Heavy Transportation
Description Background Problem Input The first line contains the number of scenarios (city plans). For each city the number n of street crossings (1 <= n <= 1000) and number m of streets are given on the first line. The following m lines contain triples of integers specifying start and end crossing of the street and the maximum allowed weight, which is positive and not larger than 1000000. There will be at most one street between each pair of crossings. Output The output for every scenario begins with a line containing “Scenario #i:”, where i is the number of the scenario starting at 1. Then print a single line containing the maximum allowed weight that Hugo can transport to the customer. Terminate the output for the scenario with a blank line. Sample Input 1 3 3 1 2 3 1 3 4 2 3 5 Sample Output Scenario #1: 4 Source TUD Programming Contest 2004, Darmstadt, Germany |
这题每条路径的流量是经过的最小值,求最大流量。
使用Dijkstra算法的变形,路径长度是经过的最小值,然后是求最大值。
//============================================================================ // Name : POJ.cpp // Author : // Version : // Copyright : Your copyright notice // Description : Hello World in C++, Ansi-style //============================================================================ #include <iostream> #include <stdio.h> #include <string.h> #include <algorithm> #include <map> #include <queue> #include <vector> #include <string> #include <math.h> using namespace std; const int MAXN=1010; const int INF=0x3f3f3f3f; int cost[MAXN][MAXN]; int dist[MAXN]; bool vis[MAXN]; void Dijkstra(int n,int beg) { for(int i=1;i<=n;i++) { dist[i]=0; vis[i]=false; } dist[beg]=INF; for(int j=0;j<n;j++) { int k=-1; int Max=0; for(int i=1;i<=n;i++) if(!vis[i]&&dist[i]>Max) { Max=dist[i]; k=i; } if(k==-1)break; vis[k]=true; for(int i=1;i<=n;i++) if(!vis[i]&&min(dist[k],cost[k][i])>dist[i] ) dist[i]=min(dist[k],cost[k][i]); } } int main() { // freopen("in.txt","r",stdin); // freopen("out.txt","w",stdout); int T; int n,m; scanf("%d",&T); int iCase=0; while(T--) { iCase++; scanf("%d%d",&n,&m); memset(cost,0,sizeof(cost)); int u,v,w; while(m--) { scanf("%d%d%d",&u,&v,&w); cost[u][v]=cost[v][u]=max(cost[u][v],w); } Dijkstra(n,1); printf("Scenario #%d:\n",iCase); printf("%d\n\n",dist[n]); } return 0; }