我需要在相同的数据上交叉验证几个glmer模型,所以我已经做了一个函数来做这个(我对预先存在的函数不感兴趣).我想将一个任意的glmer模型作为唯一的参数传递给我的函数.可悲的是,我无法弄清楚如何做到这一点,并且interwebz不会告诉我.
理想情况下,我想做的事情如下:
model = glmer(y ~ x + (1|z), data = train_folds, family = "binomial"
model2 = glmer(y ~ x2 + (1|z), data = train_folds, family = "binomial"
然后调用cross_validation_function(model)和cross_validation_function(model2).函数内的训练数据称为train_fold.
但是,我怀疑我需要使用重新制定以不同的方式传递模型公式.
这是我的功能的一个例子.该项目旨在从行为特征预测自闭症(ASD).数据变量是da.
library(pacman)
p_load(tidyverse, stringr, lmerTest, MuMIn, psych, corrgram, ModelMetrics,
caret, boot)
cross_validation_function <- function(model){
#creating folds
participants = unique(da$participant)
folds <- createFolds(participants, 10)
cross_val <- sapply(seq_along(folds), function(x) {
train_folds = filter(da, !(as.numeric(participant) %in% folds[[x]]))
predict_fold = filter(da, as.numeric(participant) %in% folds[[x]])
#model to be tested should be passed as an argument here
train_model <- model
predict_fold <- predict_fold %>%
mutate(predictions_perc = predict(train_model, predict_fold, allow.new.levels = T),
predictions_perc = inv.logit(predictions_perc),
predictions = ifelse(predictions_perc > 0.5, "ASD","control"))
conf_mat <- caret::confusionMatrix(data = predict_fold$predictions, reference = predict_fold$diagnosis, positive = "ASD")
accuracy <- conf_mat$overall[1]
sensitivity <- conf_mat$byClass[1]
specificity <- conf_mat$byClass[2]
fixed_ef <- fixef(train_model)
output <- c(accuracy, sensitivity, specificity, fixed_ef)
})
cross_df <- t(cross_val)
return(cross_df)
}
从注释开发的解决方案:使用as.formula字符串可以转换为公式,该公式可以通过以下方式作为参数传递给我的函数:
cross_validation_function <- function(model_formula){
...
train_model <- glmer(model_formula, data = da, family = "binomial")
...}
formula <- as.formula( "y~ x + (1|z"))
cross_validation_function(formula)
最佳答案 如果您的目标是从拟合模型中提取模型公式,则可以使用
属性(模型)$通话[[2]].然后,您可以在使用cv折叠拟合模型时使用此公式.
mod_formula <- attributes(model)$call[[2]]
train_model = glmer(mod_formula , data = train_data,
family = "binomial")