Scipy NNLS执行此操作:
Solve argmin_x || Ax - b ||_2 for x>=0.
如果我寻求,可以采用哪种替代方法
严格非零解(即x> 0)?
这是我使用Scipy的NNLS的LP代码:
import numpy as np
from numpy import array
from scipy.optimize import nnls
def by_nnls(A=None, B=None):
""" Linear programming by NNLS """
#print "NOF row = ", A.shape[0]
A = np.nan_to_num(A)
B = np.nan_to_num(B)
x, rnorm = nnls(A,B)
x = x / x.sum()
# print repr(x)
return x
B1 = array([ 22.133, 197.087, 84.344, 1.466, 3.974, 0.435,
8.291, 45.059, 5.755, 0.519, 0. , 30.272,
24.92 , 10.095])
A1 = array([[ 46.35, 80.58, 48.8 , 80.31, 489.01, 40.98,
29.98, 44.3 , 5882.96],
[ 2540.73, 49.53, 26.78, 30.49, 48.51, 20.88,
19.92, 21.05, 19.39],
[ 2540.73, 49.53, 26.78, 30.49, 48.51, 20.88,
19.92, 21.05, 19.39],
[ 30.95, 1482.24, 100.48, 35.98, 35.1 , 38.65,
31.57, 87.38, 33.39],
[ 30.95, 1482.24, 100.48, 35.98, 35.1 , 38.65,
31.57, 87.38, 33.39],
[ 30.95, 1482.24, 100.48, 35.98, 35.1 , 38.65,
31.57, 87.38, 33.39],
[ 15.99, 223.27, 655.79, 1978.2 , 18.21, 20.51,
19. , 16.19, 15.91],
[ 15.99, 223.27, 655.79, 1978.2 , 18.21, 20.51,
19. , 16.19, 15.91],
[ 16.49, 20.56, 19.08, 18.65, 4568.97, 20.7 ,
17.4 , 17.62, 25.51],
[ 33.84, 26.58, 18.69, 40.88, 19.17, 5247.84,
29.39, 25.55, 18.9 ],
[ 42.66, 83.59, 99.58, 52.11, 46.84, 64.93,
43.8 , 7610.12, 47.13],
[ 42.66, 83.59, 99.58, 52.11, 46.84, 64.93,
43.8 , 7610.12, 47.13],
[ 41.63, 204.32, 4170.37, 86.95, 49.92, 87.15,
51.88, 45.38, 42.89],
[ 81.34, 60.16, 357.92, 43.48, 36.92, 39.13,
1772.07, 68.43, 38.07]])
用法:
In [9]: by_nnls(A=A1,B=B1)
Out[9]:
array([ 0.70089761, 0. , 0.06481495, 0.14325696, 0.01218972,
0. , 0.02125942, 0.01906576, 0.03851557]
注意上面的零解决方案.
最佳答案 您应该质疑是否真的需要x> 0而不是x> = 0.通常后一个约束用于稀疏结果,并且x中的零是理想的.除此之外,约束实际上是等同的.
如果约束x严格大于零,那么0将变为非常小的正数.如果可以通过更大的值来改善溶液,那么您也可以使用原始约束来获得这些值.
让我们通过定义以下优化来证明这一点:解决argmin_x || Ax – b || _2 for x> = eps.而eps> 0这也满足x> 0.查看不同eps的结果x,我们得到:
你看到的是,对于商城eps,目标函数几乎没有任何差异,x [1](原始解决方案中的0之一)越来越接近0.
因此,从x> 0到x> = 0的无穷小步骤几乎不改变溶液中的任何东西.出于实际目的,它们完全相似.但是,x> = 0的优势在于,您可以获得实际的0而不是1.234e-20,这有助于简化解决方案.
以下是上图的代码:
from scipy.optimize import fmin_cobyla
import matplotlib.pyplot as plt
def by_minimize(A, B, eps=1e-6):
A = np.nan_to_num(A)
B = np.nan_to_num(B)
def objective(x, A=A, B=B):
return np.sum((np.dot(A, x) - B)**2)
x0 = np.zeros(A.shape[1])
x = fmin_cobyla(objective, x0, lambda x: x-eps)
return x / np.sum(x), objective(x)
results = []
obj = []
e = []
for eps in np.logspace(-1, -6, 100):
x, o = by_minimize(A=A1, B=B1, eps=eps)
e.append(eps)
results.append(x[1])
obj.append(o)
h1 = plt.semilogx(e, results, 'b')
plt.ylabel('x[1]', color='b')
plt.xlabel('eps')
plt.twinx()
h2 = plt.semilogx(e, obj, 'r')
plt.ylabel('objective', color='r')
plt.yticks([])
附:我试图实现x>在我的代码中使用lambda x的0约束:[1如果i> 0,则为x中的i为-1,但是它无法收敛.