一、Atomic简介
Atomic包是Java.util.concurrent下的另一个专门为线程安全设计的Java包,包含多个原子操作类。这个包里面提供了一组原子变量类。其基本的特性就是在多线程环境下,当有多个线程同时执行这些类的实例包含的方法时,具有排他性,即当某个线程进入方法,执行其中的指令时,不会被其他线程打断,而别的线程就像自旋锁一样,一直等到该方法执行完成,才由JVM从等待队列中选择一个另一个线程进入,这只是一种逻辑上的理解。实际上是借助硬件的相关指令来实现的,不会阻塞线程(或者说只是在硬件级别上阻塞了)。可以对基本数据、数组中的基本数据、对类中的基本数据进行操作。原子变量类相当于一种泛化的volatile变量,能够支持原子的和有条件的读-改-写操作。—— 引自@chenzehe 的博客。
在Atomic包里一共有12个类,四种原子更新方式,分别是原子更新基本类型,原子更新数组,原子更新引用和原子更新字段。Atomic包里的类基本都是使用Unsafe实现的包装类。
二、原子更新基本类型类
用于通过原子的方式更新基本类型,Atomic包提供了以下三个类:
- AtomicBoolean:原子更新布尔类型。
- AtomicInteger:原子更新整型。
- AtomicLong:原子更新长整型。
AtomicInteger的常用方法如下:
- int addAndGet(int delta) :以原子方式将输入的数值与实例中的值(AtomicInteger里的value)相加,并返回结果
- boolean compareAndSet(int expect, int update) :如果输入的数值等于预期值,则以原子方式将该值设置为输入的值。
- int getAndIncrement():以原子方式将当前值加1,注意:这里返回的是自增前的值。
- void lazySet(int newValue):最终会设置成newValue,使用lazySet设置值后,可能导致其他线程在之后的一小段时间内还是可以读到旧的值。关于该方法的更多信息可以参考并发网翻译的一篇文章《AtomicLong.lazySet是如何工作的?》
- int getAndSet(int newValue):以原子方式设置为newValue的值,并返回旧值。
import java.util.concurrent.atomic.AtomicIntegerArray;
public class AtomicIntegerTest {
static int[] value = new int[] { 1, 2 };
static AtomicIntegerArray ai = new AtomicIntegerArray(value);
public static void main(String[] args) {
//以原子方式将输入值与数组中索引i的元素相加1+1
ai.addAndGet(0, 1);
System.out.println(ai.get(0));
System.out.println(".......................");
//如果当前值等于预期值,则以原子方式将数组位置i的元素设置成update值。
boolean b = ai.compareAndSet(0, 2, 5);//没有并发访问,一直未true,当当前值和expected不一致时为false
System.out.println(b);
System.out.println(ai.get(0));
System.out.println(".......................");
//ai.getAndSet(0, 3)返回当前值,并设置为3
System.out.println(ai.getAndSet(0, 3));
System.out.println(ai.get(0));
System.out.println(value[0]);
}
}
输出:
2
.......................
true
5
.......................
5
3
1
餐后甜点
Atomic包提供了三种基本类型的原子更新,但是Java的基本类型里还有char,float和double等。那么问题来了,如何原子的更新其他的基本类型呢?Atomic包里的类基本都是使用Unsafe实现的,让我们一起看下Unsafe的源码,发现Unsafe只提供了三种CAS方法,compareAndSwapObject,compareAndSwapInt和compareAndSwapLong,再看AtomicBoolean源码,发现其是先把Boolean转换成整型,再使用compareAndSwapInt进行CAS,所以原子更新double也可以用类似的思路来实现。
三、原子更新数组类
Atomic的数组要求不允许修改长度等,不像集合类那么丰富的操作,不过它可以让数组上每个元素的操作绝对安全的,也就是它细化的力度还是到数组上的元素,做了二次包装,虽然是数组类型的,但是最后还是操作数组中存的数,所以会了上面的基本类型的话,数组类型也很好理解。
通过原子的方式更新数组里的某个元素,Atomic包提供了以下三个类:
- AtomicIntegerArray:原子更新整型数组里的元素。
- AtomicLongArray:原子更新长整型数组里的元素。
- AtomicReferenceArray:原子更新引用类型数组里的元素。
AtomicIntegerArray类主要是提供原子的方式更新数组里的整型,其常用方法如下
- int addAndGet(int i, int delta):以原子方式将输入值与数组中索引i的元素相加。
- boolean compareAndSet(int i, int expect, int update):如果当前值等于预期值,则以原子方式将数组位置i的元素设置成update值。
public class AtomicIntegerArrayTest {
static int[] value = new int[] { 1, 2 };
static AtomicIntegerArray ai = new AtomicIntegerArray(value);
public static void main(String[] args) {
ai.getAndSet(0, 3);
System.out.println(ai.get(0));
System.out.println(value[0]);
}
}
输出
3
1
AtomicIntegerArray类需要注意的是,数组value通过构造方法传递进去,然后AtomicIntegerArray会将当前数组复制一份,所以当AtomicIntegerArray对内部的数组元素进行修改时,不会影响到传入的数组。
public class AtomicIntegerArrayTest {
/**
* 常见的方法列表
* @see AtomicIntegerArray#addAndGet(int, int) 执行加法,第一个参数为数组的下标,第二个参数为增加的数量,返回增加后的结果
* @see AtomicIntegerArray#compareAndSet(int, int, int) 对比修改,参数1:数组下标,参数2:原始值,参数3,修改目标值,修改成功返回true否则false
* @see AtomicIntegerArray#decrementAndGet(int) 参数为数组下标,将数组对应数字减少1,返回减少后的数据
* @see AtomicIntegerArray#incrementAndGet(int) 参数为数组下标,将数组对应数字增加1,返回增加后的数据
*
* @see AtomicIntegerArray#getAndAdd(int, int) 和addAndGet类似,区别是返回值是变化前的数据
* @see AtomicIntegerArray#getAndDecrement(int) 和decrementAndGet类似,区别是返回变化前的数据
* @see AtomicIntegerArray#getAndIncrement(int) 和incrementAndGet类似,区别是返回变化前的数据
* @see AtomicIntegerArray#getAndSet(int, int) 将对应下标的数字设置为指定值,第二个参数为设置的值,返回是变化前的数据
*/
private final static AtomicIntegerArray ATOMIC_INTEGER_ARRAY = new AtomicIntegerArray(new int[]{1,2,3,4,5,6,7,8,9,10});
public static void main(String []args) throws InterruptedException {
Thread []threads = new Thread[10];
for(int i = 0 ; i < 10 ; i++) {
final int index = i;
final int threadNum = i;
threads[i] = new Thread() {
public void run() {
int result = ATOMIC_INTEGER_ARRAY.addAndGet(index, index + 1);
System.out.println("线程编号为:" + threadNum + " , 对应的原始值为:" + (index + 1) + ",增加后的结果为:" + result);
}
};
threads[i].start();
}
for(Thread thread : threads) {
thread.join();
}
System.out.println("=========================>\n执行已经完成,结果列表:");
for(int i = 0 ; i < ATOMIC_INTEGER_ARRAY.length() ; i++) {
System.out.println(ATOMIC_INTEGER_ARRAY.get(i));
}
}
}
运行结果是给每个数组元素加上相同的值,它们之间互不影响。
四、原子更新引用类型
原子更新基本类型的AtomicInteger,只能更新一个变量,如果要原子的更新多个变量,就需要使用这个原子更新引用类型提供的类。Atomic包提供了以下三个类:
- AtomicReference:原子更新引用类型。
- AtomicReferenceFieldUpdater:原子更新引用类型里的字段。
- AtomicMarkableReference:原子更新带有标记位的引用类型。可以原子的更新一个布尔类型的标记位和引用类型。构造方法是AtomicMarkableReference(V initialRef, boolean initialMark)
AtomicReference的使用例子代码如下:
public class AtomicReferenceTest {
public static AtomicReference<user> atomicUserRef = new AtomicReference</user><user>();
public static void main(String[] args) {
User user = new User("conan", 15);
atomicUserRef.set(user);
User updateUser = new User("Shinichi", 17);
atomicUserRef.compareAndSet(user, updateUser);
System.out.println(atomicUserRef.get().getName());
System.out.println(atomicUserRef.get().getOld());
}
static class User {
private String name;
private int old;
public User(String name, int old) {
this.name = name;
this.old = old;
}
public String getName() {
return name;
}
public int getOld() {
return old;
}
}
}
输出
Shinichi
17
五、原子更新字段类<修改类属性> 基于反射原理实现
如果我们只需要某个类里的某个字段,那么就需要使用原子更新字段类,Atomic包提供了以下三个类:
- AtomicIntegerFieldUpdater:原子更新整型的字段的更新器。
- AtomicLongFieldUpdater:原子更新长整型字段的更新器。
- AtomicStampedReference:原子更新带有版本号的引用类型。该类将整数值与引用关联起来,可用于原子的更数据和数据的版本号,可以解决使用CAS进行原子更新时,可能出现的ABA问题。
原子更新字段类都是抽象类,每次使用都时候必须使用静态方法newUpdater创建一个更新器。原子更新类的字段的必须使用public volatile修饰符。AtomicIntegerFieldUpdater的例子代码如下:
public class AtomicIntegerFieldUpdaterTest {
private static AtomicIntegerFieldUpdater<User> a = AtomicIntegerFieldUpdater
.newUpdater(User.class, "old");
public static void main(String[] args) {
User conan = new User("conan", 10);
System.out.println(a.getAndIncrement(conan));
System.out.println(a.get(conan));
}
public static class User {
private String name;
public volatile int old;
public User(String name, int old) {
this.name = name;
this.old = old;
}
public String getName() {
return name;
}
public int getOld() {
return old;
}
}
}
输出
10
11
六、CAS线程安全
说了半天,我们要回归到最原始的问题了:这样怎么实现线程安全呢?请大家自己先考虑一下这个问题,其实我们在语言层面是没有做任何同步的操作的,大家也可以看到源码没有任何锁加在上面,可它为什么是线程安全的呢?这就是Atomic包下这些类的奥秘:语言层面不做处理,我们将其交给硬件—CPU和内存,利用CPU的多处理能力,实现硬件层面的阻塞,再加上volatile变量的特性即可实现基于原子操作的线程安全。所以说,CAS并不是无阻塞,只是阻塞并非在语言、线程方面,而是在硬件层面,所以无疑这样的操作会更快更高效!
七、总结
虽然基于CAS的线程安全机制很好很高效,但要说的是,并非所有线程安全都可以用这样的方法来实现,这只适合一些粒度比较小,型如计数器这样的需求用起来才有效,否则也不会有锁的存在了。
链接:
http://blog.csdn.net/zhangerqing/article/details/43057799