假设我有两个相同尺寸的大型2-d numpy数组(比如2000×2000).我想要明智地总结它们.我想知道是否有比np.add()更快的方法
编辑:我正在添加一个类似于我现在使用的示例.有没有办法加快这个?
#a and b are the two matrices I already have.Dimension is 2000x2000
#shift is also a list that is previously known
for j in range(100000):
b=np.roll(b, shift[j] , axis=0)
a=np.add(a,b)
最佳答案 方法#1(矢量化)
我们可以使用模数来模拟滚动/圈移的循环行为,并使用广播指数覆盖所有行,我们将采用完全矢量化的方法,如此 –
n = b.shape[0]
idx = n-1 - np.mod(shift.cumsum()[:,None]-1 - np.arange(n), n)
a += b[idx].sum(0)
方法#2(Loopy one)
b_ext = np.row_stack((b, b[:-1] ))
start_idx = n-1 - np.mod(shift.cumsum()-1,n)
for j in range(start_idx.size):
a += b_ext[start_idx[j]:start_idx[j]+n]
冒号表示法使用索引进行切片
一旦我们进入循环,这里的想法就是做最小的工作.我们在进入循环之前预先计算每次迭代的起始行索引.因此,我们在循环内部所需要做的就是使用冒号表示切片,这是一个数组视图并加起来.这应该比滚动需要计算所有那些导致副本昂贵的行索引要好得多.
在使用冒号和索引进行切片时,这里有更多关于视图和复制概念的内容 –
In [11]: a = np.random.randint(0,9,(10))
In [12]: a
Out[12]: array([8, 0, 1, 7, 5, 0, 6, 1, 7, 0])
In [13]: a[3:8]
Out[13]: array([7, 5, 0, 6, 1])
In [14]: a[[3,4,5,6,7]]
Out[14]: array([7, 5, 0, 6, 1])
In [15]: np.may_share_memory(a, a[3:8])
Out[15]: True
In [16]: np.may_share_memory(a, a[[3,4,5,6,7]])
Out[16]: False
运行时测试
功能定义 –
def original_loopy_app(a,b):
for j in range(shift.size):
b=np.roll(b, shift[j] , axis=0)
a += b
def vectorized_app(a,b):
n = b.shape[0]
idx = n-1 - np.mod(shift.cumsum()[:,None]-1 - np.arange(n), n)
a += b[idx].sum(0)
def modified_loopy_app(a,b):
n = b.shape[0]
b_ext = np.row_stack((b, b[:-1] ))
start_idx = n-1 - np.mod(shift.cumsum()-1,n)
for j in range(start_idx.size):
a += b_ext[start_idx[j]:start_idx[j]+n]
情况1:
In [5]: # Setup input arrays
...: N = 200
...: M = 1000
...: a = np.random.randint(11,99,(N,N))
...: b = np.random.randint(11,99,(N,N))
...: shift = np.random.randint(0,N,M)
...:
In [6]: original_loopy_app(a1,b1)
...: vectorized_app(a2,b2)
...: modified_loopy_app(a3,b3)
...:
In [7]: np.allclose(a1, a2) # Verify results
Out[7]: True
In [8]: np.allclose(a1, a3) # Verify results
Out[8]: True
In [9]: %timeit original_loopy_app(a1,b1)
...: %timeit vectorized_app(a2,b2)
...: %timeit modified_loopy_app(a3,b3)
...:
10 loops, best of 3: 107 ms per loop
10 loops, best of 3: 137 ms per loop
10 loops, best of 3: 48.2 ms per loop
案例#2:
In [13]: # Setup input arrays (datasets are exactly 1/10th of original sizes)
...: N = 200
...: M = 10000
...: a = np.random.randint(11,99,(N,N))
...: b = np.random.randint(11,99,(N,N))
...: shift = np.random.randint(0,N,M)
...:
In [14]: %timeit original_loopy_app(a1,b1)
...: %timeit modified_loopy_app(a3,b3)
...:
1 loops, best of 3: 1.11 s per loop
1 loops, best of 3: 481 ms per loop
因此,我们正在考虑采用改进的循环方法进行2倍加速!