栅栏不同于倒计时器的一点是倒计时器是一个或N个线程等待其他线程调用countdown()到指定次数后再继续执行,而栅栏是N个线程之间互相等待,当调用await()到达指定次数后就会唤醒所有等待线程,同时还可以在到达指定数量时触发一个定制的动作(Runnable,由最后一个调用await()方法并唤醒所有线程的那个线程执行)。另外栅栏是可以循环使用的。
栅栏的实现方式是独占锁+Condition条件来实现的。
先看个Demo:
package com.pzx.test005;
import java.text.SimpleDateFormat;
import java.util.Date;
import java.util.concurrent.BrokenBarrierException;
import java.util.concurrent.CyclicBarrier;
public class CyclicBarrierDemo {
static SimpleDateFormat sdf = new SimpleDateFormat("yyyy-MM-dd HH:mm:SS ");
static CyclicBarrier cyclicBarrier;
public static void main(String[] args) {
cyclicBarrier = new CyclicBarrier(5, new Runnable() {
@Override
public void run() {
System.out.println(sdf.format(new Date()) + Thread.currentThread().getName() + " do something...");
}
});
ThreadA threadA = new ThreadA();
for(int i=0; i<5; i++) {
Thread thread = new Thread(threadA, "t"+i);
thread.start();
}
}
static class ThreadA implements Runnable{
@Override
public void run() {
System.out.println(sdf.format(new Date()) + Thread.currentThread().getName() + " begin work...");
try {
System.out.println(sdf.format(new Date()) + Thread.currentThread().getName() + " await...");
cyclicBarrier.await();
} catch (InterruptedException e) {
e.printStackTrace();
} catch (BrokenBarrierException e) {
e.printStackTrace();
}
System.out.println(sdf.format(new Date()) + Thread.currentThread().getName() + " continue work...");
}
}
}
执行结果:
2018-09-11 13:54:27 t0 begin work…
2018-09-11 13:54:27 t0 await…
2018-09-11 13:54:27 t4 begin work…
2018-09-11 13:54:27 t4 await…
2018-09-11 13:54:27 t1 begin work…
2018-09-11 13:54:27 t1 await…
2018-09-11 13:54:27 t3 begin work…
2018-09-11 13:54:27 t3 await…
2018-09-11 13:54:27 t2 begin work…
2018-09-11 13:54:27 t2 await…
2018-09-11 13:54:27 t2 do something…
2018-09-11 13:54:27 t2 continue work…
2018-09-11 13:54:27 t0 continue work…
2018-09-11 13:54:27 t4 continue work…
2018-09-11 13:54:27 t1 continue work…
2018-09-11 13:54:27 t3 continue work…
public class CyclicBarrier {
// 内部类,因为栅栏可以循环使用,每使用一次都是一代,这个类可判断是否处于同一代
private static class Generation {
boolean broken = false;
}
// 可重入锁
private final ReentrantLock lock = new ReentrantLock();
// 创建Condition,释放所有线程的条件
private final Condition trip = lock.newCondition();
// 栅栏中的线程总个数
private final int parties;
// 当要释放时触发的动作
private final Runnable barrierCommand;
// 创建当前代
private Generation generation = new Generation();
// 还剩多少线程可以达到条件,进来一个线程就-1
private int count;
// 构造函数
public CyclicBarrier(int parties, Runnable barrierAction) {
if (parties <= 0) throw new IllegalArgumentException();
this.parties = parties;
this.count = parties;
this.barrierCommand = barrierAction;
}
// 调用await方法阻塞,最后一个线程会唤醒所有线程
public int await() throws InterruptedException, BrokenBarrierException {
try {
return dowait(false, 0L);
} catch (TimeoutException toe) {
throw new Error(toe); // cannot happen
}
}
private int dowait(boolean timed, long nanos)
throws InterruptedException, BrokenBarrierException,
TimeoutException {
final ReentrantLock lock = this.lock;
// 开启独占锁
lock.lock();
try {
// 获取当前代数
final Generation g = generation;
// 如果当前代的栅栏被破坏了就抛异常
if (g.broken)
throw new BrokenBarrierException();
// 当前线程如果处于中断状态就清除中断标志,破坏栅栏,抛出被中断的异常
if (Thread.interrupted()) {
breakBarrier();
throw new InterruptedException();
}
// 一个线程进来后,count-1
int index = --count;
// 如果count已经减到0了,说明是时候唤醒所有线程往下运行了
if (index == 0) { // tripped
boolean ranAction = false;
try {
final Runnable command = barrierCommand;
// 如果构造函数中有传入Runnable对象,就在唤醒所有线程之前执行Runnable里面
// 的run方法
if (command != null)
command.run();
ranAction = true;
// 重置参数,进入下一代
nextGeneration();
return 0;
} finally {
// 如果上述唤醒的过程(command.run();)发生了什么意外导致异常了,就破坏当前
// 的栅栏
if (!ranAction)
breakBarrier();
}
}
// loop until tripped, broken, interrupted, or timed out
// 循环,一直到要被唤醒了,或者栅栏被破坏了,或者线程被中断了,或者超时了
for (;;) {
try {
// 如果没有设置超时参数,就执行await(即当前线程阻塞,释放上面的独占锁,
// 等待被唤醒)
if (!timed)
trip.await();
// 如果设置了超时参数,就阻塞超时参数那么长的时间
else if (nanos > 0L)
nanos = trip.awaitNanos(nanos);
} catch (InterruptedException ie) {
// 如果发生了中断异常
// 如果还是在当前代并且当前代没有被破坏
if (g == generation && ! g.broken) {
// 破坏栅栏,抛出异常
breakBarrier();
throw ie;
} else {
// 发生中断
Thread.currentThread().interrupt();
}
}
// 如果当前代被破坏了,就抛出异常
if (g.broken)
throw new BrokenBarrierException();
// 如果在这个执行过程中换代了就返回index(即当前count-1值)
if (g != generation)
return index;
// 输入的超时参数的合法性判断,不合法就破坏当前代的栅栏
if (timed && nanos <= 0L) {
breakBarrier();
throw new TimeoutException();
}
}
} finally {
lock.unlock();
}
}
// 开启下一代
private void nextGeneration() {
// 唤醒所有的等待的线程,相当于把栅栏拉开
trip.signalAll();
// 重置count和generation
count = parties;
generation = new Generation();
}
// 破坏栅栏
private void breakBarrier() {
// 当前代被破坏置true,重置count,唤醒所有的线程
generation.broken = true;
count = parties;
trip.signalAll();
}
// 重置栅栏
public void reset() {
final ReentrantLock lock = this.lock;
lock.lock();
try {
breakBarrier(); // break the current generation
nextGeneration(); // start a new generation
} finally {
lock.unlock();
}
}