基于前一个问题(
see here),我试图通过xmlEventParse读取许多大型xml文件,同时保存节点变化数据.使用此示例xml:
https://www.nlm.nih.gov/databases/dtd/medsamp2015.xml.
下面的代码使用xpathSapply来提取必要的值和一系列if语句,以便将值与唯一值(PMID)匹配到记录中的每个非唯一值(LastName)的方式组合 – 对于这些值不是LastNames.目标是沿途编写一系列小csv(此处,每1000个LastNames之后)以最小化使用的内存量.
当在完整大小的数据集上运行时,代码成功地批量输出文件,但是仍然存储在内存中,一旦使用所有RAM,最终会导致系统错误.我在代码运行时看过任务管理器,可以看到R的内存随着程序的进展而增长.如果我在中途停止程序然后清除R工作区,包括隐藏的项目,则内存似乎仍被R使用.直到我关闭R才重新释放内存.
自己运行几次,即使清除了工作区,你也会看到R的内存使用量增长.
请帮忙!对于以这种方式读取大型XML文件的其他人来说,这个问题似乎很常见(参见例如注释in this question).
我的代码如下:
library(XML)
filename <- "~/Desktop/medsamp2015.xml"
tempdat <- data.frame(pmid=as.numeric(),
lname=character(),
stringsAsFactors=FALSE)
cnt <- 1
branchFunction <- function() {
func <- function(x, ...) {
v1 <- xpathSApply(x, path = "//PMID", xmlValue)
v2 <- xpathSApply(x, path = "//Author/LastName", xmlValue)
print(cbind(c(rep(v1,length(v2))), v2))
#below is where I store/write the temp data along the way
#but even without doing this, memory is used (even after clearing)
tempdat <<- rbind(tempdat,cbind(c(rep(v1,length(v2))), v2))
if (nrow(tempdat) > 1000){
outname <- paste0("~/Desktop/outfiles",cnt,".csv")
write.csv(tempdat, outname , row.names = F)
tempdat <<- data.frame(pmid=as.numeric(),
lname=character(),
stringsAsFactors=FALSE)
cnt <<- cnt+1
}
}
list(MedlineCitation = func)
}
myfunctions <- branchFunction()
#RUN
xmlEventParse(
file = filename,
handlers = NULL,
branches = myfunctions
)
最佳答案 这是一个例子,我们有一个启动脚本invoke.sh,它调用一个R脚本并将url和filename作为参数传递…在这种情况下,我之前已经下载了测试文件
medsamp2015.xml并放入./data目录.
>我的意思是在invoke.sh脚本中创建一个循环并遍历目标文件名列表.对于每个文件,您调用R实例,下载它,处理文件并继续下一个.
警告:我没有检查或更改您的功能与任何其他下载文件和格式.我将通过删除第62行上的print()包装来关闭输出的打印.
print( cbind(c(rep(v1, length(v2))), v2))
>见:runtime.txt打印出来.
>输出.csv文件放在./data目录中.
注意:这是我在此主题上提供的先前答案的衍生物:
R memory not released in Windows.我希望它有助于举例.
启动脚本
1 #!/usr/local/bin/bash -x
2
3 R --no-save -q --slave < ./47162861.R --args "https://www.nlm.nih.gov/databases/dtd" "medsamp2015.xml"
R文件 – 47162861.R
# Set working directory
projectDir <- "~/dev/stackoverflow/47162861"
setwd(projectDir)
# -----------------------------------------------------------------------------
# Load required Packages...
requiredPackages <- c("XML")
ipak <- function(pkg) {
new.pkg <- pkg[!(pkg %in% installed.packages()[, "Package"])]
if (length(new.pkg))
install.packages(new.pkg, dependencies = TRUE)
sapply(pkg, require, character.only = TRUE)
}
ipak(requiredPackages)
# -----------------------------------------------------------------------------
# Load required Files
# trailingOnly=TRUE means that only your arguments are returned
args <- commandArgs(trailingOnly = TRUE)
if ( length(args) != 0 ) {
dataDir <- file.path(projectDir,"data")
fileUrl = args[1]
fileName = args[2]
} else {
dataDir <- file.path(projectDir,"data")
fileUrl <- "https://www.nlm.nih.gov/databases/dtd"
fileName <- "medsamp2015.xml"
}
# -----------------------------------------------------------------------------
# Download file
# Does the directory Exist? If it does'nt create it
if (!file.exists(dataDir)) {
dir.create(dataDir)
}
# Now we check if we have downloaded the data already if not we download it
if (!file.exists(file.path(dataDir, fileName))) {
download.file(fileUrl, file.path(dataDir, fileName), method = "wget")
}
# -----------------------------------------------------------------------------
# Now we extrat the data
tempdat <- data.frame(pmid = as.numeric(), lname = character(),
stringsAsFactors = FALSE)
cnt <- 1
branchFunction <- function() {
func <- function(x, ...) {
v1 <- xpathSApply(x, path = "//PMID", xmlValue)
v2 <- xpathSApply(x, path = "//Author/LastName", xmlValue)
print(cbind(c(rep(v1, length(v2))), v2))
# below is where I store/write the temp data along the way
# but even without doing this, memory is used (even after
# clearing)
tempdat <<- rbind(tempdat, cbind(c(rep(v1, length(v2))),
v2))
if (nrow(tempdat) > 1000) {
outname <- file.path(dataDir, paste0(cnt, ".csv")) # Create FileName
write.csv(tempdat, outname, row.names = F) # Write File to created directory
tempdat <<- data.frame(pmid = as.numeric(), lname = character(),
stringsAsFactors = FALSE)
cnt <<- cnt + 1
}
}
list(MedlineCitation = func)
}
myfunctions <- branchFunction()
# -----------------------------------------------------------------------------
# RUN
xmlEventParse(file = file.path(dataDir, fileName),
handlers = NULL,
branches = myfunctions)
测试文件和输出
~/dev/stackoverflow/47162861/data/medsamp2015.xml
$ll
total 2128
drwxr-xr-x@ 7 hidden staff 238B Nov 10 11:05 .
drwxr-xr-x@ 9 hidden staff 306B Nov 10 11:11 ..
-rw-r--r--@ 1 hidden staff 32K Nov 10 11:12 1.csv
-rw-r--r--@ 1 hidden staff 20K Nov 10 11:12 2.csv
-rw-r--r--@ 1 hidden staff 23K Nov 10 11:12 3.csv
-rw-r--r--@ 1 hidden staff 37K Nov 10 11:12 4.csv
-rw-r--r--@ 1 hidden staff 942K Nov 10 11:05 medsamp2015.xml
运行时输出
> ./invoke.sh > runtime.txt
+ R --no-save -q --slave --args https://www.nlm.nih.gov/databases/dtd medsamp2015.xml
Loading required package: XML
档案:runtime.txt