搜集资料:cluster analysis + matlab

Matlab提供系列函数用于聚类分析,归纳起来具体方法有如下:
方法一:直接聚类,利用clusterdata函数对样本数据进行一次聚类,其缺点为可供用户选择的面较窄,不能更改距离的计算方法,该方法的使用者无需了解聚类的原理和过程,但是聚类效果受限制。
方法二:层次聚类,该方法较为灵活,需要进行细节了解聚类原理,具体需要进行如下过程处理:(1)找到数据集合中变量两两之间的相似性和非相似性,用pdist函数计算变量之间的距离;(2)用 linkage函数定义变量之间的连接;(3)用 cophenetic函数评价聚类信息;(4)用cluster函数创建聚类。
方法三:划分聚类,包括K均值聚类和K中心聚类,同样需要系列步骤完成该过程,要求使用者对聚类原理和过程有较清晰的认识。

cluster 函数
调用格式:T=cluster(Z,…)
说明:根据linkage函数的输出Z 创建分类。

clusterdata 函数
调用格式:T=clusterdata(X,…)
说明:根据数据创建分类。
T=clusterdata(X,cutoff)与下面的一组命令等价:
Y=pdist(X,’euclid’);
Z=linkage(Y,’single’);
T=cluster(Z,cutoff);

    原文作者:读写思
    原文地址: https://www.jianshu.com/p/6a05c4e53fcf
    本文转自网络文章,转载此文章仅为分享知识,如有侵权,请联系博主进行删除。
点赞