我在R中有一个循环,这很慢(但有效).目前,这个计算在我的笔记本电脑上大约需要3分钟,我认为可以改进.最后,我将根据此代码的结果循环运行许多运行计算的数据文件,如果可能的话,我想让当前代码更快.
基本上,对于每个日期,对于11个不同的X值,循环抓取最后X年的降雨量值(Y),找到线性反向加权(Z),以便最老的降雨量值加权最小,乘以雨(Y)和权重(Z)得到一个向量A,然后取A的总和作为最终结果.这是为数千个日期完成的.
但是,我无法想到或找到建议以任何方式在R中使其更快,所以我试图在Rcpp中重写它,我对它的知识有限.我的Rcpp代码没有完全复制R代码,因为结果矩阵与它应该是不同的(错误)(out1 vs out2;我知道out1是正确的).看起来Rcpp代码更快,但我只能使用几列来测试它,因为如果我尝试运行所有11列(i <= 10),它会开始崩溃(RStudio中的致命错误). 我正在寻找有关如何改进R代码和/或更正Rcpp代码以提供正确结果而不会在此过程中崩溃的反馈. (虽然我在下面发布的代码没有显示它,但数据加载到R中的方式是[作为数据框],用于在显示的代码之外进行的一些计算.对于此处显示的特定计算,仅列使用了2个数据帧.) 数据文件在这里:https://drive.google.com/file/d/0Bw_Ca37oxVmJekFBR2t4eDdKeGM/view?usp=sharing
在R中尝试
library(readxl)
library(readxl)
library(Rcpp)
file = data.frame(read_excel("lake.xlsx", trim_ws=T)
col_types=c("date","numeric","numeric","date",rep("numeric",4),"text")))
file[,1] = as.Date(file[,1], "%Y/%m/%d", tz="UTC")
file[,4] = as.Date(file[,4], "%Y/%m/%d", tz="UTC")
rainSUM = function(df){
rainsum = data.frame("6m"=as.numeric(), "1yr"=as.numeric(), "2yr"=as.numeric(), "3yr"=as.numeric(), "4yr"=as.numeric(), "5yr"=as.numeric(), "6yr"=as.numeric(), "7yr"=as.numeric(), "8yr"=as.numeric(), "9yr"=as.numeric(), "10yr"=as.numeric()) # create dataframe for storing the sum of weighted last d values
Tdays <- length(df[,1])
for(i in 1:11) { # loop through the lags
if (i==1) {
d <- 183 # 6 month lag only has 183 days,
} else {
d <- (i-1)*366 # the rest have 366 days times the number of years
}
w <- 0:(d-1)/d
for(k in 1:Tdays) { # loop through rows of rain dataframe (k = row)
if(d>k){ # get number of rain values needed for the lag
rainsum[k,i] <- sum(df[1:k,2] * w[(d-k+1):d])
} else{
rainsum[k,i] <- sum(df[(k-d+1):k,2] * w)
}
}
}
return(rainsum)
}
out1 <- rainSUM(file)
在Rcpp尝试
#include <Rcpp.h>
using namespace Rcpp;
// [[Rcpp::export]]
NumericVector myseq(int first, int last) { // simulate R's X:Y sequence (step of 1)
NumericVector y(0);
for (int i=first; i<=last; ++i)
y.push_back(i);
return(y);
}
// [[Rcpp::export]]
NumericVector splicer(NumericVector vec, int first, int last) { // splicer
NumericVector y(0);
for (int i=first; i<=last; ++i)
y.push_back(vec[i]);
return(y);
}
// [[Rcpp::export]]
NumericVector weighty(int d) { // calculate inverse linear weight according to the number of days in lag
NumericVector a = myseq(1,d); // sequence 1:d; length d
NumericVector b = (a-1)/a; // inverse linear
return(b); // return vector
}
// [[Rcpp::export]]
NumericMatrix rainsumCPP(DataFrame df, int raincol) {
NumericVector q(0);
NumericMatrix rainsum(df.nrows(), 11); // matrix with number of row days as data file and 11 columns
NumericVector p = df( raincol-1 ); // grab rain values (remember C++ first index is 0)
for(int i = 0; i <= 10; i++) { // loop through 11 columns (C++ index starts at 0!)
if (i==0) {
int d = 183; // 366*years lag days
NumericVector w = weighty(d); // get weights for this lag series
for(int k = 0; k < df.nrows(); k++) { // loop through days (rows)
if(d>k){ // if not enough lag days for row, use what's available
NumericVector m = splicer(p, 0, k); // subset rain values according to the day being considered
NumericVector u = splicer(w, (d-k), (d-1)); // same for weight
m = m*u; // multiply rain values by weights
rainsum(k,i) = sum(m); // add the sum of the weighted rain to the rainsum matrix
} else{
NumericVector m = splicer(p, k-d+1, k);
m = m*w;
rainsum(k,i) = sum(m);
}
}
}
else {
int d = i*366; // 183 lag days if column 0
NumericVector w = weighty(d); // get weights for this lag series
for(int k = 0; k < df.nrows(); k++) { // loop through days (rows)
if(d>k){ // if not enough lag days for row, use what's available
NumericVector m = splicer(p, 0, k); // subset rain values according to the day being considered
NumericVector u = splicer(w, (d-k), (d-1)); // same for weight
m = m*u; // multiply rain values by weights
rainsum(k,i) = sum(m); // add the sum of the weighted rain to the rainsum matrix
} else{
NumericVector m = splicer(p, k-d+1, k);
m = m*w;
rainsum(k,i) = sum(m);
}
}
}
}
return(rainsum);
}
/*** R
out2 = rainsumCPP(file, raincol) # raincol currently = 2
*/
最佳答案 恭喜!您有
index out of bounds (OOB)错误导致
undefined behavior (UB)!您可以通过将矢量访问器从[]更改为()以及将矩阵访问器从()更改为.at()来检测此情况.
切换到这些访问器会产生:
Error in rainsumCPP(file, 2) :
Index out of bounds: [index=182; extent=182].
这表示索引超出范围,因为索引必须始终比范围(例如矢量的长度-1)小0到1之间.
初步的一瞥表明,这个问题很大程度上是由于没有正确地将基于索引的索引映射到基于零的索引.
在使用myseq(),splicer()和weighty()函数时,它们与它们的R等效给定输入不匹配.这可以通过使用all.equal(R_result,Rcpp_Result)来检查.这种不匹配分为两部分:1.myseq和拼接器的界限以及2.内部重量的倒置.
因此,通过使用已修改的以下函数,您应该在获得正确结果的基础上获得良好的基础.
// [[Rcpp::export]]
NumericVector myseq(int first, int last) { // simulate R's X:Y sequence (step of 1)
int vec_len = abs(last - first);
NumericVector y = no_init(vec_len);
int count = 0;
for (int i = first; i < last; ++i) {
y(count) = count;
count++;
}
return y;
}
// [[Rcpp::export]]
NumericVector splicer(NumericVector vec, int first, int last) { // splicer
int vec_len = abs(last - first);
NumericVector y = no_init(vec_len);
int count = 0;
for (int i = first; i < last; ++i) {
y(count) = vec(i);
count++;
}
return y;
}
// [[Rcpp::export]]
NumericVector weighty(int d) { // calculate inverse linear weight according to the number of days in lag
NumericVector a = myseq(0, d - 1); // (fixed) sequence 1:d; length d
NumericVector b = a / d; // (fixed) inverse linear
return(b); // return vector
}
从那里,你可能需要修改rainsumCpp,因为没有给出R等价物的输出.