我试图通过(除其他事项外)在启动后对它们进行chroot来沙箱ELF二进制文件.为此,使用CLONE_FS标记克隆的子进程执行chroot,而父进程通过调用exec函数运行二进制文件.
如果chroot在程序加载完所需的共享库之后发生,那么这个技巧实际上是有效的.问题是我无法找到一种方法来检测其他进程实际发生的时间.有什么办法吗?
最佳答案 您可以使用preload库,其中包含在main()之前执行的函数,具有CAP_SYS_CHROOT允许文件系统功能的辅助二进制文件,以及两者之间的Unix域套接字对.
帮助程序二进制文件创建套接字对,然后使用clone(CLONE_FS)来分叉共享文件系统信息的帮助程序进程,设置LD_PRELOAD以加载预加载库,并执行沙盒二进制文件. (exec重置沙箱二进制文件系统功能的功能,因此沙盒二进制文件根本没有任何额外的权限.)
帮助程序进程将CAP_SYS_CHROOT添加到有效集,等待沙盒二进制文件(预加载库)通过套接字通知它,调用chroot(),并通知沙盒二进制文件(预加载库)成功.
注意:绝对不需要标记辅助二进制setuid root,或者为沙盒二进制文件提供任何功能或特权.我们可以用最小的权限来做到这一点:CAP_SYS_CHROOT
capability就足够了.
我更喜欢只将二进制文件的功能添加到允许的集合中,这样二进制文件本身就必须在chroot()工作之前将功能添加到有效集合中.我觉得这种方法减少了可能的安装/管理员错误的影响.如果您不同意,请随意省略exec.c中的相应代码,并在Makefile的setcap命令中使用= pe而不是= p.
这里的好处是preload库也可以插入所需的C函数,并使用unix域套接字从helper进程获取必要的信息;您甚至可以使用SCM_RIGHTS
辅助消息将文件描述符从chroot外部传输到沙盒二进制文件. (实质上,这就是fakeroot
所做的,但反过来说:你可以选择沙盒二进制文件可以从chroot环境之外访问哪些文件而不是假冒chrooted环境.)只要让帮助程序进程保持活动状态就可以了.套接字的另一端仍然是打开的,因此它将在沙盒二进制退出后退出.
下面是我的示例实现,它将辅助进程作为沙盒二进制文件的子进程启动,辅助进程在启动沙盒main()之前退出(并预先加载库).
exec.c:
#define _GNU_SOURCE
#define _POSIX_C_SOURCE 200809L
#include <unistd.h>
#include <sys/capability.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <sys/mman.h>
#include <sched.h>
#include <stdlib.h>
#include <string.h>
#include <stdio.h>
#include <errno.h>
#ifndef SOCKET_FD
#error SOCKET_FD not defined!
#endif
#ifndef LIBRARY_PATH
#error LIBRARY_PATH not defined!
#endif
static size_t helper_stack_size = 32768;
static void *helper_stack = NULL;
static const char *helper_chroot = NULL;
static const cap_value_t helper_cap[] = { CAP_SYS_CHROOT };
static const int helper_caps = sizeof helper_cap / sizeof helper_cap[0];
static int socket_fd[2] = { -1, -1 };
#ifdef __hppa
#define helper_endstack (helper_stack)
#else
#define helper_endstack ((void *)((char *)helper_stack + helper_stack_size - 1))
#endif
static int helper_main(void *arg)
{
const char *const argv0 = arg;
pid_t pid;
cap_t caps;
close(socket_fd[0]);
/* Read the target PID. */
{ char *p = (char *)(&pid);
char *const q = (char *)(&pid) + sizeof pid;
ssize_t n;
while (p < q) {
n = recv(socket_fd[1], p, (size_t)(q - p), MSG_WAITALL);
if (n > (ssize_t)0)
p += n;
else
if (n != (ssize_t)-1) {
fprintf(stderr, "%s: %s.\n", argv0, strerror(EIO));
return 127;
} else
if (errno != EINTR) {
fprintf(stderr, "%s: %s.\n", argv0, strerror(errno));
return 127;
}
}
}
if (pid < (pid_t)2) {
shutdown(socket_fd[1], SHUT_RDWR);
close(socket_fd[1]);
return 127;
}
/* Enable CAP_SYS_CHROOT. */
caps = cap_get_proc();
if (cap_set_flag(caps, CAP_EFFECTIVE, helper_caps, helper_cap, CAP_SET)) {
shutdown(socket_fd[1], SHUT_RDWR);
close(socket_fd[1]);
fprintf(stderr, "%s: %s.\n", argv0, strerror(errno));
return 127;
}
if (cap_set_proc(caps)) {
shutdown(socket_fd[1], SHUT_RDWR);
close(socket_fd[1]);
fprintf(stderr, "%s: %s.\n", argv0, strerror(errno));
return 127;
}
/* Target is ready to be chrooted, so do it now. */
if (chroot(helper_chroot)) {
shutdown(socket_fd[1], SHUT_RDWR);
close(socket_fd[1]);
fprintf(stderr, "%s: Cannot chroot: %s.\n", argv0, strerror(errno));
return 127;
}
/* Send my own pid, so this process will be reaped. */
{ const char *p = (char *)(&pid);
const char *const q = (char *)(&pid) + sizeof pid;
ssize_t n;
pid = getpid();
while (p < q) {
n = send(socket_fd[1], p, (size_t)(q - p), MSG_NOSIGNAL);
if (n > (ssize_t)0)
p += n;
else
if (n != (ssize_t)-1) {
fprintf(stderr, "%s: %s.\n", argv0, strerror(EIO));
return 127;
} else
if (errno != EINTR) {
fprintf(stderr, "%s: %s.\n", argv0, strerror(errno));
return 127;
}
}
}
/* We won't be sending anything else. */
shutdown(socket_fd[1], SHUT_WR);
/* Ignore further input; wait for other end to close descriptor. */
{ char buf[16];
ssize_t n;
while (1) {
n = recv(socket_fd[1], buf, sizeof buf, 0);
if (n > (ssize_t)0)
continue;
else
if (n == (ssize_t)0)
break;
else
if (n != (ssize_t)-1) {
fprintf(stderr, "%s: %s.\n", argv0, strerror(EIO));
return 127;
} else
if (errno == EPIPE)
break;
else
if (errno != EINTR) {
fprintf(stderr, "%s: %s.\n", argv0, strerror(errno));
return 127;
}
}
}
/* Close the socket, and exit. */
shutdown(socket_fd[1], SHUT_RDWR);
close(socket_fd[1]);
return 0;
}
int main(int argc, char *argv[])
{
if (argc < 4 || !strcmp(argv[1], "-h") || !strcmp(argv[1], "--help")) {
fprintf(stderr, "\n");
fprintf(stderr, "Usage: %s [ -h | --help ]\n", argv[0]);
fprintf(stderr, " %s CHROOT WORKDIR COMMAND [ ARGS ... ]\n", argv[0]);
fprintf(stderr, "\n");
fprintf(stderr, "Note: . is a valid WORKDIR.\n");
fprintf(stderr, "\n");
return 1;
}
if (chdir(argv[2])) {
fprintf(stderr, "%s: %s.\n", argv[2], strerror(errno));
return 1;
}
helper_stack = mmap(NULL, helper_stack_size, PROT_READ | PROT_WRITE,
MAP_ANONYMOUS | MAP_PRIVATE | MAP_STACK | MAP_GROWSDOWN, -1, (off_t)0);
if ((void *)helper_stack == MAP_FAILED) {
fprintf(stderr, "Cannot create helper process stack: %s.\n", strerror(errno));
return 1;
}
helper_chroot = argv[1];
if (socketpair(AF_UNIX, SOCK_STREAM, 0, socket_fd)) {
fprintf(stderr, "Cannot create an Unix domain stream socket pair: %s.\n", strerror(errno));
return 1;
}
if (clone(helper_main, helper_endstack, CLONE_FS, argv[0]) == -1) {
fprintf(stderr, "Cannot clone a helper process: %s.\n", strerror(errno));
close(socket_fd[0]);
close(socket_fd[1]);
return 1;
}
close(socket_fd[1]);
if (socket_fd[0] != SOCKET_FD) {
if (dup2(socket_fd[0], SOCKET_FD) == -1) {
fprintf(stderr, "Cannot move stream socket: %s.\n", strerror(errno));
close(socket_fd[0]);
close(SOCKET_FD);
return 1;
}
close(socket_fd[0]);
}
setenv("LD_PRELOAD", LIBRARY_PATH, 1);
/* Capabilities are reset over an execve(). */
execvp(argv[3], argv + 3);
close(SOCKET_FD);
fprintf(stderr, "%s: %s.\n", argv[3], strerror(errno));
return 1;
}
premain.c:
#define _POSIX_C_SOURCE 200809L
#include <stdlib.h>
#include <unistd.h>
#include <sys/types.h>
#include <sys/wait.h>
#include <sys/socket.h>
#include <sys/un.h>
#include <fcntl.h>
#include <string.h>
#include <errno.h>
#ifndef SOCKET_FD
#error SOCKET_FD is not defined!
#endif
static void init(void) __attribute__ ((constructor (65535)));
static void init(void)
{
pid_t pid;
/* Note: We could probably only remove libpremain.so
* from the value, instead of clearing it altogether. */
unsetenv("LD_PRELOAD");
/* Verify SOCKFD is an Unix domain socket. */
{ struct sockaddr_un addr;
socklen_t addrlen = sizeof addr;
memset(&addr, 0, sizeof addr);
errno = EIO;
if (getsockname(SOCKET_FD, (struct sockaddr *)&addr, &addrlen))
switch (errno) {
case EBADF:
/* SOCKET_FD is not open. Continue as if libpremain.so was never loaded. */
errno = 0;
return;
case ENOTSOCK:
/* SOCKET_FD is not a socket. Continue as if libpremain.so was never loaded. */
errno = 0;
return;
default:
/* All other errors are fatal. */
exit(127);
}
if (addr.sun_family != AF_UNIX) {
/* SOCKET_FD is not an Unix domain socket. Continue as if libpremain.so was never loaded. */
errno = 0;
return;
}
}
/* Make SOCKET_FD blocking and close-on-exec. */
if (fcntl(SOCKET_FD, F_SETFD, (long)FD_CLOEXEC) ||
fcntl(SOCKET_FD, F_SETFL, (long)0L))
exit(127);
/* Send our PID. */
{ const char *p = (const char *)(&pid);
const char *const q = (const char *)(&pid) + sizeof pid;
pid = getpid();
while (p < q) {
ssize_t n = send(SOCKET_FD, p, (size_t)(q - p), MSG_NOSIGNAL);
if (n > (ssize_t)0)
p += n;
else
if (n != (ssize_t)-1)
exit(127);
else
if (errno != EINTR)
exit(127);
}
}
/* Receive the PID from the other end. */
{ char *p = (char *)(&pid);
char *const q = (char *)(&pid) + sizeof pid;
pid = (pid_t)-1;
while (p < q) {
ssize_t n = recv(SOCKET_FD, p, (size_t)(q - p), MSG_WAITALL);
if (n > (ssize_t)0)
p += n;
else
if (n != (ssize_t)-1)
exit(127);
else
if (errno != EINTR)
exit(127);
}
}
shutdown(SOCKET_FD, SHUT_RDWR);
close(SOCKET_FD);
/* If the PID is > 1, we wait for it to exit.
* If an error occurs, it's not a problem. */
if (pid > (pid_t)1) {
pid_t p;
do {
p = waitpid(pid, NULL, 0);
} while (p == (pid_t)-1 && errno == EINTR);
}
/* All done. */
return;
}
Makefile文件:
CC := gcc
CFLAGS := -Wall -O3
LD := $(CC)
LDFLAGS := -lcap
PREFIX := /usr
BINDIR := $(PREFIX)/bin
LIBDIR := $(PREFIX)/lib
SOCKFD := 15
.PHONY: all clean
all: clean libpremain.so exec-chroot
clean:
rm -f libpremain.so exec-chroot
libpremain.so: premain.c
$(CC) $(CFLAGS) -DSOCKET_FD=$(SOCKFD) -fPIC -shared $^ -ldl -Wl,-soname,$@ $(LDFLAGS) -o $@
exec-chroot: exec.c
$(CC) $(CFLAGS) -DSOCKET_FD=$(SOCKFD) -DLIBRARY_PATH='"'$(LIBDIR)/libpremain.so'"' $^ $(LDFLAGS) -o $@
install: libpremain.so exec-chroot
sudo rm -f $(LIBDIR)/libpremain.so $(BINDIR)/exec-chroot
sudo install -o `id -un` -g `id -gn` -m 00770 libpremain.so $(LIBDIR)/libpremain.so
sudo install -o `id -un` -g `id -gn` -m 00770 exec-chroot $(BINDIR)/exec-chroot
sudo setcap 'cap_sys_chroot=p' $(BINDIR)/exec-chroot
uninstall:
sudo rm -f $(LIBDIR)/libpremain.so $(BINDIR)/exec-chroot
请注意,Makefile中的缩进是使用制表符,而不是空格.跑
make PREFIX=/usr/local clean install
编译并安装到/usr/local,但只能由当前用户执行.您也可以使用全部清除仅重新编译所有内容,或卸载以卸载二进制文件
这确实需要libcap
库.它作为内核的一部分进行维护,但您可能需要安装libcap-dev或libcap-devel或类似命名的包来获取所有必需的文件以对其进行编译.
安装后,您可以运行,例如
exec-chroot /tmp /tmp ls -alF /
运行ls -alF / in / tmp chrooted到/ tmp. Ubuntu机器上的输出通常是这样的
drwxrwxrwt 11 0 0 4096 May 29 23:55 ./
drwxrwxrwt 11 0 0 4096 May 29 23:55 ../
drwxrwxrwt 2 0 0 4096 May 29 17:15 .ICE-unix/
-r--r--r-- 1 0 0 11 May 29 17:15 .X0-lock
drwxrwxrwt 2 0 0 4096 May 29 17:15 .X11-unix/
drwx------ 2 1000 1000 4096 May 29 17:15 .esd-1000/
drwx------ 2 0 0 16384 Dec 2 2011 lost+found/
drwx------ 2 1000 1000 4096 May 29 17:15 pulse-xxxxxxxxx/
drwx------ 2 0 0 4096 May 29 17:15 pulse-yyyyyyyyy/
所有者和组分别为0(root)和1000(user),因为passrod和group数据库在chroot中是不可访问的.但是,正如我已经提到的,可以通过修改和扩展上述代码来解决它.
虽然我确实试图通过仔细的错误处理来编写代码,但我并没有真正考虑到错误条件或安全问题的整体操作;这就是安装文件只能由当前用户访问的原因.
有问题吗?