Number
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 640 Accepted Submission(s): 207
Problem Description Here are two numbers A and B (0 < A <= B). If B cannot be divisible by A, and A and B are not co-prime numbers, we define A as a special number of B.
For each x, f(x) equals to the amount of x’s special numbers.
For example, f(6)=1, because 6 only have one special number which is 4. And f(12)=3, its special numbers are 8,9,10.
When f(x) is odd, we consider x as a real number.
Now given 2 integers x and y, your job is to calculate how many real numbers are between them.
Input In the first line there is an integer T (T <= 2000), indicates the number of test cases. Then T line follows, each line contains two integers x and y (1 <= x <= y <= 2^63-1) separated by a single space.
Output Output the total number of real numbers.
Sample Input 2 1 1 1 10
Sample Output 0 4
Hint For the second case, the real numbers are 6,8,9,10.
Source
2012 ACM/ICPC Asia Regional Tianjin Online
Recommend liuyiding
这题就是找规律。这样的题目比赛时没有快速做出来。。。只能对自己无语了。。。
很容易发现 所谓的 real number 就是大于4而且不是偶数的平方的偶数,或者是奇数的平方的奇数。
所以可以写个函数求出小于等于n的real number的个数。
n小于等于4,real number的个数一定为0.
(n-4)/2表示大于4的偶数的个数。但这其中包括了偶数的平方,少了奇数的平方。
所以如果 k*k<=n<(k+1)*(k+1).假如k是偶数,那么就是 (n-4)/2 ,因为偶数的平方和奇数的平方个数相等。
假如k是奇数,那么就是 (n-4)/2+1了,因为奇数的平方多一个。
其余就简单了。注意数据范围,用 long long
#include<stdio.h> #include<iostream> #include<algorithm> #include<string.h> #include<math.h> using namespace std; //大于4,而且不是偶数的平方数的偶数是real number //奇数的平方的奇数是real number long long calc(long long n)//计算小于等于n的real number的个数 { if(n<=4)return 0; long long t=sqrt(n); long long ans=(n-4)/2;//大于4的偶数的个数 if(t%2==0)return ans; else return ans+1; } int main() { int T; long long A,B; scanf("%d",&T); while(T--) { scanf("%I64d%I64d",&A,&B); printf("%I64d\n",calc(B)-calc(A-1)); } return 0; }