 0){
                step1 = step;           step2 = step;
                step3 = step;
                step4 = step;

        }
        else{
                step1 = step;           step2 = step;
                step3 = step;
                step4 = step;

        }
#else
        /* Modifications to your code */
        if (step >= 270)
        {
            step1 = 90;
            step2 = 90;
            step3 = 90;
            step4 = step - 270;
        }
        else if (step >= 180) // implies step < 270
        {
            step1 = 90;
            step2 = 90;
            step3 = step - 180;
            step4 = 0;
        }
        else if (step >= 90) // implies step < 180
        {
            step1 = 90;
            step2 = step - 90;
            step3 = 0;
            step4 = 0;
        }
        else if (step >= 0) // implies step < 90
        {
            step1 = step;
            step2 = 0;
            step3 = 0;
            step4 = 0;
        }
        else
            ; // error handling since this shall not happen
#endif

        // first
        glMaterialfv(GL_FRONT, GL_EMISSION, black);
        glMaterialfv(GL_BACK, GL_EMISSION, black);
        glMaterialfv(GL_FRONT_AND_BACK, GL_AMBIENT_AND_DIFFUSE, red);
        angle1 = ((float)step1 / 180) * PI;
        Y1 = 2.0 + 2.0 * sin(angle1);
        Z1 = -1.0 + 2.0 * cos(angle1);
        normalY1 = cos(angle1);
        normalZ1 = -sin(angle1);
        glNormal3f(0, normalY1, normalZ1);
        glBegin(GL_POLYGON);
        glVertex3f(-3.0, 2.0, -1.0);
        glVertex3f(3.0, 2.0, -1.0);
        glVertex3f(0, Y1, Z1);
        glEnd();

        // second
        glMaterialfv(GL_FRONT, GL_EMISSION, black);
        glMaterialfv(GL_BACK, GL_EMISSION, black);
        glMaterialfv(GL_FRONT_AND_BACK, GL_AMBIENT_AND_DIFFUSE, red);
        angle2 = ((float)step2 / 180) * PI;
        Y2 = 2.0 + 2.0 * sin(angle2);
        Z2 = 3.0 + -2.0 * cos(angle2);
        normalY2 = cos(angle2);
        normalZ2 = sin(angle2);
        glNormal3f(0, normalY2, normalZ2);
        glBegin(GL_POLYGON);
        glVertex3f(-3.0, 2.0, 3.0);
        glVertex3f(3.0, 2.0, 3.0);
        glVertex3f(0, Y2, Z2);
        glEnd();

        // third
        glMaterialfv(GL_FRONT, GL_EMISSION, black);
        glMaterialfv(GL_BACK, GL_EMISSION, black);
        glMaterialfv(GL_FRONT_AND_BACK, GL_AMBIENT_AND_DIFFUSE, red);
        angle3 = ((float)step3 / 180) * PI;
        X3 = 3.0 - 3.0 * cos(angle3);
        Y3 = 2.0 + 2.0 * sin(angle3);
        normalX3 = sin(angle3);
        normalY3 = cos(angle3);
        glNormal3f(normalX3, normalY3, 0);
        glBegin(GL_POLYGON);
        glVertex3f(3.0, 2.0, 3.0);
        glVertex3f(3.0, 2.0, -1.0);
        glVertex3f(X3, Y3, 1);
        glEnd();

        // fourth
        glMaterialfv(GL_FRONT, GL_EMISSION, black);
        glMaterialfv(GL_BACK, GL_EMISSION, black);
        glMaterialfv(GL_FRONT_AND_BACK, GL_AMBIENT_AND_DIFFUSE, red);
        angle4 = ((float)step4 / 180) * PI;
        X4 = -3.0 + 3.0 * cos(angle4);
        Y4 = 2.0 + 2.0 * sin(angle4);
        normalX4 = sin(angle4);
        normalY4 = cos(angle4);
        glNormal3f(normalX4, normalY4, 0);
        glBegin(GL_POLYGON);
        glVertex3f(-3.0, 2.0, 3.0);
        glVertex3f(-3.0, 2.0, -1.0);
        glVertex3f(X4, Y4, 1);
        glEnd();


        // back
        glMaterialfv(GL_FRONT, GL_EMISSION, black);
        glMaterialfv(GL_BACK, GL_EMISSION, black);
        glMaterialfv(GL_FRONT_AND_BACK, GL_AMBIENT_AND_DIFFUSE, red);
        glBegin(GL_POLYGON);
        glVertex3f(3.0, 0.0, -1.0);
        glVertex3f(3.0, 2.0, -1.0);
        glVertex3f(-3.0, 2.0, -1.0);
        glVertex3f(-3.0, 0.0, -1.0);
        glEnd();

        // front
        glMaterialfv(GL_FRONT, GL_EMISSION, black);
        glMaterialfv(GL_BACK, GL_EMISSION, black);
        glMaterialfv(GL_FRONT_AND_BACK, GL_AMBIENT_AND_DIFFUSE, red);
        glBegin(GL_POLYGON);
        glVertex3f(3.0, 0.0, 3.0);
        glVertex3f(3.0, 2.0, 3.0);
        glVertex3f(-3.0, 2.0, 3.0);
        glVertex3f(-3.0, 0.0, 3.0);
        glEnd();

        // right
        glMaterialfv(GL_FRONT, GL_EMISSION, black);
        glMaterialfv(GL_BACK, GL_EMISSION, black);
        glMaterialfv(GL_FRONT_AND_BACK, GL_AMBIENT_AND_DIFFUSE, red);
        glBegin(GL_POLYGON);
        glVertex3f(3.0, 2.0, -1.0);
        glVertex3f(3.0, 2.0, 3.0);
        glVertex3f(3.0, 0.0, 3.0);
        glVertex3f(3.0, 0.0, -1.0);
        glEnd();

        // left
        glMaterialfv(GL_FRONT, GL_EMISSION, black);
        glMaterialfv(GL_BACK, GL_EMISSION, black);
        glMaterialfv(GL_FRONT_AND_BACK, GL_AMBIENT_AND_DIFFUSE, red);
        glBegin(GL_POLYGON);
        glVertex3f(-3.0, 2.0, -1.0);
        glVertex3f(-3.0, 2.0, 3.0);
        glVertex3f(-3.0, 0.0, 3.0);
        glVertex3f(-3.0, 0.0, -1.0);
        glEnd();

        // buttom
        glMaterialfv(GL_FRONT, GL_EMISSION, black);
        glMaterialfv(GL_BACK, GL_EMISSION, black);
        glMaterialfv(GL_FRONT_AND_BACK, GL_AMBIENT_AND_DIFFUSE, red);
        glBegin(GL_POLYGON);
        glVertex3f(-3.0, 0.0, -1.0);
        glVertex3f(-3.0, 0.0, 3.0);
        glVertex3f(3.0, 0.0, 3.0);
        glVertex3f(3.0, 0.0, -1.0);
        glEnd();


        glFlush();
        glutSwapBuffers();
}


void keyboard(unsigned char key, int x, int y)
{
        static int polygonmode[2];

        switch (key) {
        case 27:
                exit(0);
                break;

                /* open and close the top */
        case 'o':
#if 0
                if (step < 90) { stepBefore = step*1.0; step = step + 2; }
#else
                /* Modifications to your code */
                if (step < 360) { stepBefore = step*1.0; step = step + 2; }
#endif
                glutPostRedisplay();
                break;
        case 'c':
                if (step > 0) {
                        stepBefore = step*1.0; step = step - 2;
                }
                glutPostRedisplay();
                break;
                /* w for switching between GL_FILL and GL_LINE
                * Using a query command glGetIntegerv() we obtain two integers
                * indicating the current GL_POLYGON_MODE for FRONT and BACK faces.
                * Look up glIsEnabled() that may be found useful. */
        case 'w':
                glGetIntegerv(GL_POLYGON_MODE, polygonmode);
                if (polygonmode[0] == GL_FILL)
                        glPolygonMode(GL_FRONT_AND_BACK, GL_LINE);
                else glPolygonMode(GL_FRONT_AND_BACK, GL_FILL);
                glutPostRedisplay();
                break;

                /* control lpos */
        case 'x':
                lpos[0] = lpos[0] + 0.2;
                glutPostRedisplay();
                break;
        case 'X':
                lpos[0] = lpos[0] - 0.2;
                glutPostRedisplay();
                break;
        case 'y':
                lpos[1] = lpos[1] + 0.2;
                glutPostRedisplay();
                break;
        case 'Y':
                lpos[1] = lpos[1] - 0.2;
                glutPostRedisplay();
                break;
        case 'z':
                lpos[2] = lpos[2] + 0.2;
                glutPostRedisplay();
                break;
        case 'Z':
                lpos[2] = lpos[2] - 0.2;
                glutPostRedisplay();
                break;

        default:
                break;
        }
}
void specialkey(GLint key, int x, int y)
{
        switch (key) {
        case GLUT_KEY_RIGHT:
                alpha = alpha + PI / 180;
                if (alpha > 2 * PI) alpha = alpha - 2 * PI;
                glutPostRedisplay();
                break;
        case GLUT_KEY_LEFT:
                alpha = alpha - PI / 180;
                if (alpha < 0) alpha = alpha + 2 * PI;
                glutPostRedisplay();
                break;
        case GLUT_KEY_UP:
                if (beta < 0.45*PI) beta = beta + PI / 180;
                glutPostRedisplay();
                break;
        case GLUT_KEY_DOWN:
                if (beta > 0.05*PI) beta = beta - PI / 180;
                glutPostRedisplay();
                break;

        default:
                break;
        }
}

int main(int argc, char** argv)
{
        glutInit(&argc, argv);
        glutInitDisplayMode(GLUT_DOUBLE | GLUT_RGB | GLUT_DEPTH);
        glutInitWindowSize(800, 800);
        glutInitWindowPosition(100, 100);
        glutCreateWindow(argv[0]);
        init();
        glutDisplayFunc(display);
        glutReshapeFunc(reshape);
        glutKeyboardFunc(keyboard);
        glutSpecialFunc(specialkey);
        glutMainLoop();
        return 0;
}
点赞