Katu Puzzle
Time Limit: 1000MS | Memory Limit: 65536K | |
Total Submissions: 5749 | Accepted: 2077 |
Description
Katu Puzzle is presented as a directed graph G(V, E) with each edge e(a, b) labeled by a boolean operator op (one of AND, OR, XOR) and an integer c (0 ≤ c ≤ 1). One Katu is solvable if one can find each vertex Vi a value Xi (0 ≤ Xi ≤ 1) such that for each edge e(a, b) labeled by op and c, the following formula holds:
Xa op Xb = c
The calculating rules are:
|
|
|
Given a Katu Puzzle, your task is to determine whether it is solvable.
Input
The first line contains two integers N (1 ≤ N ≤ 1000) and M,(0 ≤ M ≤ 1,000,000) indicating the number of vertices and edges.
The following M lines contain three integers a (0 ≤ a < N), b(0 ≤ b < N), c and an operator op each, describing the edges.
Output
Output a line containing “YES” or “NO”.
Sample Input
4 4 0 1 1 AND 1 2 1 OR 3 2 0 AND 3 0 0 XOR
Sample Output
YES
Hint
X
0 = 1,
X
1 = 1,
X
2 = 0,
X
3 = 1.
Source
POJ Founder Monthly Contest – 2008.07.27, Dagger
比较简单的2-SAT。
给的一些表达式的值,问有没有解。
用2-SAT判定就好了。
/* POJ 3678 给出两两之间的AND,OR,XOR的值,判断有没有解 典型的2-SAT */ #include<stdio.h> #include<iostream> #include<algorithm> #include<vector> #include<queue> #include<string.h> using namespace std; const int MAXN=2200;// bool visit[MAXN]; queue<int>q1,q2; //vector建图方法很妙 vector<vector<int> >adj; //原图 //中间一定要加空格把两个'>'隔开 vector<vector<int> >radj;//逆图 vector<vector<int> >dag;//缩点后的逆向DAG图 int n,m,cnt; int id[MAXN],order[MAXN],ind[MAXN];//强连通分量,访问顺序,入度 void dfs(int u) { visit[u]=true; int i,len=adj[u].size(); for(i=0;i<len;i++) if(!visit[adj[u][i]]) dfs(adj[u][i]); order[cnt++]=u; } void rdfs(int u) { visit[u]=true; id[u]=cnt; int i,len=radj[u].size(); for(i=0;i<len;i++) if(!visit[radj[u][i]]) rdfs(radj[u][i]); } void korasaju() { int i; memset(visit,false,sizeof(visit)); for(cnt=0,i=0;i<2*n;i++) if(!visit[i]) dfs(i); memset(id,0,sizeof(id)); memset(visit,false,sizeof(visit)); for(cnt=0,i=2*n-1;i>=0;i--) if(!visit[order[i]]) { cnt++;//这个一定要放前面来 rdfs(order[i]); } } bool solvable() { for(int i=0;i<n;i++) if(id[2*i]==id[2*i+1]) return false; return true; } int main() { int a,b,c; char ch[10]; while(scanf("%d%d",&n,&m)!=EOF) { adj.assign(2*n,vector<int>()); radj.assign(2*n,vector<int>()); while(m--) { scanf("%d%d%d%s",&a,&b,&c,&ch); int i=a,j=b; if(strcmp(ch,"AND")==0) { if(c==1)//两个都要取1 { adj[2*i].push_back(2*i+1); adj[2*j].push_back(2*j+1); radj[2*i+1].push_back(2*i); radj[2*j+1].push_back(2*j); } else //不能两个同时取1 { adj[2*i+1].push_back(2*j); adj[2*j+1].push_back(2*i); radj[2*j].push_back(2*i+1); radj[2*i].push_back(2*j+1); } } else if(strcmp(ch,"OR")==0) { if(c==0)//两个都要为0 { adj[2*i+1].push_back(2*i); adj[2*j+1].push_back(2*j); radj[2*i].push_back(2*i+1); radj[2*j].push_back(2*j+1); } else { adj[2*i].push_back(2*j+1); adj[2*j].push_back(2*i+1); radj[2*j+1].push_back(2*i); radj[2*i+1].push_back(2*j); } } else { if(c==0)//要相同 { adj[2*i].push_back(2*j); adj[2*j].push_back(2*i); adj[2*i+1].push_back(2*j+1); adj[2*j+1].push_back(2*i+1); radj[2*i].push_back(2*j); radj[2*j].push_back(2*i); radj[2*i+1].push_back(2*j+1); radj[2*j+1].push_back(2*i+1); } else { adj[2*i].push_back(2*j+1); adj[2*j].push_back(2*i+1); adj[2*i+1].push_back(2*j); adj[2*j+1].push_back(2*i); radj[2*i].push_back(2*j+1); radj[2*j].push_back(2*i+1); radj[2*i+1].push_back(2*j); radj[2*j+1].push_back(2*i); } } } korasaju(); if(solvable())printf("YES\n"); else printf("NO\n"); } return 0; }