Given a matrix of m x n elements (m rows, n columns), return all elements of the matrix in spiral order.
For example,
Given the following matrix:
[ [ 1, 2, 3 ], [ 4, 5, 6 ], [ 7, 8, 9 ] ]
You should return [1,2,3,6,9,8,7,4,5]
.
题目解析:
方案一:
题目要求顺时针输出矩阵元素。没有什么特别的方法,行列行列求就行了。我定义的circle为进行到第几圈。代码如下
void SpiralOrder(int arr[][N],int m)
{
int circle;
if(m%2)
circle = m/2+1;
else
circle = m/2;
for(int k = 0;k<circle;k++){
int i = k;
int j;
for(int j = k;j <= N-k-1;j++)
printf("%d ",arr[i][j]);
j = N-k-1;
for(i = k+1;i <= m-k-1;i++)
printf("%d ",arr[i][j]);
i = m-k-1;
for(j = N-k-2;j >= k;j--)
printf("%d ",arr[i][j]);
j = k;
for(i = m-k-2;i > k;i--)
printf("%d ",arr[i][j]);
}
}
方案二:
后来碰到有高手说用DFS。这就太经典了,一个看似没任何技术含量的问题,通过算法就能得到简化。值得学习:
http://www.cnblogs.com/remlostime/archive/2012/11/18/2775708.html
具体的思路有待去考虑,不过方法很值得提倡!
class Solution {
private:
int step[4][2];
vector<int> ret;
bool canUse[100][100];
public:
void dfs(vector<vector<int> > &matrix, int direct, int x, int y)
{
for(int i = 0; i < 4; i++)
{
int j = (direct + i) % 4;
int tx = x + step[j][0];
int ty = y + step[j][1];
if (0 <= tx && tx < matrix.size() && 0 <= ty && ty < matrix[0].size() && canUse[tx][ty])
{
canUse[tx][ty] = false;
ret.push_back(matrix[tx][ty]);
dfs(matrix, j, tx, ty);
}
}
}
vector<int> spiralOrder(vector<vector<int> > &matrix) {
// Start typing your C/C++ solution below
// DO NOT write int main() function
step[0][0] = 0;
step[0][1] = 1;
step[1][0] = 1;
step[1][1] = 0;
step[2][0] = 0;
step[2][1] = -1;
step[3][0] = -1;
step[3][1] = 0;
ret.clear();
memset(canUse, true, sizeof(canUse));
dfs(matrix, 0, 0, -1);
return ret;
}
};