我创建了一个使用流执行矩阵乘法的模块.在这里能找到它:
https://github.com/firefly-math/firefly-math-linear-real/
我试图编写一个基准测试,以便将流循环实现与Apache Commons Math中相应的for循环实现进行比较.
基准模块在这里:
https://github.com/firefly-math/firefly-math-benchmark
这里的实际基准:
https://github.com/firefly-math/firefly-math-benchmark/blob/master/src/main/java/com/fireflysemantics/benchmark/MultiplyBenchmark.java
当我在大小为100X100和1000X1000的矩阵上运行基准测试时,事实证明Apache Commons Math(使用for循环)比相应的流实现快10倍(粗略).
# Run complete. Total time: 00:14:10
Benchmark Mode Cnt Score Error Units
MultiplyBenchmark.multiplyCM1000_1000 avgt 30 1040.804 ± 11.796 ms/op
MultiplyBenchmark.multiplyCM100_100 avgt 30 0.790 ± 0.010 ms/op
MultiplyBenchmark.multiplyFM1000_1000 avgt 30 11981.228 ± 405.812 ms/op
MultiplyBenchmark.multiplyFM100_100 avgt 30 7.224 ± 0.685 ms/op
我在基准测试中做错了什么(希望:))?
我正在添加测试的方法,以便每个人都可以看到正在比较的内容.这是Apache Commons Math Array2DRowRealMatrix.multiply()方法:
/**
* Returns the result of postmultiplying {@code this} by {@code m}.
*
* @param m matrix to postmultiply by
* @return {@code this * m}
* @throws DimensionMismatchException if
* {@code columnDimension(this) != rowDimension(m)}
*/
public Array2DRowRealMatrix multiply(final Array2DRowRealMatrix m)
throws DimensionMismatchException {
MatrixUtils.checkMultiplicationCompatible(this, m);
final int nRows = this.getRowDimension();
final int nCols = m.getColumnDimension();
final int nSum = this.getColumnDimension();
final double[][] outData = new double[nRows][nCols];
// Will hold a column of "m".
final double[] mCol = new double[nSum];
final double[][] mData = m.data;
// Multiply.
for (int col = 0; col < nCols; col++) {
// Copy all elements of column "col" of "m" so that
// will be in contiguous memory.
for (int mRow = 0; mRow < nSum; mRow++) {
mCol[mRow] = mData[mRow][col];
}
for (int row = 0; row < nRows; row++) {
final double[] dataRow = data[row];
double sum = 0;
for (int i = 0; i < nSum; i++) {
sum += dataRow[i] * mCol[i];
}
outData[row][col] = sum;
}
}
return new Array2DRowRealMatrix(outData, false);
}
这是相应的流实现:
/**
* Returns a {@link BinaryOperator} that multiplies {@link SimpleMatrix}
* {@code m1} times {@link SimpleMatrix} {@code m2} (m1 X m2).
*
* Example {@code multiply(true).apply(m1, m2);}
*
* @param parallel
* Whether to perform the operation concurrently.
*
* @throws MathException
* Of type {@code MATRIX_DIMENSION_MISMATCH__MULTIPLICATION} if
* {@code m} is not the same size as {@code this}.
*
* @return the {@link BinaryOperator} that performs the operation.
*/
public static BinaryOperator<SimpleMatrix> multiply(boolean parallel) {
return (m1, m2) -> {
checkMultiplicationCompatible(m1, m2);
double[][] a1 = m1.toArray();
double[][] a2 = m2.toArray();
Stream<double[]> stream = Arrays.stream(a1);
stream = parallel ? stream.parallel() : stream;
final double[][] result =
stream.map(r -> range(0, a2[0].length)
.mapToDouble(i -> range(0, a2.length).mapToDouble(j -> r[j]
* a2[j][i]).sum())
.toArray()).toArray(double[][]::new);
return new SimpleMatrix(result);
};
}
TIA,
奥勒
最佳答案 看看DoublePipeline.toArray:
public final double[] toArray() {
return Nodes.flattenDouble((Node.OfDouble) evaluateToArrayNode(Double[]::new))
.asPrimitiveArray();
}
似乎首先创建一个盒装数组,然后将其转换为基本数组.