Python numpy.ones() 使用实例

Example 1

def KMO(data):

    cor_ = pd.DataFrame.corr(data)
    invCor = np.linalg.inv(cor_)
    rows = cor_.shape[0]
    cols = cor_.shape[1]
    A = np.ones((rows, cols))

    for i in range(rows):
        for j in range(i, cols):
            A[i, j] = - (invCor[i, j]) / (np.sqrt(invCor[i, i] * invCor[j, j]))
            A[j, i] = A[i, j]

    num = np.sum(np.sum((cor_)**2)) - np.sum(np.sum(np.diag(cor_**2)))
    den = num + (np.sum(np.sum(A**2)) - np.sum(np.sum(np.diag(A**2))))
    kmo = num / den

    return kmo 

Example 2

def load_ROI_mask(self):

        proxy = nib.load(self.FLAIR_FILE)
        image_array = np.asarray(proxy.dataobj)

        mask = np.ones_like(image_array)
        mask[np.where(image_array < 90)] = 0

        # img = nib.Nifti1Image(mask, proxy.affine)
        # nib.save(img, join(modalities_path,'mask.nii.gz'))

        struct_element_size = (20, 20, 20)
        mask_augmented = np.pad(mask, [(21, 21), (21, 21), (21, 21)], 'constant', constant_values=(0, 0))
        mask_augmented = binary_closing(mask_augmented, structure=np.ones(struct_element_size, dtype=bool)).astype(
            np.int)

        return mask_augmented[21:-21, 21:-21, 21:-21].astype('bool') 

Example 3

def plot_region(self, region):
        """Shows the given region in the field plot.

        Args:
            region: Region to be plotted.
        """

        if type(region) == reg.PointRegion:
            self.axes.plot(np.ones(2) * region.point_coordinates / self._x_axis_factor,
                           np.array([-1, 1]) * self.scale, color='black')
        elif type(region) == reg.LineRegion:
            self.axes.plot(np.ones(2) * region.line_coordinates[0] / self._x_axis_factor,
                           np.array([-1, 1]) * self.scale, color='black')
            self.axes.plot(np.ones(2) * region.line_coordinates[1] / self._x_axis_factor,
                           np.array([-1, 1]) * self.scale, color='black')
        else:
            raise TypeError('Unknown type in region list: {}'.format(type(region))) 

Example 4

def observed_perplexity(self, counts):
        """Compute perplexity = exp(entropy) of observed variables.

        Perplexity is an information theoretic measure of the number of
        clusters or latent classes. Perplexity is a real number in the range
        [1, M], where M is model_num_clusters.

        Args:
            counts: A [V]-shaped array of multinomial counts.

        Returns:
            A [V]-shaped numpy array of perplexity.
        """
        V, E, M, R = self._VEMR
        if counts is not None:
            counts = np.ones(V, dtype=np.int8)
        assert counts.shape == (V, )
        assert counts.dtype == np.int8
        assert np.all(counts > 0)
        observed_entropy = np.empty(V, dtype=np.float32)
        for v in range(V):
            beg, end = self._ragged_index[v:v + 2]
            probs = np.dot(self._feat_cond[beg:end, :], self._vert_probs[v, :])
            observed_entropy[v] = multinomial_entropy(probs, counts[v])
        return np.exp(observed_entropy) 

Example 5

def sparse_to_dense(sp_indices, output_shape, values, default_value=0):
  """Build a dense matrix from sparse representations.

  Args:
    sp_indices: A [0-2]-D array that contains the index to place values.
    shape: shape of the dense matrix.
    values: A {0,1}-D array where values corresponds to the index in each row of
    sp_indices.
    default_value: values to set for indices not specified in sp_indices.
  Return:
    A dense numpy N-D array with shape output_shape.
  """

  assert len(sp_indices) == len(values), \
      'Length of sp_indices is not equal to length of values'

  array = np.ones(output_shape) * default_value
  for idx, value in zip(sp_indices, values):
    array[tuple(idx)] = value
  return array 

Example 6

def infExact_scipy_post(self, K, covars, y, sig2e, fixedEffects):
		n = y.shape[0]

		#mean vector
		m = covars.dot(fixedEffects)
		
		if (K.shape[1] < K.shape[0]): K_true = K.dot(K.T)
		else: K_true = K
		
		if sig2e<1e-6:
			L = la.cholesky(K_true + sig2e*np.eye(n), overwrite_a=True, check_finite=False)    	 #Cholesky factor of covariance with noise
			sl =   1
			pL = -self.solveChol(L, np.eye(n))         									 		 #L = -inv(K+inv(sW^2))
		else:
			L = la.cholesky(K_true/sig2e + np.eye(n), overwrite_a=True, check_finite=False)	  	 #Cholesky factor of B
			sl = sig2e               	   
			pL = L                		   												 		 #L = chol(eye(n)+sW*sW'.*K)
		alpha = self.solveChol(L, y-m, overwrite_b=False) / sl
			
		post = dict([])	
		post['alpha'] = alpha					  										  		#return the posterior parameters
		post['sW'] = np.ones(n) / np.sqrt(sig2e)									  			#sqrt of noise precision vector
		post['L'] = pL
		return post 

Example 7

def getTrainTestKernel(self, params, Xtest):
		self.checkParams(params)
		ell = np.exp(params[0])
		p = np.exp(params[1])
		
		Xtest_scaled = Xtest/np.sqrt(Xtest.shape[1])
		d2 = sq_dist(self.X_scaled.T/ell, Xtest_scaled.T/ell)	#precompute squared distances
		
		#compute dp
		dp = np.zeros(d2.shape)
		for d in xrange(self.X_scaled.shape[1]):
			dp += (np.outer(self.X_scaled[:,d], np.ones((1, Xtest_scaled.shape[0]))) - np.outer(np.ones((self.X_scaled.shape[0], 1)), Xtest_scaled[:,d]))
		dp /= p
				
		K = np.exp(-d2 / 2.0)
		return np.cos(2*np.pi*dp)*K 

Example 8

def __init__(self, frameSize=1024, imageWidth=1024, imageHeight=1024, zmin=-1, zmax=1, defaultValue=0.0):
        PlotBase.__init__(self)

        self._frameSize = frameSize
        self._sink = None

        # Raster state
        self._imageData = numpy.ones((imageHeight, imageWidth)) * defaultValue
        self._image = self._plot.imshow(self._imageData, extent=(0, 1, 1, 0))
        self._zmin = zmin
        self._zmax = zmax
        norm = self._getNorm(self._zmin, self._zmax)
        self._image.set_norm(norm)
        self._row = 0
        self._xdelta = None

        # Maintain aspect ratio of image
        self._aspect = float(imageHeight)/imageWidth
        self._plot.set_aspect(self._aspect)

        # Add a colorbar
        self._colorbar = self._figure.colorbar(self._image) 

Example 9

def test_with_fixed_inputs(self):
    inputs = tf.random_normal(
        [self.batch_size, self.sequence_length, self.input_depth])
    seq_length = tf.ones(self.batch_size, dtype=tf.int32) * self.sequence_length

    helper = decode_helper.TrainingHelper(
        inputs=inputs, sequence_length=seq_length)
    decoder_fn = self.create_decoder(
        helper=helper, mode=tf.contrib.learn.ModeKeys.TRAIN)
    initial_state = decoder_fn.cell.zero_state(
        self.batch_size, dtype=tf.float32)
    decoder_output, _ = decoder_fn(initial_state, helper)

    #pylint: disable=E1101
    with self.test_session() as sess:
      sess.run(tf.global_variables_initializer())
      decoder_output_ = sess.run(decoder_output)

    np.testing.assert_array_equal(
        decoder_output_.logits.shape,
        [self.sequence_length, self.batch_size, self.vocab_size])
    np.testing.assert_array_equal(decoder_output_.predicted_ids.shape,
                                  [self.sequence_length, self.batch_size])

    return decoder_output_ 

Example 10

def position_encoding(sentence_size, embedding_size):
  """
  Position Encoding described in section 4.1 of
  End-To-End Memory Networks (https://arxiv.org/abs/1503.08895).

  Args:
    sentence_size: length of the sentence
    embedding_size: dimensionality of the embeddings

  Returns:
    A numpy array of shape [sentence_size, embedding_size] containing
    the fixed position encodings for each sentence position.
  """
  encoding = np.ones((sentence_size, embedding_size), dtype=np.float32)
  ls = sentence_size + 1
  le = embedding_size + 1
  for k in range(1, le):
    for j in range(1, ls):
      encoding[j-1, k-1] = (1.0 - j/float(ls)) - (
          k / float(le)) * (1. - 2. * j/float(ls))
  return encoding 

Example 11

def create_test_panel_ohlc_source(sim_params, env):
    start = sim_params.first_open \
        if sim_params else pd.datetime(1990, 1, 3, 0, 0, 0, 0, pytz.utc)

    end = sim_params.last_close \
        if sim_params else pd.datetime(1990, 1, 8, 0, 0, 0, 0, pytz.utc)

    index = env.days_in_range(start, end)
    price = np.arange(0, len(index)) + 100
    high = price * 1.05
    low = price * 0.95
    open_ = price + .1 * (price % 2 - .5)
    volume = np.ones(len(index)) * 1000
    arbitrary = np.ones(len(index))

    df = pd.DataFrame({'price': price,
                       'high': high,
                       'low': low,
                       'open': open_,
                       'volume': volume,
                       'arbitrary': arbitrary},
                      index=index)
    panel = pd.Panel.from_dict({0: df})

    return DataPanelSource(panel), panel 

Example 12

def flow_orientation(orientation):
    """ Currently not use anymore """
    # Boolean map
    _greater_pi = orientation > math.pi/2
    _less_minuspi = orientation < -math.pi/2
    _remaining_part = ~(_greater_pi & _less_minuspi)

    # orientation map
    greater_pi = orientation*_greater_pi
    less_minuspi = orientation*_less_minuspi
    remaining_part = orientation*_remaining_part
    pi_map = math.pi * np.ones(orientation.shape)

    # converted orientation map
    convert_greater_pi = pi_map*_greater_pi - greater_pi
    convert_less_minuspi = -pi_map*_less_minuspi - less_minuspi

    new_orient = remaining_part + convert_greater_pi + convert_less_minuspi

    return new_orient 

Example 13

def _normalise_data(self):
        self.train_x_mean = np.zeros(self.input_dim)
        self.train_x_std = np.ones(self.input_dim)

        self.train_y_mean = np.zeros(self.output_dim)
        self.train_y_std = np.ones(self.output_dim)

        if self.normalise_data:
            self.train_x_mean = np.mean(self.train_x, axis=0)
            self.train_x_std = np.std(self.train_x, axis=0)
            self.train_x_std[self.train_x_std == 0] = 1.

            self.train_x = (self.train_x - np.full(self.train_x.shape, self.train_x_mean, dtype=np.float32)) / \
                           np.full(self.train_x.shape, self.train_x_std, dtype=np.float32)

            self.test_x = (self.test_x - np.full(self.test_x.shape, self.train_x_mean, dtype=np.float32)) / \
                          np.full(self.test_x.shape, self.train_x_std, dtype=np.float32)

            self.train_y_mean = np.mean(self.train_y, axis=0)
            self.train_y_std = np.std(self.train_y, axis=0)

            if self.train_y_std == 0:
                self.train_y_std[self.train_y_std == 0] = 1.

            self.train_y = (self.train_y - self.train_y_mean) / self.train_y_std 

Example 14

def main():
    fish = loadmat('./data/fish.mat')

    X1 = np.zeros((fish['X'].shape[0], fish['X'].shape[1] + 1))
    X1[:,:-1] = fish['X']
    X2 = np.ones((fish['X'].shape[0], fish['X'].shape[1] + 1))
    X2[:,:-1] = fish['X']
    X = np.vstack((X1, X2))

    Y1 = np.zeros((fish['Y'].shape[0], fish['Y'].shape[1] + 1))
    Y1[:,:-1] = fish['Y']
    Y2 = np.ones((fish['Y'].shape[0], fish['Y'].shape[1] + 1))
    Y2[:,:-1] = fish['Y']
    Y = np.vstack((Y1, Y2))

    fig = plt.figure()
    ax = fig.add_subplot(111, projection='3d')
    callback = partial(visualize, ax=ax)

    reg = affine_registration(X, Y)
    reg.register(callback)
    plt.show() 

Example 15

def test_bbs_in_bbs(self):
        bbs_a = np.array([1, 1, 2.0, 3])
        bbs_b = np.array([1, 0, 4, 5])
        bbs_c = np.array([0, 0, 2, 2])
        assert bbs_in_bbs(bbs_a, bbs_b).all()
        assert bbs_in_bbs(bbs_b, bbs_c).any() is not True
        assert bbs_in_bbs(bbs_a, bbs_c).any() is not True
        bbs_d = np.array([
            [0, 0, 5, 5],
            [1, 2, 4, 4],
            [2, 3, 4, 5]
            ])
        assert (bbs_in_bbs(bbs_a, bbs_d) == np.array([1, 0, 0], dtype=np.bool)).all()
        assert (bbs_in_bbs(bbs_d, bbs_d) == np.ones((3), dtype=np.bool)).all()
        bbs_a *= 100
        bbs_d *= 100
        assert (bbs_in_bbs(bbs_a, bbs_d) == np.array([1, 0, 0], dtype=np.bool)).all() 

Example 16

def computeCost(X, y, theta):
    '''YOUR CODE HERE'''
    m = float(len(X))

    d = 0
    for i in range(len(X)):
        h = np.dot(theta.transpose(), X[i])
        c = (h - y[i])

        c = (c **2)
        d = (d + c)
    j = (1.0 / (2 * m)) * d
    return j


# Part 5: Prepare the data so that the input X has two columns: first a column of ones to accomodate theta0 and then a column of city population data 

Example 17

def test_write():
    delete_layer()
    cv, data = create_layer(size=(50,50,50,1), offset=(0,0,0))

    replacement_data = np.zeros(shape=(50,50,50,1), dtype=np.uint8)
    cv[0:50,0:50,0:50] = replacement_data
    assert np.all(cv[0:50,0:50,0:50] == replacement_data)

    replacement_data = np.random.randint(255, size=(50,50,50,1), dtype=np.uint8)
    cv[0:50,0:50,0:50] = replacement_data
    assert np.all(cv[0:50,0:50,0:50] == replacement_data)

    # out of bounds
    delete_layer()
    cv, data = create_layer(size=(128,64,64,1), offset=(10,20,0))
    with pytest.raises(ValueError):
        cv[74:150,20:84,0:64] = np.ones(shape=(64,64,64,1), dtype=np.uint8)
    
    # non-aligned writes
    delete_layer()
    cv, data = create_layer(size=(128,64,64,1), offset=(10,20,0))
    with pytest.raises(ValueError):
        cv[21:85,0:64,0:64] = np.ones(shape=(64,64,64,1), dtype=np.uint8) 

Example 18

def extract_and_save_bin_to(dir_to_bin, dir_to_source):
    sets = [s for s in os.listdir(dir_to_source) if s in SETS]
    for d in sets:
        path = join(dir_to_source, d)
        speakers = [s for s in os.listdir(path) if s in SPEAKERS]
        for s in speakers:
            path = join(dir_to_source, d, s)
            output_dir = join(dir_to_bin, d, s)
            if not tf.gfile.Exists(output_dir):
                tf.gfile.MakeDirs(output_dir)
            for f in os.listdir(path):
                filename = join(path, f)
                print(filename)
                if not os.path.isdir(filename):
                    features = extract(filename)
                    labels = SPEAKERS.index(s) * np.ones(
                        [features.shape[0], 1],
                        np.float32,
                    )
                    b = os.path.splitext(f)[0]
                    features = np.concatenate([features, labels], 1)
                    with open(join(output_dir, '{}.bin'.format(b)), 'wb') as fp:
                        fp.write(features.tostring()) 

Example 19

def __mul__(self, other):
        """ 
        Left-multiply RigidTransform with another rigid transform
        
        Two variants: 
           RigidTransform: Identical to oplus operation
           ndarray: transform [N x 3] point set (X_2 = p_21 * X_1)

        """
        if isinstance(other, DualQuaternion):
            return DualQuaternion.from_dq(other.real * self.real, 
                                          other.dual * self.real + other.real * self.dual)
        elif isinstance(other, float):
            return DualQuaternion.from_dq(self.real * other, self.dual * other)
        # elif isinstance(other, nd.array): 
        #     X = np.hstack([other, np.ones((len(other),1))]).T
        #     return (np.dot(self.matrix, X).T)[:,:3]
        else: 
            raise TypeError('__mul__ typeerror {:}'.format(type(other))) 

Example 20

def effective_sample_size(x, mu, var, logger):
    """
    Calculate the effective sample size of sequence generated by MCMC.
    :param x:
    :param mu: mean of the variable
    :param var: variance of the variable
    :param logger: logg
    :return: effective sample size of the sequence
    Make sure that `mu` and `var` are correct!
    """
    # batch size, time, dimension
    b, t, d = x.shape
    ess_ = np.ones([d])
    for s in range(1, t):
        p = auto_correlation_time(x, s, mu, var)
        if np.sum(p > 0.05) == 0:
            break
        else:
            for j in range(0, d):
                if p[j] > 0.05:
                    ess_[j] += 2.0 * p[j] * (1.0 - float(s) / t)

    logger.info('ESS: max [%f] min [%f] / [%d]' % (t / np.min(ess_), t / np.max(ess_), t))
    return t / ess_ 

Example 21

def train_linear_regression(X_train, y_train, max_iter, learning_rate, fit_intercept=False):
    """ Train a linear regression model with gradient descent
    Args:
        X_train, y_train (numpy.ndarray, training data set)
        max_iter (int, number of iterations)
        learning_rate (float)
        fit_intercept (bool, with an intercept w0 or not)
    Returns:
        numpy.ndarray, learned weights
    """
    if fit_intercept:
        intercept = np.ones((X_train.shape[0], 1))
        X_train = np.hstack((intercept, X_train))
    weights = np.zeros(X_train.shape[1])
    for iteration in range(max_iter):
        weights = update_weights_gd(X_train, y_train, weights, learning_rate)
        # Check the cost for every 100 (for example) iterations
        if iteration % 100 == 0:
            print(compute_cost(X_train, y_train, weights))
    return weights 

Example 22

def train_logistic_regression(X_train, y_train, max_iter, learning_rate, fit_intercept=False):
    """ Train a logistic regression model
    Args:
        X_train, y_train (numpy.ndarray, training data set)
        max_iter (int, number of iterations)
        learning_rate (float)
        fit_intercept (bool, with an intercept w0 or not)
    Returns:
        numpy.ndarray, learned weights
    """
    if fit_intercept:
        intercept = np.ones((X_train.shape[0], 1))
        X_train = np.hstack((intercept, X_train))
    weights = np.zeros(X_train.shape[1])
    for iteration in range(max_iter):
        weights = update_weights_gd(X_train, y_train, weights, learning_rate)
        # Check the cost for every 100 (for example) iterations
        if iteration % 1000 == 0:
            print(compute_cost(X_train, y_train, weights))
    return weights 

Example 23

def train_logistic_regression(X_train, y_train, max_iter, learning_rate, fit_intercept=False):
    """ Train a logistic regression model
    Args:
        X_train, y_train (numpy.ndarray, training data set)
        max_iter (int, number of iterations)
        learning_rate (float)
        fit_intercept (bool, with an intercept w0 or not)
    Returns:
        numpy.ndarray, learned weights
    """
    if fit_intercept:
        intercept = np.ones((X_train.shape[0], 1))
        X_train = np.hstack((intercept, X_train))
    weights = np.zeros(X_train.shape[1])
    for iteration in range(max_iter):
        weights = update_weights_sgd(X_train, y_train, weights, learning_rate)
        # Check the cost for every 2 (for example) iterations
        if iteration % 2 == 0:
            print(compute_cost(X_train, y_train, weights))
    return weights


# Train the SGD model based on 10000 samples 

Example 24

def norm(self, x):
        """compute the Mahalanobis norm that is induced by the
        statistical model / sample distribution, specifically by
        covariance matrix ``C``. The expected Mahalanobis norm is
        about ``sqrt(dimension)``.

        Example
        -------
        >>> import cma, numpy as np
        >>> sm = cma.sampler.GaussFullSampler(np.ones(10))
        >>> x = np.random.randn(10)
        >>> d = sm.norm(x)

        `d` is the norm "in" the true sample distribution,
        sampled points have a typical distance of ``sqrt(2*sm.dim)``,
        where ``sm.dim`` is the dimension, and an expected distance of
        close to ``dim**0.5`` to the sample mean zero. In the example,
        `d` is the Euclidean distance, because C = I.
        """
        return sum((np.dot(self.B.T, x) / self.D)**2)**0.5 

Example 25

def __init__(self, dimension,
                 constant_trace='None',
                 randn=np.random.randn,
                 quadratic=False,
                 **kwargs):
        try:
            self.dimension = len(dimension)
            standard_deviations = np.asarray(dimension)
        except TypeError:
            self.dimension = dimension
            standard_deviations = np.ones(dimension)
        assert self.dimension == len(standard_deviations)
        assert len(standard_deviations) == self.dimension

        self.C = standard_deviations**2
        "covariance matrix diagonal"
        self.constant_trace = constant_trace
        self.randn = randn
        self.quadratic = quadratic
        self.count_tell = 0 

Example 26

def norm(self, x):
        """compute the Mahalanobis norm that is induced by the
        statistical model / sample distribution, specifically by
        covariance matrix ``C``. The expected Mahalanobis norm is
        about ``sqrt(dimension)``.

        Example
        -------
        >>> import cma, numpy as np
        >>> sm = cma.sampler.GaussFullSampler(np.ones(10))
        >>> x = np.random.randn(10)
        >>> d = sm.norm(x)

        `d` is the norm "in" the true sample distribution,
        sampled points have a typical distance of ``sqrt(2*sm.dim)``,
        where ``sm.dim`` is the dimension, and an expected distance of
        close to ``dim**0.5`` to the sample mean zero. In the example,
        `d` is the Euclidean distance, because C = I.
        """
        return sum(np.asarray(x)**2 / self.C)**0.5 

Example 27

def __init__(self, dimension, randn=np.random.randn, debug=False):
        """pass dimension of the underlying sample space
        """
        try:
            self.N = len(dimension)
            std_vec = np.array(dimension, copy=True)
        except TypeError:
            self.N = dimension
            std_vec = np.ones(self.N)
        if self.N < 10:
            print('Warning: Not advised to use VD-CMA for dimension < 10.')
        self.randn = randn
        self.dvec = std_vec
        self.vvec = self.randn(self.N) / math.sqrt(self.N)
        self.norm_v2 = np.dot(self.vvec, self.vvec)
        self.norm_v = np.sqrt(self.norm_v2)
        self.vn = self.vvec / self.norm_v
        self.vnn = self.vn**2
        self.pc = np.zeros(self.N)
        self._debug = debug  # plot covariance matrix 

Example 28

def covariance_matrix(self):
        if self._debug:
            # return None
            ka = self.k_active
            if ka > 0:
                C = np.eye(self.N) + np.dot(self.V[:ka].T * self.S[:ka],
                                            self.V[:ka])
                C = (C * self.D).T * self.D
            else:
                C = np.diag(self.D**2)
            C *= self.sigma**2
        else:
            # Fake Covariance Matrix for Speed
            C = np.ones(1)
            self.B = np.ones(1)
        return C 

Example 29

def initwithsize(self, curshape, dim):
        # DIM-dependent initialization
        if self.dim != dim:
            if self.zerox:
                self.xopt = zeros(dim)
            else:
                self.xopt = compute_xopt(self.rseed, dim)
            scale = max(1, dim ** .5 / 8.) # nota: different from scales in F8
            self.linearTF = scale * compute_rotation(self.rseed, dim)
            self.xopt = np.hstack(dot(.5 * np.ones((1, dim)), self.linearTF.T)) / scale ** 2

        # DIM- and POPSI-dependent initialisations of DIM*POPSI matrices
        if self.lastshape != curshape:
            self.dim = dim
            self.lastshape = curshape
            self.arrxopt = resize(self.xopt, curshape) 

Example 30

def __imul__(self, factor):
        """define ``self *= factor``.

        As a shortcut for::

            self = self.__imul__(factor)

        """
        try:
            if factor == 1:
                return self
        except: pass
        try:
            if (np.size(factor) == np.size(self.scaling) and
                    all(factor == 1)):
                return self
        except: pass
        if self.is_identity and np.size(self.scaling) == 1:
            self.scaling = np.ones(np.size(factor))
        self.is_identity = False
        self.scaling *= factor
        self.dim = np.size(self.scaling)
        return self 

Example 31

def check_string_input(self, input_name, input_value):
        if type(input_value) is np.array:

            if input_value.size == self.P:
                setattr(self, input_name, input_value)
            elif input_value.size == 1:
                setattr(self, input_name, np.repeat(input_value, self.P))
            else:
                raise ValueError("length of %s is %d; should be %d" % (input_name, input_value.size, self.P))

        elif type(input_value) is str:
            setattr(self, input_name, float(input_value)*np.ones(self.P))

        elif type(input_value) is list:
            if len(input_value) == self.P:
                setattr(self, input_name, np.array([str(x) for x in input_value]))
            elif len(input_value) == 1:
                setattr(self, input_name, np.repeat(input_value, self.P))
            else:
                raise ValueError("length of %s is %d; should be %d" % (input_name, len(input_value), self.P))

        else:
            raise ValueError("user provided %s with an unsupported type" % input_name) 

Example 32

def check_numeric_input(self, input_name, input_value):
        if type(input_value) is np.ndarray:

            if input_value.size == self.P:
                setattr(self, input_name, input_value)
            elif input_value.size == 1:
                setattr(self, input_name, input_value*np.ones(self.P))
            else:
                raise ValueError("length of %s is %d; should be %d" % (input_name, input_value.size, self.P))

        elif type(input_value) is float or type(input_value) is int:
            setattr(self, input_name, float(input_value)*np.ones(self.P))

        elif type(input_value) is list:
            if len(input_value) == self.P:
                setattr(self, input_name, np.array([float(x) for x in input_value]))
            elif len(input_value) == 1:
                setattr(self, input_name, np.array([float(x) for x in input_value]) * np.ones(self.P))
            else:
                raise ValueError("length of %s is %d; should be %d" % (input_name, len(input_value), self.P))

        else:
            raise ValueError("user provided %s with an unsupported type" % (input_name)) 

Example 33

def make_heatmaps_from_joints(input_size, heatmap_size, gaussian_variance, batch_joints):
    # Generate ground-truth heatmaps from ground-truth 2d joints
    scale_factor = input_size // heatmap_size
    batch_gt_heatmap_np = []
    for i in range(batch_joints.shape[0]):
        gt_heatmap_np = []
        invert_heatmap_np = np.ones(shape=(heatmap_size, heatmap_size))
        for j in range(batch_joints.shape[1]):
            cur_joint_heatmap = make_gaussian(heatmap_size,
                                              gaussian_variance,
                                              center=(batch_joints[i][j] // scale_factor))
            gt_heatmap_np.append(cur_joint_heatmap)
            invert_heatmap_np -= cur_joint_heatmap
        gt_heatmap_np.append(invert_heatmap_np)
        batch_gt_heatmap_np.append(gt_heatmap_np)
    batch_gt_heatmap_np = np.asarray(batch_gt_heatmap_np)
    batch_gt_heatmap_np = np.transpose(batch_gt_heatmap_np, (0, 2, 3, 1))

    return batch_gt_heatmap_np 

Example 34

def primes_2_to_n(n):
    """
    Efficient algorithm to find and list primes from
    2 to `n'.

    Args:
        n (int): highest number from which to search for primes

    Returns:
        np array of all primes from 2 to n

    References:
        Robert William Hanks,
        https://stackoverflow.com/questions/2068372/fastest-way-to-list-all-primes-below-n/
    """
    sieve = np.ones(int(n / 3 + (n % 6 == 2)), dtype=np.bool)
    for i in range(1, int((n ** 0.5) / 3 + 1)):
        if sieve[i]:
            k = 3 * i + 1 | 1
            sieve[int(k * k / 3)::2 * k] = False
            sieve[int(k * (k - 2 * (i & 1) + 4) / 3)::2 * k] = False
    return np.r_[2, 3, ((3 * np.nonzero(sieve)[0][1:] + 1) | 1)] 

Example 35

def get_interv_table(model,intrv=True):

    n_batches=25
    table_outputs=[]
    d_vals=np.linspace(TINY,0.6,n_batches)
    for name in model.cc.node_names:
        outputs=[]
        for d_val in d_vals:
            do_dict={model.cc.node_dict[name].label_logit : d_val*np.ones((model.batch_size,1))}
            outputs.append(model.sess.run(model.fake_labels,do_dict))

        out=np.vstack(outputs)
        table_outputs.append(out)

    table=np.stack(table_outputs,axis=2)

    np.mean(np.round(table),axis=0)

    return table

#dT=pd.DataFrame(index=p_names, data=T, columns=do_names)
#T=np.mean(np.round(table),axis=0)
#table=get_interv_table(model) 

Example 36

def __init__(self, pos, color, mode=None):
        """
        ===============     ==============================================================
        **Arguments:**
        pos                 Array of positions where each color is defined
        color               Array of RGBA colors.
                            Integer data types are interpreted as 0-255; float data types
                            are interpreted as 0.0-1.0
        mode                Array of color modes (ColorMap.RGB, HSV_POS, or HSV_NEG)
                            indicating the color space that should be used when
                            interpolating between stops. Note that the last mode value is
                            ignored. By default, the mode is entirely RGB.
        ===============     ==============================================================
        """
        self.pos = np.array(pos)
        order = np.argsort(self.pos)
        self.pos = self.pos[order]
        self.color = np.array(color)[order]
        if mode is None:
            mode = np.ones(len(pos))
        self.mode = mode
        self.stopsCache = {} 

Example 37

def build_test_data(self, variable='v'):
        metadata = {
            'size': NCELLS,
            'first_index': 0,
            'first_id': 0,
            'n': 505,
            'variable': variable,
            'last_id': NCELLS - 1,
            'last_index': NCELLS - 1,
            'dt': 0.1,
            'label': "population0",
        }
        if variable == 'v':
            metadata['units'] = 'mV'
        elif variable == 'spikes':
            metadata['units'] = 'ms'
        data = np.empty((505, 2))
        for i in range(NCELLS):
            # signal
            data[i*101:(i+1)*101, 0] = np.arange(i, i+101, dtype=float)
            # index
            data[i*101:(i+1)*101, 1] = i*np.ones((101,), dtype=float)
        return data, metadata 

Example 38

def __init__(self, pos, color, mode=None):
        """
        ===============     ==============================================================
        **Arguments:**
        pos                 Array of positions where each color is defined
        color               Array of RGBA colors.
                            Integer data types are interpreted as 0-255; float data types
                            are interpreted as 0.0-1.0
        mode                Array of color modes (ColorMap.RGB, HSV_POS, or HSV_NEG)
                            indicating the color space that should be used when
                            interpolating between stops. Note that the last mode value is
                            ignored. By default, the mode is entirely RGB.
        ===============     ==============================================================
        """
        self.pos = np.array(pos)
        order = np.argsort(self.pos)
        self.pos = self.pos[order]
        self.color = np.array(color)[order]
        if mode is None:
            mode = np.ones(len(pos))
        self.mode = mode
        self.stopsCache = {} 

Example 39

def build_test_data(self, variable='v'):
        metadata = {
            'size': NCELLS,
            'first_index': 0,
            'first_id': 0,
            'n': 505,
            'variable': variable,
            'last_id': NCELLS - 1,
            'last_index': NCELLS - 1,
            'dt': 0.1,
            'label': "population0",
        }
        if variable == 'v':
            metadata['units'] = 'mV'
        elif variable == 'spikes':
            metadata['units'] = 'ms'
        data = np.empty((505, 2))
        for i in range(NCELLS):
            # signal
            data[i*101:(i+1)*101, 0] = np.arange(i, i+101, dtype=float)
            # index
            data[i*101:(i+1)*101, 1] = i*np.ones((101,), dtype=float)
        return data, metadata 

Example 40

def ONES(n):
    return np.ones((n, n), np.uint8) 

Example 41

def gen_noisy_cube(cube,type='poisson',gauss_std=0.5,verbose=True):
    """
    Generate noisy cube based on input cube.

    --- INPUT ---
    cube        Data cube to be smoothed
    type        Type of noise to generate
                  poisson    Generates poissonian (integer) noise
                  gauss      Generates gaussian noise for a gaussian with standard deviation gauss_std=0.5
    gauss_std   Standard deviation of noise if type='gauss'
    verbose     Toggle verbosity

    --- EXAMPLE OF USE ---
    import tdose_utilities as tu
    datacube        = np.ones(([3,3,3])); datacube[0,1,1]=5; datacube[1,1,1]=6; datacube[2,1,1]=8
    cube_with_noise = tu.gen_noisy_cube(datacube,type='gauss',gauss_std='0.5')

    """
    if verbose: print ' - Generating "'+type+'" noise on data cube'
    if type == 'poisson':
        cube_with_noise = np.random.poisson(lam=cube, size=None)
    elif type == 'gauss':
        cube_with_noise = cube + np.random.normal(loc=np.zeros(cube.shape),scale=gauss_std, size=None)
    else:
        sys.exit(' ---> type="'+type+'" is not valid in call to mock_cube_sources.generate_cube_noise() ')

    return cube_with_noise
# = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = 

Example 42

def __init__(self, env, shape, clip=10.0, update_freq=100):
        self.env = env
        self.clip = clip
        self.update_freq = update_freq
        self.count = 0
        self.sum = 0.0
        self.sum_sqr = 0.0
        self.mean = np.zeros(shape, dtype=np.double)
        self.std = np.ones(shape, dtype=np.double) 

Example 43

def expectation(self, dataSplit, coefficients, variances):

        assignment_weights = np.ones(
            (len(dataSplit), self.num_components), dtype=float)

        self.Q = len(self.endoVar)

        for k in range(self.num_components):

            coef_ = coefficients[k]

            Beta = coef_.ix[self.endoVar][self.endoVar]
            Gamma = coef_.ix[self.endoVar][self.exoVar]

            a_ = (np.dot(Beta, self.fscores[
                  self.endoVar].T) + np.dot(Gamma, self.fscores[self.exoVar].T))

            invert_ = np.linalg.inv(np.array(variances[k]))

            exponential = np.exp(-0.5 * np.dot(np.dot(a_.T, invert_), a_))

            den = (((2 * np.pi)**(self.Q / 2)) *
                   np.sqrt(np.linalg.det(variances[k])))
            probabilities = exponential / den
            probabilities = probabilities[0]
            assignment_weights[:, k] = probabilities

        assignment_weights /= assignment_weights.sum(axis=1)[:, np.newaxis]
 #       print(assignment_weights)
        return assignment_weights 

Example 44

def create_matrices(self):
        """Creates the a_* matrices required for simulation."""

        self.a_d_v = self.d_x(factors=(self.t.increment / self.x.increment *
                                       np.ones(self.x.samples)))
        self.a_v_p = self.d_x(factors=(self.t.increment / self.x.increment) *
                              np.ones(self.x.samples), variant='backward')
        self.a_v_v = self.d_x2(factors=(self.t.increment / self.x.increment ** 2 *
                                        self.material_vector('absorption_coef')))
        self.a_v_v2 = self.d_x(factors=(self.t.increment / self.x.increment / 2) *
                               np.ones(self.x.samples), variant='central') 

Example 45

def test_field_component_boundary_2():
    fc = fls.FieldComponent(100)
    fc.values = np.ones(100)
    fc.boundaries = [reg.Boundary(reg.LineRegion([5, 6, 7], [0, 0.2], 'test boundary'))]
    fc.boundaries[0].value = [23, 42, 23]
    fc.boundaries[0].additive = True
    fc.apply_bounds(step=0)
    assert np.allclose(fc.values[[5, 6, 7]], [24, 43, 24]) 

Example 46

def serve_files(model_path, config_path, num_samples):
    """INTERNAL Serve from pickled model, config."""
    from treecat.serving import TreeCatServer
    import numpy as np
    model = pickle_load(model_path)
    config = pickle_load(config_path)
    model['config'] = config
    server = TreeCatServer(model)
    counts = np.ones(model['tree'].num_vertices, np.int8)
    samples = server.sample(int(num_samples), counts)
    server.logprob(samples)
    server.median(counts, samples)
    server.latent_correlation() 

Example 47

def validate_gof(N, V, C, M, server, conditional):
    # Generate samples.
    expected = C**V
    num_samples = 1000 * expected
    ones = np.ones(V, dtype=np.int8)
    if conditional:
        cond_data = server.sample(1, ones)[0, :]
    else:
        cond_data = server.make_zero_row()
    samples = server.sample(num_samples, ones, cond_data)
    logprobs = server.logprob(samples + cond_data[np.newaxis, :])
    counts = {}
    probs = {}
    for sample, logprob in zip(samples, logprobs):
        key = tuple(sample)
        if key in counts:
            counts[key] += 1
        else:
            counts[key] = 1
            probs[key] = np.exp(logprob)
    assert len(counts) == expected

    # Check accuracy using Pearson's chi-squared test.
    keys = sorted(counts.keys(), key=lambda key: -probs[key])
    counts = np.array([counts[k] for k in keys], dtype=np.int32)
    probs = np.array([probs[k] for k in keys])
    probs /= probs.sum()

    # Truncate to avoid low-precision.
    truncated = False
    valid = (probs * num_samples > 20)
    if not valid.all():
        T = valid.argmin()
        T = max(8, T)  # Avoid truncating too much
        probs = probs[:T]
        counts = counts[:T]
        truncated = True

    gof = multinomial_goodness_of_fit(
        probs, counts, num_samples, plot=True, truncated=truncated)
    assert 1e-2 < gof 

Example 48

def sample_tree(self, num_samples):
        size = len(self._ensemble)
        pvals = np.ones(size, dtype=np.float32) / size
        sub_nums = np.random.multinomial(num_samples, pvals)
        samples = []
        for server, sub_num in zip(self._ensemble, sub_nums):
            samples += server.sample_tree(sub_num)
        np.random.shuffle(samples)
        assert len(samples) == num_samples
        return samples 

Example 49

def sample(self, N, counts, data=None):
        size = len(self._ensemble)
        pvals = np.ones(size, dtype=np.float32) / size
        sub_Ns = np.random.multinomial(N, pvals)
        samples = np.concatenate([
            server.sample(sub_N, counts, data)
            for server, sub_N in zip(self._ensemble, sub_Ns)
        ])
        np.random.shuffle(samples)
        assert samples.shape[0] == N
        return samples 

Example 50

def arrangementToRasterMask( arrangement ):
    rows = np.array(arrangement['rows'])
    width = np.max(rows)
    if arrangement['hex'] is True:
        width+=1
    height = len(rows)
    mask = np.ones((height,width),dtype=int)
    for row in range(len(rows)):
        c = rows[row]
        mask[row,(width-c)>>1:((width-c)>>1)+c] = 0

    return {'width':width,'height':height,'mask':mask, 'count':np.sum(rows),'hex':arrangement['hex'],'type':arrangement['type']} 
点赞