Python中矩阵库Numpy基本操作

NumPy是一个关于矩阵运算的库,熟悉Matlab的都应该清楚,这个库就是让python能够进行矩阵话的操作,而不用去写循环操作。

下面对numpy中的操作进行总结。
numpy包含两种基本的数据类型:数组和矩阵。

数组(Arrays)

>>> from numpy import *
>>> a1=array([1,1,1])    #定义一个数组
>>> a2=array([2,2,2])
>>> a1+a2                #对于元素相加
array([3, 3, 3])
>>> a1*2                 #乘一个数
array([2, 2, 2])

##
>>> a1=array([1,2,3])
>>> a1
array([1, 2, 3])
>>> a1**3              #表示对数组中的每个数做平方
array([ 1,  8, 27])
##取值,注意的是它是以0为开始坐标,不matlab不同
>>> a1[1]
2

##定义多维数组
>>> a3=array([[1,2,3],[4,5,6]])
>>> a3
array([[1, 2, 3],
       [4, 5, 6]])
>>> a3[0]             #取出第一行的数据
array([1, 2, 3])
>>> a3[0,0]           #第一行第一个数据
1
>>> a3[0][0]          #也可用这种方式
1
##数组点乘,相当于matlab点乘操作
>>> a1=array([1,2,3])
>>> a2=array([4,5,6])
>>> a1*a2
array([ 4, 10, 18])

Numpy有许多的创建数组的函数:

import numpy as np

a = np.zeros((2,2))  # Create an array of all zeros
print a              # Prints "[[ 0. 0.]
                     # [ 0. 0.]]"

b = np.ones((1,2))   # Create an array of all ones
print b              # Prints "[[ 1. 1.]]"

c = np.full((2,2), 7) # Create a constant array
print c               # Prints "[[ 7. 7.]
                      # [ 7. 7.]]"

d = np.eye(2)        # Create a 2x2 identity matrix
print d              # Prints "[[ 1. 0.]
                     # [ 0. 1.]]"

e = np.random.random((2,2)) # Create an array filled with random values
print e                     # Might print "[[ 0.91940167 0.08143941]
                            # [ 0.68744134 0.87236687]]"

数组索引(Array indexing)

矩阵

矩阵的操作与Matlab语言有很多的相关性。

#创建矩阵
>>> m=mat([1,2,3])
>>> m
matrix([[1, 2, 3]])

#取值
>>> m[0]                #取一行
matrix([[1, 2, 3]])
>>> m[0,1]              #第一行,第2个数据
2
>>> m[0][1]             #注意不能像数组那样取值了
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
  File "/usr/lib64/python2.7/site-packages/numpy/matrixlib/defmatrix.py", line 305, in __getitem__
    out = N.ndarray.__getitem__(self, index)
IndexError: index 1 is out of bounds for axis 0 with size 1

#将Python的列表转换成NumPy的矩阵
>>> list=[1,2,3]
>>> mat(list)
matrix([[1, 2, 3]])

#矩阵相乘
>>> m1=mat([1,2,3])     #13列
>>> m2=mat([4,5,6]) 
>>> m1*m2.T             #注意左列与右行相等 m2.T为转置操作
matrix([[32]])       
>>> multiply(m1,m2)     #执行点乘操作,要使用函数,特别注意
matrix([[ 4, 10, 18]])   

#排序
>>> m=mat([[2,5,1],[4,6,2]])    #创建23列矩阵
>>> m
matrix([[2, 5, 1], [4, 6, 2]])
>>> m.sort()                    #对每一行进行排序
>>> m
matrix([[1, 2, 5], [2, 4, 6]])

>>> m.shape                     #获得矩阵的行列数
(2, 3)
>>> m.shape[0]                  #获得矩阵的行数
2
>>> m.shape[1]                  #获得矩阵的列数
3

#索引取值
>>> m[1,:]                      #取得第一行的所有元素
matrix([[2, 4, 6]])
>>> m[1,0:1]                    #第一行第0个元素,注意左闭右开
matrix([[2]])
>>> m[1,0:3]
matrix([[2, 4, 6]])
>>> m[1,0:2]
matrix([[2, 4]])

扩展矩阵函数tile()

例如,要计算[0,0,0]到一个多维矩阵中每个点的距离,则要将[0,0,0]进行扩展。

tile(inX, (i,j)) ;i是扩展个数,j是扩展长度

实例如下:

>>>x=mat([0,0,0])
>>> x
matrix([[0, 0, 0]])
>>> tile(x,(3,1))           #即将x扩展3个,j=1,表示其列数不变
matrix([[0, 0, 0], [0, 0, 0], [0, 0, 0]])
>>> tile(x,(2,2))           #x扩展2次,j=2,横向扩展
matrix([[0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0]])



    原文作者:yqtaowhu
    原文地址: https://blog.csdn.net/taoyanqi8932/article/details/52703686
    本文转自网络文章,转载此文章仅为分享知识,如有侵权,请联系博主进行删除。
点赞