Python爬虫:一些常用的爬虫技巧总结

用python也差不多一年多了,python应用最多的场景还是web快速开发、爬虫、自动化运维:写过简单网站、写过自动发帖脚本、写过收发邮件脚本、写过简单验证码识别脚本。

爬虫在开发过程中也有很多复用的过程,这里总结一下,以后也能省些事情。

1、基本抓取网页

get方法

?

1

2

3

4

5

import urllib2

 

url = "http://www.baidu.com"

response = urllib2.urlopen(url)

print response.read()

 

post方法

?

1

2

3

4

5

6

7

8

9

import urllib

import urllib2

 

url = "http://abcde.com"

form = {'name':'abc','password':'1234'}

form_data = urllib.urlencode(form)

request = urllib2.Request(url,form_data)

response = urllib2.urlopen(request)

print response.read()

 

2、使用代理IP

    在开发爬虫过程中经常会遇到IP被封掉的情况,这时就需要用到代理IP;

在urllib2包中有ProxyHandler类,通过此类可以设置代理访问网页,如下代码片段:

?

1

2

3

4

5

6

7

import urllib2

 

proxy = urllib2.ProxyHandler({'http''127.0.0.1:8087'})

opener = urllib2.build_opener(proxy)

urllib2.install_opener(opener)

response = urllib2.urlopen('http://www.baidu.com')

print response.read()

 

3、Cookies处理

    cookies是某些网站为了辨别用户身份、进行session跟踪而储存在用户本地终端上的数据(通常经过加密),python提供了cookielib模块用于处理cookies,cookielib模块的主要作用是提供可存储cookie的对象,以便于与urllib2模块配合使用来访问Internet资源.

代码片段:

?

1

2

3

4

5

6

import urllib2, cookielib

 

cookie_support= urllib2.HTTPCookieProcessor(cookielib.CookieJar())

opener = urllib2.build_opener(cookie_support)

urllib2.install_opener(opener)

content = urllib2.urlopen('http://XXXX').read()

    关键在于CookieJar(),它用于管理HTTP cookie值、存储HTTP请求生成的cookie、向传出的HTTP请求添加cookie的对象。整个cookie都存储在内存中,对CookieJar实例进行垃圾回收后cookie也将丢失,所有过程都不需要单独去操作。

  手动添加cookie

?

1

2

cookie = "PHPSESSID=91rurfqm2329bopnosfu4fvmu7; kmsign=55d2c12c9b1e3; KMUID=b6Ejc1XSwPq9o756AxnBAg="

request.add_header("Cookie", cookie)

 

 

4、伪装成浏览器

    某些网站反感爬虫的到访,于是对爬虫一律拒绝请求。所以用urllib2直接访问网站经常会出现HTTP Error 403: Forbidden的情况

对有些 header 要特别留意,Server 端会针对这些 header 做检查

  1.User-Agent 有些 Server 或 Proxy 会检查该值,用来判断是否是浏览器发起的 Request

  2.Content-Type 在使用 REST 接口时,Server 会检查该值,用来确定 HTTP Body 中的内容该怎样解析。

这时可以通过修改http包中的header来实现,代码片段如下:

?

1

2

3

4

5

6

7

8

9

10

import urllib2

 

headers = {

    'User-Agent':'Mozilla/5.0 (Windows; U; Windows NT 6.1; en-US; rv:1.9.1.6) Gecko/20091201 Firefox/3.5.6'

}

request = urllib2.Request(

    url = 'http://my.oschina.net/jhao104/blog?catalog=3463517',

    headers = headers

)

print urllib2.urlopen(request).read()

 

5、页面解析

    对于页面解析最强大的当然是正则表达式,这个对于不同网站不同的使用者都不一样,就不用过多的说明,附两个比较好的网址:

正则表达式入门:http://www.cnblogs.com/huxi/archive/2010/07/04/1771073.html 

正则表达式在线测试:http://tool.oschina.net/regex/ 

其次就是解析库了,常用的有两个lxml和BeautifulSoup,对于这两个的使用介绍两个比较好的网站:

lxml:http://my.oschina.net/jhao104/blog/639448 

BeautifulSoup:http://cuiqingcai.com/1319.html 

对于这两个库,我的评价是,都是HTML/XML的处理库,Beautifulsoup纯python实现,效率低,但是功能实用,比如能用通过结果搜索获得某个HTML节点的源码;lxmlC语言编码,高效,支持Xpath

 

6、验证码的处理

对于一些简单的验证码,可以进行简单的识别。本人也只进行过一些简单的验证码识别。但是有些反人类的验证码,比如12306,可以通过打码平台进行人工打码,当然这是要付费的。

 

7、gzip压缩

    有没有遇到过某些网页,不论怎么转码都是一团乱码。哈哈,那说明你还不知道许多web服务具有发送压缩数据的能力,这可以将网络线路上传输的大量数据消减 60% 以上。这尤其适用于 XML web 服务,因为 XML 数据 的压缩率可以很高。

但是一般服务器不会为你发送压缩数据,除非你告诉服务器你可以处理压缩数据。

于是需要这样修改代码:

?

1

2

3

4

5

import urllib2, httplib

request = urllib2.Request('http://xxxx.com')

request.add_header('Accept-encoding''gzip')        1

opener = urllib2.build_opener()

= opener.open(request)

这是关键:创建Request对象,添加一个 Accept-encoding 头信息告诉服务器你能接受 gzip 压缩数据

然后就是解压缩数据:

?

1

2

3

4

5

6

7

import StringIO

import gzip

 

compresseddata = f.read() 

compressedstream = StringIO.StringIO(compresseddata)

gzipper = gzip.GzipFile(fileobj=compressedstream) 

print gzipper.read()

 

 

 

8、多线程并发抓取

    单线程太慢的话,就需要多线程了,这里给个简单的线程池模板 这个程序只是简单地打印了1-10,但是可以看出是并发的。

虽然说python的多线程很鸡肋,但是对于爬虫这种网络频繁型,还是能一定程度提高效率的。

?

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

from threading import Thread

from Queue import Queue

from time import sleep

# q是任务队列

#NUM是并发线程总数

#JOBS是有多少任务

= Queue()

NUM = 2

JOBS = 10

#具体的处理函数,负责处理单个任务

def do_somthing_using(arguments):

    print arguments

#这个是工作进程,负责不断从队列取数据并处理

def working():

    while True:

        arguments = q.get()

        do_somthing_using(arguments)

        sleep(1)

        q.task_done()

#fork NUM个线程等待队列

for in range(NUM):

    = Thread(target=working)

    t.setDaemon(True)

    t.start()

#把JOBS排入队列

for in range(JOBS):

    q.put(i)

#等待所有JOBS完成

q.join()

 

 

 

 

文章转载:https://my.oschina.net/jhao104/blog/647308

    原文作者:移木成林
    原文地址: https://blog.csdn.net/wlly1/article/details/51379646
    本文转自网络文章,转载此文章仅为分享知识,如有侵权,请联系博主进行删除。
点赞