gpu – OpenACC红黑高斯 – 赛德尔比CPU慢

我将OpenACC指令添加到我的红黑高斯 – 赛德尔求解器中用于拉普拉斯方程(一个简单的加热板问题),但GPU加速代码并不比CPU快,即使对于大问题也是如此.

我还写了一个CUDA版本,这比两者都要快得多(512×512,大约2秒,而CPU和OpenACC则为25).

任何人都可以想到这种差异的原因吗?我意识到CUDA提供了最大的潜在速度,但是对于更大的问题,OpenACC应该比CPU提供更好的东西(比如Jacoga求解器对于同样的问题所展示的here).

这是相关代码(完整的工作源是here):

#pragma acc data copyin(aP[0:size], aW[0:size], aE[0:size], aS[0:size], aN[0:size], b[0:size]) copy(temp_red[0:size_temp], temp_black[0:size_temp])
// red-black Gauss-Seidel with SOR iteration loop
for (iter = 1; iter <= it_max; ++iter) {
  Real norm_L2 = 0.0;

  // update red cells
  #pragma omp parallel for shared(aP, aW, aE, aS, aN, temp_black, temp_red) \
      reduction(+:norm_L2)
  #pragma acc kernels present(aP[0:size], aW[0:size], aE[0:size], aS[0:size], aN[0:size], b[0:size], temp_red[0:size_temp], temp_black[0:size_temp])
  #pragma acc loop independent gang vector(4)
  for (int col = 1; col < NUM + 1; ++col) {
    #pragma acc loop independent gang vector(64)
    for (int row = 1; row < (NUM / 2) + 1; ++row) {

      int ind_red = col * ((NUM / 2) + 2) + row;        // local (red) index
      int ind = 2 * row - (col % 2) - 1 + NUM * (col - 1);  // global index

      #pragma acc cache(aP[ind], b[ind], aW[ind], aE[ind], aS[ind], aN[ind])

      Real res = b[ind] + (aW[ind] * temp_black[row + (col - 1) * ((NUM / 2) + 2)]
                         + aE[ind] * temp_black[row + (col + 1) * ((NUM / 2) + 2)]
                         + aS[ind] * temp_black[row - (col % 2) + col * ((NUM / 2) + 2)]
                         + aN[ind] * temp_black[row + ((col + 1) % 2) + col * ((NUM / 2) + 2)]);

      Real temp_old = temp_red[ind_red];
      temp_red[ind_red] = temp_old * (1.0 - omega) + omega * (res / aP[ind]);

      // calculate residual
      res = temp_red[ind_red] - temp_old;
      norm_L2 += (res * res);

    } // end for row
  } // end for col

  // update black cells
  #pragma omp parallel for shared(aP, aW, aE, aS, aN, temp_black, temp_red) \
          reduction(+:norm_L2)
  #pragma acc kernels present(aP[0:size], aW[0:size], aE[0:size], aS[0:size], aN[0:size], b[0:size], temp_red[0:size_temp], temp_black[0:size_temp])
  #pragma acc loop independent gang vector(4)
  for (int col = 1; col < NUM + 1; ++col) {
    #pragma acc loop independent gang vector(64)
    for (int row = 1; row < (NUM / 2) + 1; ++row) {

      int ind_black = col * ((NUM / 2) + 2) + row;      // local (black) index
      int ind = 2 * row - ((col + 1) % 2) - 1 + NUM * (col - 1);    // global index

      #pragma acc cache(aP[ind], b[ind], aW[ind], aE[ind], aS[ind], aN[ind])

      Real res = b[ind] + (aW[ind] * temp_red[row + (col - 1) * ((NUM / 2) + 2)]
                         + aE[ind] * temp_red[row + (col + 1) * ((NUM / 2) + 2)]
                         + aS[ind] * temp_red[row - ((col + 1) % 2) + col * ((NUM / 2) + 2)]
                         + aN[ind] * temp_red[row + (col % 2) + col * ((NUM / 2) + 2)]);

      Real temp_old = temp_black[ind_black];
      temp_black[ind_black] = temp_old * (1.0 - omega) + omega * (res / aP[ind]);

      // calculate residual
      res = temp_black[ind_black] - temp_old;       
      norm_L2 += (res * res);

    } // end for row
  } // end for col

  // calculate residual
  norm_L2 = sqrt(norm_L2 / ((Real)size));

  if(iter % 100 == 0) printf("%5d, %0.6f\n", iter, norm_L2);

  // if tolerance has been reached, end SOR iterations
  if (norm_L2 < tol) {
    break;
  }
}

最佳答案 好吧,我发现了一种半解决方案,可以减少较小问题的时间.

如果我插入行:

acc_init(acc_device_nvidia);
acc_set_device_num(0, acc_device_nvidia);

在我启动计时器之前,为了激活和设置GPU,512×512问题的时间下降到9.8秒,而1024×1024下降到42.增加问题的大小进一步表明,即使OpenACC与在四个CPU核心上运行相比也有多快.

通过这种改变,OpenACC代码比CUDA代码慢2倍,随着问题规模越来越大,差距越来越小(~1.2).

点赞