The following are code examples for showing how to use . They are extracted from open source Python projects. You can vote up the examples you like or vote down the exmaples you don’t like. You can also save this page to your account.
Example 1
def _read_ctr_ticks( task_handle, high_tick, low_tick, num_samps_per_chan, timeout, interleaved=FillMode.GROUP_BY_CHANNEL): samps_per_chan_read = ctypes.c_int() cfunc = lib_importer.windll.DAQmxReadCtrTicks if cfunc.argtypes is None: with cfunc.arglock: if cfunc.argtypes is None: cfunc.argtypes = [ lib_importer.task_handle, ctypes.c_int, ctypes.c_double, ctypes.c_int, wrapped_ndpointer(dtype=numpy.uint32, flags=('C', 'W')), wrapped_ndpointer(dtype=numpy.uint32, flags=('C', 'W')), ctypes.c_uint, ctypes.POINTER(ctypes.c_int), ctypes.POINTER(c_bool32)] error_code = cfunc( task_handle, num_samps_per_chan, timeout, interleaved.value, high_tick, low_tick, numpy.prod(high_tick.shape), ctypes.byref(samps_per_chan_read), None) check_for_error(error_code) return samps_per_chan_read.value
Example 2
def load_raw(filename, volsize): """ inspired by mhd_utils from github""" dim = 3 element_channels = 1 np_type = np.ubyte arr = list(volsize) volume = np.prod(arr[0:dim - 1]) shape = (arr[dim - 1], volume, element_channels) with open(filename,'rb') as fid: data = np.fromfile(fid, count=np.prod(shape),dtype = np_type) data.shape = shape arr.reverse() data = data.reshape(arr) return data
Example 3
def _read_analog_f_64( task_handle, read_array, num_samps_per_chan, timeout, fill_mode=FillMode.GROUP_BY_CHANNEL): samps_per_chan_read = ctypes.c_int() cfunc = lib_importer.windll.DAQmxReadAnalogF64 if cfunc.argtypes is None: with cfunc.arglock: if cfunc.argtypes is None: cfunc.argtypes = [ lib_importer.task_handle, ctypes.c_int, ctypes.c_double, c_bool32, wrapped_ndpointer(dtype=numpy.float64, flags=('C', 'W')), ctypes.c_uint, ctypes.POINTER(ctypes.c_int), ctypes.POINTER(c_bool32)] error_code = cfunc( task_handle, num_samps_per_chan, timeout, fill_mode.value, read_array, numpy.prod(read_array.shape), ctypes.byref(samps_per_chan_read), None) check_for_error(error_code) return samps_per_chan_read.value
Example 4
def _read_binary_i_16( task_handle, read_array, num_samps_per_chan, timeout, fill_mode=FillMode.GROUP_BY_CHANNEL): samps_per_chan_read = ctypes.c_int() cfunc = lib_importer.windll.DAQmxReadBinaryI16 if cfunc.argtypes is None: with cfunc.arglock: if cfunc.argtypes is None: cfunc.argtypes = [ lib_importer.task_handle, ctypes.c_int, ctypes.c_double, ctypes.c_int, wrapped_ndpointer(dtype=numpy.int16, flags=('C', 'W')), ctypes.c_uint, ctypes.POINTER(ctypes.c_int), ctypes.POINTER(c_bool32)] error_code = cfunc( task_handle, num_samps_per_chan, timeout, fill_mode.value, read_array, numpy.prod(read_array.shape), ctypes.byref(samps_per_chan_read), None) check_for_error(error_code) return samps_per_chan_read.value
Example 5
def _read_binary_u_16( task_handle, read_array, num_samps_per_chan, timeout, fill_mode=FillMode.GROUP_BY_CHANNEL): samps_per_chan_read = ctypes.c_int() cfunc = lib_importer.windll.DAQmxReadBinaryU16 if cfunc.argtypes is None: with cfunc.arglock: if cfunc.argtypes is None: cfunc.argtypes = [ lib_importer.task_handle, ctypes.c_int, ctypes.c_double, ctypes.c_int, wrapped_ndpointer(dtype=numpy.uint16, flags=('C', 'W')), ctypes.c_uint, ctypes.POINTER(ctypes.c_int), ctypes.POINTER(c_bool32)] error_code = cfunc( task_handle, num_samps_per_chan, timeout, fill_mode.value, read_array, numpy.prod(read_array.shape), ctypes.byref(samps_per_chan_read), None) check_for_error(error_code) return samps_per_chan_read.value
Example 6
def _read_binary_i_32( task_handle, read_array, num_samps_per_chan, timeout, fill_mode=FillMode.GROUP_BY_CHANNEL): samps_per_chan_read = ctypes.c_int() cfunc = lib_importer.windll.DAQmxReadBinaryI32 if cfunc.argtypes is None: with cfunc.arglock: if cfunc.argtypes is None: cfunc.argtypes = [ lib_importer.task_handle, ctypes.c_int, ctypes.c_double, ctypes.c_int, wrapped_ndpointer(dtype=numpy.int32, flags=('C', 'W')), ctypes.c_uint, ctypes.POINTER(ctypes.c_int), ctypes.POINTER(c_bool32)] error_code = cfunc( task_handle, num_samps_per_chan, timeout, fill_mode.value, read_array, numpy.prod(read_array.shape), ctypes.byref(samps_per_chan_read), None) check_for_error(error_code) return samps_per_chan_read.value
Example 7
def _read_binary_u_32( task_handle, read_array, num_samps_per_chan, timeout, fill_mode=FillMode.GROUP_BY_CHANNEL): samps_per_chan_read = ctypes.c_int() cfunc = lib_importer.windll.DAQmxReadBinaryU32 if cfunc.argtypes is None: with cfunc.arglock: if cfunc.argtypes is None: cfunc.argtypes = [ lib_importer.task_handle, ctypes.c_int, ctypes.c_double, ctypes.c_int, wrapped_ndpointer(dtype=numpy.uint32, flags=('C', 'W')), ctypes.c_uint, ctypes.POINTER(ctypes.c_int), ctypes.POINTER(c_bool32)] error_code = cfunc( task_handle, num_samps_per_chan, timeout, fill_mode.value, read_array, numpy.prod(read_array.shape), ctypes.byref(samps_per_chan_read), None) check_for_error(error_code) return samps_per_chan_read.value
Example 8
def _read_digital_u_16( task_handle, read_array, num_samps_per_chan, timeout, fill_mode=FillMode.GROUP_BY_CHANNEL): samps_per_chan_read = ctypes.c_int() cfunc = lib_importer.windll.DAQmxReadDigitalU16 if cfunc.argtypes is None: with cfunc.arglock: if cfunc.argtypes is None: cfunc.argtypes = [ lib_importer.task_handle, ctypes.c_int, ctypes.c_double, ctypes.c_int, wrapped_ndpointer(dtype=numpy.uint16, flags=('C', 'W')), ctypes.c_uint, ctypes.POINTER(ctypes.c_int), ctypes.POINTER(c_bool32)] error_code = cfunc( task_handle, num_samps_per_chan, timeout, fill_mode.value, read_array, numpy.prod(read_array.shape), ctypes.byref(samps_per_chan_read), None) check_for_error(error_code) return samps_per_chan_read.value
Example 9
def _read_digital_u_32( task_handle, read_array, num_samps_per_chan, timeout, fill_mode=FillMode.GROUP_BY_CHANNEL): samps_per_chan_read = ctypes.c_int() cfunc = lib_importer.windll.DAQmxReadDigitalU32 if cfunc.argtypes is None: with cfunc.arglock: if cfunc.argtypes is None: cfunc.argtypes = [ lib_importer.task_handle, ctypes.c_int, ctypes.c_double, ctypes.c_int, wrapped_ndpointer(dtype=numpy.uint32, flags=('C', 'W')), ctypes.c_uint, ctypes.POINTER(ctypes.c_int), ctypes.POINTER(c_bool32)] error_code = cfunc( task_handle, num_samps_per_chan, timeout, fill_mode.value, read_array, numpy.prod(read_array.shape), ctypes.byref(samps_per_chan_read), None) check_for_error(error_code) return samps_per_chan_read.value
Example 10
def _read_counter_f_64(task_handle, read_array, num_samps_per_chan, timeout): samps_per_chan_read = ctypes.c_int() cfunc = lib_importer.windll.DAQmxReadCounterF64 if cfunc.argtypes is None: with cfunc.arglock: if cfunc.argtypes is None: cfunc.argtypes = [ lib_importer.task_handle, ctypes.c_int, ctypes.c_double, wrapped_ndpointer(dtype=numpy.float64, flags=('C', 'W')), ctypes.c_uint, ctypes.POINTER(ctypes.c_int), ctypes.POINTER(c_bool32)] error_code = cfunc( task_handle, num_samps_per_chan, timeout, read_array, numpy.prod(read_array.shape), ctypes.byref(samps_per_chan_read), None) check_for_error(error_code) return samps_per_chan_read.value
Example 11
def _read_counter_u_32(task_handle, read_array, num_samps_per_chan, timeout): samps_per_chan_read = ctypes.c_int() cfunc = lib_importer.windll.DAQmxReadCounterU32 if cfunc.argtypes is None: with cfunc.arglock: if cfunc.argtypes is None: cfunc.argtypes = [ lib_importer.task_handle, ctypes.c_int, ctypes.c_double, wrapped_ndpointer(dtype=numpy.uint32, flags=('C', 'W')), ctypes.c_uint, ctypes.POINTER(ctypes.c_int), ctypes.POINTER(c_bool32)] error_code = cfunc( task_handle, num_samps_per_chan, timeout, read_array, numpy.prod(read_array.shape), ctypes.byref(samps_per_chan_read), None) check_for_error(error_code) return samps_per_chan_read.value
Example 12
def _read_counter_u_32_ex( task_handle, read_array, num_samps_per_chan, timeout, fill_mode=FillMode.GROUP_BY_CHANNEL): samps_per_chan_read = ctypes.c_int() cfunc = lib_importer.windll.DAQmxReadCounterU32Ex if cfunc.argtypes is None: with cfunc.arglock: if cfunc.argtypes is None: cfunc.argtypes = [ lib_importer.task_handle, ctypes.c_int, ctypes.c_double, ctypes.c_int, wrapped_ndpointer(dtype=numpy.uint32, flags=('C', 'W')), ctypes.c_uint, ctypes.POINTER(ctypes.c_int), ctypes.POINTER(c_bool32)] error_code = cfunc( task_handle, num_samps_per_chan, timeout, fill_mode.value, read_array, numpy.prod(read_array.shape), ctypes.byref(samps_per_chan_read), None) check_for_error(error_code) return samps_per_chan_read.value
Example 13
def _read_ctr_freq( task_handle, freq, duty_cycle, num_samps_per_chan, timeout, interleaved=FillMode.GROUP_BY_CHANNEL): samps_per_chan_read = ctypes.c_int() cfunc = lib_importer.windll.DAQmxReadCtrFreq if cfunc.argtypes is None: with cfunc.arglock: if cfunc.argtypes is None: cfunc.argtypes = [ lib_importer.task_handle, ctypes.c_int, ctypes.c_double, ctypes.c_int, wrapped_ndpointer(dtype=numpy.float64, flags=('C', 'W')), wrapped_ndpointer(dtype=numpy.float64, flags=('C', 'W')), ctypes.c_uint, ctypes.POINTER(ctypes.c_int), ctypes.POINTER(c_bool32)] error_code = cfunc( task_handle, num_samps_per_chan, timeout, interleaved.value, freq, duty_cycle, numpy.prod(freq.shape), ctypes.byref(samps_per_chan_read), None) check_for_error(error_code) return samps_per_chan_read.value
Example 14
def _read_ctr_time( task_handle, high_time, low_time, num_samps_per_chan, timeout, interleaved=FillMode.GROUP_BY_CHANNEL): samps_per_chan_read = ctypes.c_int() cfunc = lib_importer.windll.DAQmxReadCtrTime if cfunc.argtypes is None: with cfunc.arglock: if cfunc.argtypes is None: cfunc.argtypes = [ lib_importer.task_handle, ctypes.c_int, ctypes.c_double, ctypes.c_int, wrapped_ndpointer(dtype=numpy.float64, flags=('C', 'W')), wrapped_ndpointer(dtype=numpy.float64, flags=('C', 'W')), ctypes.c_uint, ctypes.POINTER(ctypes.c_int), ctypes.POINTER(c_bool32)] error_code = cfunc( task_handle, num_samps_per_chan, timeout, interleaved.value, high_time, low_time, numpy.prod(high_time.shape), ctypes.byref(samps_per_chan_read), None) check_for_error(error_code) return samps_per_chan_read.value
Example 15
def _pooling_layer( self, layer_name, inputs, size, stride, padding='SAME'): """Pooling layer operation constructor. Args: layer_name: layer name. inputs: input tensor size: kernel size. stride: stride padding: 'SAME' or 'VALID'. See tensorflow doc for detailed description. Returns: A pooling layer operation. """ with tf.variable_scope(layer_name) as scope: out = tf.nn.max_pool(inputs, ksize=[1, size, size, 1], strides=[1, stride, stride, 1], padding=padding) activation_size = np.prod(out.get_shape().as_list()[1:]) self.activation_counter.append((layer_name, activation_size)) return out
Example 16
def conv2d(x, num_filters, name, filter_size=(3, 3), stride=(1, 1), pad="SAME", dtype=tf.float32, collections=None): with tf.variable_scope(name): stride_shape = [1, stride[0], stride[1], 1] filter_shape = [filter_size[0], filter_size[1], int(x.get_shape()[3]), num_filters] # there are "num input feature maps * filter height * filter width" # inputs to each hidden unit fan_in = np.prod(filter_shape[:3]) # each unit in the lower layer receives a gradient from: # "num output feature maps * filter height * filter width" / # pooling size fan_out = np.prod(filter_shape[:2]) * num_filters # initialize weights with random weights w_bound = np.sqrt(6. / (fan_in + fan_out)) w = tf.get_variable("W", filter_shape, dtype, tf.random_uniform_initializer(-w_bound, w_bound), collections=collections) b = tf.get_variable("b", [1, 1, 1, num_filters], initializer=tf.constant_initializer(0.0), collections=collections) return tf.nn.conv2d(x, w, stride_shape, pad) + b
Example 17
def conv2d(x, num_filters, name, filter_size=(3, 3), stride=(1, 1), pad="SAME", dtype=tf.float32, collections=None): with tf.variable_scope(name): stride_shape = [1, stride[0], stride[1], 1] filter_shape = [filter_size[0], filter_size[1], int(x.get_shape()[3]), num_filters] # there are "num input feature maps * filter height * filter width" # inputs to each hidden unit fan_in = np.prod(filter_shape[:3]) # each unit in the lower layer receives a gradient from: # "num output feature maps * filter height * filter width" / # pooling size fan_out = np.prod(filter_shape[:2]) * num_filters # initialize weights with random weights w_bound = np.sqrt(6. / (fan_in + fan_out)) w = tf.get_variable("W", filter_shape, dtype, tf.random_uniform_initializer(-w_bound, w_bound), collections=collections) b = tf.get_variable("b", [1, 1, 1, num_filters], initializer=tf.constant_initializer(0.0), collections=collections) return tf.nn.conv2d(x, w, stride_shape, pad) + b
Example 18
def discriminator_labeler(image, output_dim, config, reuse=None): batch_size=tf.shape(image)[0] with tf.variable_scope("disc_labeler",reuse=reuse) as vs: dl_bn1 = batch_norm(name='dl_bn1') dl_bn2 = batch_norm(name='dl_bn2') dl_bn3 = batch_norm(name='dl_bn3') h0 = lrelu(conv2d(image, config.df_dim, name='dl_h0_conv'))#16,32,32,64 h1 = lrelu(dl_bn1(conv2d(h0, config.df_dim*2, name='dl_h1_conv')))#16,16,16,128 h2 = lrelu(dl_bn2(conv2d(h1, config.df_dim*4, name='dl_h2_conv')))#16,16,16,248 h3 = lrelu(dl_bn3(conv2d(h2, config.df_dim*8, name='dl_h3_conv'))) dim3=np.prod(h3.get_shape().as_list()[1:]) h3_flat=tf.reshape(h3, [-1,dim3]) D_labels_logits = linear(h3_flat, output_dim, 'dl_h3_Label') D_labels = tf.nn.sigmoid(D_labels_logits) variables = tf.contrib.framework.get_variables(vs) return D_labels, D_labels_logits, variables
Example 19
def discriminator_gen_labeler(image, output_dim, config, reuse=None): batch_size=tf.shape(image)[0] with tf.variable_scope("disc_gen_labeler",reuse=reuse) as vs: dl_bn1 = batch_norm(name='dl_bn1') dl_bn2 = batch_norm(name='dl_bn2') dl_bn3 = batch_norm(name='dl_bn3') h0 = lrelu(conv2d(image, config.df_dim, name='dgl_h0_conv'))#16,32,32,64 h1 = lrelu(dl_bn1(conv2d(h0, config.df_dim*2, name='dgl_h1_conv')))#16,16,16,128 h2 = lrelu(dl_bn2(conv2d(h1, config.df_dim*4, name='dgl_h2_conv')))#16,16,16,248 h3 = lrelu(dl_bn3(conv2d(h2, config.df_dim*8, name='dgl_h3_conv'))) dim3=np.prod(h3.get_shape().as_list()[1:]) h3_flat=tf.reshape(h3, [-1,dim3]) D_labels_logits = linear(h3_flat, output_dim, 'dgl_h3_Label') D_labels = tf.nn.sigmoid(D_labels_logits) variables = tf.contrib.framework.get_variables(vs) return D_labels, D_labels_logits,variables
Example 20
def discriminator_on_z(image, config, reuse=None): batch_size=tf.shape(image)[0] with tf.variable_scope("disc_z_labeler",reuse=reuse) as vs: dl_bn1 = batch_norm(name='dl_bn1') dl_bn2 = batch_norm(name='dl_bn2') dl_bn3 = batch_norm(name='dl_bn3') h0 = lrelu(conv2d(image, config.df_dim, name='dzl_h0_conv'))#16,32,32,64 h1 = lrelu(dl_bn1(conv2d(h0, config.df_dim*2, name='dzl_h1_conv')))#16,16,16,128 h2 = lrelu(dl_bn2(conv2d(h1, config.df_dim*4, name='dzl_h2_conv')))#16,16,16,248 h3 = lrelu(dl_bn3(conv2d(h2, config.df_dim*8, name='dzl_h3_conv'))) dim3=np.prod(h3.get_shape().as_list()[1:]) h3_flat=tf.reshape(h3, [-1,dim3]) D_labels_logits = linear(h3_flat, config.z_dim, 'dzl_h3_Label') D_labels = tf.nn.tanh(D_labels_logits) variables = tf.contrib.framework.get_variables(vs) return D_labels,variables
Example 21
def decompose_size(size): """Computes the number of input and output units for a weight shape. Parameters ---------- size Integer shape tuple. Returns ------- A tuple of scalars, `(fan_in, fan_out)`. """ if len(size) == 2: fan_in = size[0] fan_out = size[1] elif len(size) == 4 or len(size) == 5: respective_field_size = np.prod(size[2:]) fan_in = size[1] * respective_field_size fan_out = size[0] * respective_field_size else: fan_in = fan_out = int(np.sqrt(np.prod(size))) return fan_in, fan_out
Example 22
def _random_overlay(self, static_hidden=False): """Construct random max pool locations.""" s = self.shapes[2] if static_hidden: args = np.random.randint(s[2], size=np.prod(s) / s[2] / s[4]) overlay = np.zeros(np.prod(s) / s[4], np.bool) overlay[args + np.arange(len(args)) * s[2]] = True overlay = overlay.reshape([s[0], s[1], s[3], s[2]]) overlay = np.rollaxis(overlay, -1, 2) return arrays.extend(overlay, s[4]) else: args = np.random.randint(s[2], size=np.prod(s) / s[2]) overlay = np.zeros(np.prod(s), np.bool) overlay[args + np.arange(len(args)) * s[2]] = True overlay = overlay.reshape([s[0], s[1], s[3], s[4], s[2]]) return np.rollaxis(overlay, -1, 2)
Example 23
def finalization(self): ''' Add sparse matrix multiplication on GPU Note: use "python-cuda-cffi" generated interface to access cusparse ''' self.gpu_flag = 0 self.CSR = cuda_cffi.cusparse.CSR.to_CSR(self.st['p'].astype(dtype), ) self.CSRH = cuda_cffi.cusparse.CSR.to_CSR(self.st['p'].getH().tocsr().astype(dtype), ) self.scikit_plan = cu_fft.Plan(self.st['Kd'], dtype, dtype) # self.pHp = cuda_cffi.cusparse.CSR.to_CSR( # self.st['pHp'].astype(dtype)) self.gpu_flag = 1 self.sn_gpu = pycuda.gpuarray.to_gpu(self.sn.astype(dtype)) # tmp_array = skcuda.misc.ones((numpy.prod(self.st['Kd']),1),dtype=dtype) # tmp = cuda_cffi.cusolver.csrlsvqr(self.CSR, tmp_array)
Example 24
def plan(self, om, Nd, Kd, Jd): self.debug = 0 # debug n_shift = tuple(0*x for x in Nd) self.st = plan(om, Nd, Kd, Jd) self.Nd = self.st['Nd'] # backup self.sn = self.st['sn'] # backup self.ndims=len(self.st['Nd']) # dimension self.linear_phase(n_shift) # calculate the linear phase thing self.st['pH'] = self.st['p'].getH().tocsr() self.st['pHp']= self.st['pH'].dot(self.st['p']) self.NdCPUorder, self.KdCPUorder, self.nelem = preindex_copy(self.st['Nd'], self.st['Kd']) # self.st['W'] = self.pipe_density() self.shape = (self.st['M'], numpy.prod(self.st['Nd'])) # print('untrimmed',self.st['pHp'].nnz) # self.truncate_selfadjoint(1e-1) # print('trimmed', self.st['pHp'].nnz)
Example 25
def __call__(self, input_layer, output_size, scope=None, in_dim=None, stddev=0.02, bias_start=0.0): shape = input_layer.shape input_ = input_layer.tensor try: if len(shape) == 4: input_ = tf.reshape(input_, tf.pack([tf.shape(input_)[0], np.prod(shape[1:])])) input_.set_shape([None, np.prod(shape[1:])]) shape = input_.get_shape().as_list() with tf.variable_scope(scope or "Linear"): matrix = self.variable("Matrix", [in_dim or shape[1], output_size], dt=tf.float32, init=tf.random_normal_initializer(stddev=stddev)) bias = self.variable("bias", [output_size], init=tf.constant_initializer(bias_start)) return input_layer.with_tensor(tf.matmul(input_, matrix) + bias, parameters=self.vars) except Exception: import ipdb; ipdb.set_trace()
Example 26
def _meshgrid(self, height, width): with tf.variable_scope('_meshgrid'): # This should be equivalent to: # x_t, y_t = np.meshgrid(np.linspace(-1, 1, width), # np.linspace(-1, 1, height)) # ones = np.ones(np.prod(x_t.shape)) # grid = np.vstack([x_t.flatten(), y_t.flatten(), ones]) x_t = tf.matmul(tf.ones(shape=tf.pack([height, 1])), tf.transpose(tf.expand_dims(tf.linspace(-1.0, 1.0, width), 1), [1, 0])) y_t = tf.matmul(tf.expand_dims(tf.linspace(-1.0, 1.0, height), 1), tf.ones(shape=tf.pack([1, width]))) x_t_flat = tf.reshape(x_t, (1, -1)) y_t_flat = tf.reshape(y_t, (1, -1)) ones = tf.ones_like(x_t_flat) grid = tf.concat(0, [x_t_flat, y_t_flat, ones]) return grid
Example 27
def build_model(): metadata_dir = utils.get_dir_path('models', pathfinder.METADATA_PATH) metadata_path = utils.find_model_metadata(metadata_dir, patch_class_config.__name__.split('.')[-1]) metadata = utils.load_pkl(metadata_path) print 'Build model' model = patch_class_config.build_model() all_layers = nn.layers.get_all_layers(model.l_out) num_params = nn.layers.count_params(model.l_out) print ' number of parameters: %d' % num_params print string.ljust(' layer output shapes:', 36), print string.ljust('#params:', 10), print 'output shape:' for layer in all_layers: name = string.ljust(layer.__class__.__name__, 32) num_param = sum([np.prod(p.get_value().shape) for p in layer.get_params()]) num_param = string.ljust(num_param.__str__(), 10) print ' %s %s %s' % (name, num_param, layer.output_shape) nn.layers.set_all_param_values(model.l_out, metadata['param_values']) return model
Example 28
def build_model(): metadata_dir = utils.get_dir_path('models', pathfinder.METADATA_PATH) metadata_path = utils.find_model_metadata(metadata_dir, patch_class_config.__name__.split('.')[-1]) metadata = utils.load_pkl(metadata_path) print 'Build model' model = patch_class_config.build_model() all_layers = nn.layers.get_all_layers(model.l_out) num_params = nn.layers.count_params(model.l_out) print ' number of parameters: %d' % num_params print string.ljust(' layer output shapes:', 36), print string.ljust('#params:', 10), print 'output shape:' for layer in all_layers: name = string.ljust(layer.__class__.__name__, 32) num_param = sum([np.prod(p.get_value().shape) for p in layer.get_params()]) num_param = string.ljust(num_param.__str__(), 10) print ' %s %s %s' % (name, num_param, layer.output_shape) nn.layers.set_all_param_values(model.l_out, metadata['param_values']) return model
Example 29
def build_model(): metadata_dir = utils.get_dir_path('models', pathfinder.METADATA_PATH) metadata_path = utils.find_model_metadata(metadata_dir, patch_class_config.__name__.split('.')[-1]) metadata = utils.load_pkl(metadata_path) print 'Build model' model = patch_class_config.build_model() all_layers = nn.layers.get_all_layers(model.l_out) num_params = nn.layers.count_params(model.l_out) print ' number of parameters: %d' % num_params print string.ljust(' layer output shapes:', 36), print string.ljust('#params:', 10), print 'output shape:' for layer in all_layers: name = string.ljust(layer.__class__.__name__, 32) num_param = sum([np.prod(p.get_value().shape) for p in layer.get_params()]) num_param = string.ljust(num_param.__str__(), 10) print ' %s %s %s' % (name, num_param, layer.output_shape) nn.layers.set_all_param_values(model.l_out, metadata['param_values']) return model
Example 30
def build_model(): metadata_dir = utils.get_dir_path('models', pathfinder.METADATA_PATH) metadata_path = utils.find_model_metadata(metadata_dir, patch_class_config.__name__.split('.')[-1]) metadata = utils.load_pkl(metadata_path) print 'Build model' model = patch_class_config.build_model() all_layers = nn.layers.get_all_layers(model.l_out) num_params = nn.layers.count_params(model.l_out) print ' number of parameters: %d' % num_params print string.ljust(' layer output shapes:', 36), print string.ljust('#params:', 10), print 'output shape:' for layer in all_layers: name = string.ljust(layer.__class__.__name__, 32) num_param = sum([np.prod(p.get_value().shape) for p in layer.get_params()]) num_param = string.ljust(num_param.__str__(), 10) print ' %s %s %s' % (name, num_param, layer.output_shape) nn.layers.set_all_param_values(model.l_out, metadata['param_values']) return model
Example 31
def build_model(): metadata_dir = utils.get_dir_path('models', pathfinder.METADATA_PATH) metadata_path = utils.find_model_metadata(metadata_dir, patch_class_config.__name__.split('.')[-1]) metadata = utils.load_pkl(metadata_path) print 'Build model' model = patch_class_config.build_model() all_layers = nn.layers.get_all_layers(model.l_out) num_params = nn.layers.count_params(model.l_out) print ' number of parameters: %d' % num_params print string.ljust(' layer output shapes:', 36), print string.ljust('#params:', 10), print 'output shape:' for layer in all_layers: name = string.ljust(layer.__class__.__name__, 32) num_param = sum([np.prod(p.get_value().shape) for p in layer.get_params()]) num_param = string.ljust(num_param.__str__(), 10) print ' %s %s %s' % (name, num_param, layer.output_shape) nn.layers.set_all_param_values(model.l_out, metadata['param_values']) return model
Example 32
def build_model(): metadata_dir = utils.get_dir_path('models', pathfinder.METADATA_PATH) metadata_path = utils.find_model_metadata(metadata_dir, patch_class_config.__name__.split('.')[-1]) metadata = utils.load_pkl(metadata_path) print 'Build model' model = patch_class_config.build_model() all_layers = nn.layers.get_all_layers(model.l_out) num_params = nn.layers.count_params(model.l_out) print ' number of parameters: %d' % num_params print string.ljust(' layer output shapes:', 36), print string.ljust('#params:', 10), print 'output shape:' for layer in all_layers: name = string.ljust(layer.__class__.__name__, 32) num_param = sum([np.prod(p.get_value().shape) for p in layer.get_params()]) num_param = string.ljust(num_param.__str__(), 10) print ' %s %s %s' % (name, num_param, layer.output_shape) nn.layers.set_all_param_values(model.l_out, metadata['param_values']) return model
Example 33
def build_model(): metadata_dir = utils.get_dir_path('models', pathfinder.METADATA_PATH) metadata_path = utils.find_model_metadata(metadata_dir, patch_class_config.__name__.split('.')[-1]) metadata = utils.load_pkl(metadata_path) print 'Build model' model = patch_class_config.build_model() all_layers = nn.layers.get_all_layers(model.l_out) num_params = nn.layers.count_params(model.l_out) print ' number of parameters: %d' % num_params print string.ljust(' layer output shapes:', 36), print string.ljust('#params:', 10), print 'output shape:' for layer in all_layers: name = string.ljust(layer.__class__.__name__, 32) num_param = sum([np.prod(p.get_value().shape) for p in layer.get_params()]) num_param = string.ljust(num_param.__str__(), 10) print ' %s %s %s' % (name, num_param, layer.output_shape) nn.layers.set_all_param_values(model.l_out, metadata['param_values']) return model
Example 34
def build_model(): metadata_dir = utils.get_dir_path('models', pathfinder.METADATA_PATH) metadata_path = utils.find_model_metadata(metadata_dir, patch_class_config.__name__.split('.')[-1]) metadata = utils.load_pkl(metadata_path) print 'Build model' model = patch_class_config.build_model() all_layers = nn.layers.get_all_layers(model.l_out) num_params = nn.layers.count_params(model.l_out) print ' number of parameters: %d' % num_params print string.ljust(' layer output shapes:', 36), print string.ljust('#params:', 10), print 'output shape:' for layer in all_layers: name = string.ljust(layer.__class__.__name__, 32) num_param = sum([np.prod(p.get_value().shape) for p in layer.get_params()]) num_param = string.ljust(num_param.__str__(), 10) print ' %s %s %s' % (name, num_param, layer.output_shape) nn.layers.set_all_param_values(model.l_out, metadata['param_values']) return model
Example 35
def build_model(): metadata_dir = utils.get_dir_path('models', pathfinder.METADATA_PATH) metadata_path = utils.find_model_metadata(metadata_dir, patch_class_config.__name__.split('.')[-1]) metadata = utils.load_pkl(metadata_path) print 'Build model' model = patch_class_config.build_model() all_layers = nn.layers.get_all_layers(model.l_out) num_params = nn.layers.count_params(model.l_out) print ' number of parameters: %d' % num_params print string.ljust(' layer output shapes:', 36), print string.ljust('#params:', 10), print 'output shape:' for layer in all_layers: name = string.ljust(layer.__class__.__name__, 32) num_param = sum([np.prod(p.get_value().shape) for p in layer.get_params()]) num_param = string.ljust(num_param.__str__(), 10) print ' %s %s %s' % (name, num_param, layer.output_shape) nn.layers.set_all_param_values(model.l_out, metadata['param_values']) return model
Example 36
def build_model(): metadata_dir = utils.get_dir_path('models', pathfinder.METADATA_PATH) metadata_path = utils.find_model_metadata(metadata_dir, patch_class_config.__name__.split('.')[-1]) metadata = utils.load_pkl(metadata_path) print 'Build model' model = patch_class_config.build_model() all_layers = nn.layers.get_all_layers(model.l_out) num_params = nn.layers.count_params(model.l_out) print ' number of parameters: %d' % num_params print string.ljust(' layer output shapes:', 36), print string.ljust('#params:', 10), print 'output shape:' for layer in all_layers: name = string.ljust(layer.__class__.__name__, 32) num_param = sum([np.prod(p.get_value().shape) for p in layer.get_params()]) num_param = string.ljust(num_param.__str__(), 10) print ' %s %s %s' % (name, num_param, layer.output_shape) nn.layers.set_all_param_values(model.l_out, metadata['param_values']) return model
Example 37
def build_model(): metadata_dir = utils.get_dir_path('models', pathfinder.METADATA_PATH) metadata_path = utils.find_model_metadata(metadata_dir, patch_config.__name__.split('.')[-1]) metadata = utils.load_pkl(metadata_path) print 'Build model' model = patch_config.build_model(patch_size=(window_size, window_size, window_size)) all_layers = nn.layers.get_all_layers(model.l_out) num_params = nn.layers.count_params(model.l_out) print ' number of parameters: %d' % num_params print string.ljust(' layer output shapes:', 36), print string.ljust('#params:', 10), print 'output shape:' for layer in all_layers: name = string.ljust(layer.__class__.__name__, 32) num_param = sum([np.prod(p.get_value().shape) for p in layer.get_params()]) num_param = string.ljust(num_param.__str__(), 10) print ' %s %s %s' % (name, num_param, layer.output_shape) nn.layers.set_all_param_values(model.l_out, metadata['param_values']) return model
Example 38
def build_model(): metadata_dir = utils.get_dir_path('models', pathfinder.METADATA_PATH) metadata_path = utils.find_model_metadata(metadata_dir, patch_config.__name__.split('.')[-1]) metadata = utils.load_pkl(metadata_path) print 'Build model' model = patch_config.build_model(patch_size=(window_size, window_size, window_size)) all_layers = nn.layers.get_all_layers(model.l_out) num_params = nn.layers.count_params(model.l_out) print ' number of parameters: %d' % num_params print string.ljust(' layer output shapes:', 36), print string.ljust('#params:', 10), print 'output shape:' for layer in all_layers: name = string.ljust(layer.__class__.__name__, 32) num_param = sum([np.prod(p.get_value().shape) for p in layer.get_params()]) num_param = string.ljust(num_param.__str__(), 10) print ' %s %s %s' % (name, num_param, layer.output_shape) nn.layers.set_all_param_values(model.l_out, metadata['param_values']) return model
Example 39
def build_model(): print 'Build model' model = patch_config.build_model(patch_size=(window_size, window_size, window_size)) all_layers = nn.layers.get_all_layers(model.l_out) num_params = nn.layers.count_params(model.l_out) print ' number of parameters: %d' % num_params print string.ljust(' layer output shapes:', 36), print string.ljust('#params:', 10), print 'output shape:' for layer in all_layers: name = string.ljust(layer.__class__.__name__, 32) num_param = sum([np.prod(p.get_value().shape) for p in layer.get_params()]) num_param = string.ljust(num_param.__str__(), 10) print ' %s %s %s' % (name, num_param, layer.output_shape) return model
Example 40
def build_model(): metadata_dir = utils.get_dir_path('models', pathfinder.METADATA_PATH) metadata_path = utils.find_model_metadata(metadata_dir, patch_config.__name__.split('.')[-1]) metadata = utils.load_pkl(metadata_path) print 'Build model' model = patch_config.build_model(patch_size=(window_size, window_size, window_size)) all_layers = nn.layers.get_all_layers(model.l_out) num_params = nn.layers.count_params(model.l_out) print ' number of parameters: %d' % num_params print string.ljust(' layer output shapes:', 36), print string.ljust('#params:', 10), print 'output shape:' for layer in all_layers: name = string.ljust(layer.__class__.__name__, 32) num_param = sum([np.prod(p.get_value().shape) for p in layer.get_params()]) num_param = string.ljust(num_param.__str__(), 10) print ' %s %s %s' % (name, num_param, layer.output_shape) nn.layers.set_all_param_values(model.l_out, metadata['param_values']) return model
Example 41
def build_model(): metadata_dir = utils.get_dir_path('models', pathfinder.METADATA_PATH) metadata_path = utils.find_model_metadata(metadata_dir, patch_config.__name__.split('.')[-1]) metadata = utils.load_pkl(metadata_path) print 'Build model' model = patch_config.build_model(patch_size=(window_size, window_size, window_size)) all_layers = nn.layers.get_all_layers(model.l_out) num_params = nn.layers.count_params(model.l_out) print ' number of parameters: %d' % num_params print string.ljust(' layer output shapes:', 36), print string.ljust('#params:', 10), print 'output shape:' for layer in all_layers: name = string.ljust(layer.__class__.__name__, 32) num_param = sum([np.prod(p.get_value().shape) for p in layer.get_params()]) num_param = string.ljust(num_param.__str__(), 10) print ' %s %s %s' % (name, num_param, layer.output_shape) nn.layers.set_all_param_values(model.l_out, metadata['param_values']) return model
Example 42
def build_model(): metadata_dir = utils.get_dir_path('models', pathfinder.METADATA_PATH) metadata_path = utils.find_model_metadata(metadata_dir, patch_config.__name__.split('.')[-1]) metadata = utils.load_pkl(metadata_path) print 'Build model' model = patch_config.build_model(patch_size=(window_size, window_size, window_size)) all_layers = nn.layers.get_all_layers(model.l_out) num_params = nn.layers.count_params(model.l_out) print ' number of parameters: %d' % num_params print string.ljust(' layer output shapes:', 36), print string.ljust('#params:', 10), print 'output shape:' for layer in all_layers: name = string.ljust(layer.__class__.__name__, 32) num_param = sum([np.prod(p.get_value().shape) for p in layer.get_params()]) num_param = string.ljust(num_param.__str__(), 10) print ' %s %s %s' % (name, num_param, layer.output_shape) nn.layers.set_all_param_values(model.l_out, metadata['param_values']) return model
Example 43
def build_model(): metadata_dir = utils.get_dir_path('models', pathfinder.METADATA_PATH) metadata_path = utils.find_model_metadata(metadata_dir, patch_config.__name__.split('.')[-1]) metadata = utils.load_pkl(metadata_path) print 'Build model' model = patch_config.build_model(patch_size=(window_size, window_size, window_size)) all_layers = nn.layers.get_all_layers(model.l_out) num_params = nn.layers.count_params(model.l_out) print ' number of parameters: %d' % num_params print string.ljust(' layer output shapes:', 36), print string.ljust('#params:', 10), print 'output shape:' for layer in all_layers: name = string.ljust(layer.__class__.__name__, 32) num_param = sum([np.prod(p.get_value().shape) for p in layer.get_params()]) num_param = string.ljust(num_param.__str__(), 10) print ' %s %s %s' % (name, num_param, layer.output_shape) nn.layers.set_all_param_values(model.l_out, metadata['param_values']) return model
Example 44
def build_model(): metadata_dir = utils.get_dir_path('models', pathfinder.METADATA_PATH) metadata_path = utils.find_model_metadata(metadata_dir, patch_config.__name__.split('.')[-1]) metadata = utils.load_pkl(metadata_path) print 'Build model' model = patch_config.build_model() all_layers = nn.layers.get_all_layers(model.l_out) num_params = nn.layers.count_params(model.l_out) print ' number of parameters: %d' % num_params print string.ljust(' layer output shapes:', 36), print string.ljust('#params:', 10), print 'output shape:' for layer in all_layers: name = string.ljust(layer.__class__.__name__, 32) num_param = sum([np.prod(p.get_value().shape) for p in layer.get_params()]) num_param = string.ljust(num_param.__str__(), 10) print ' %s %s %s' % (name, num_param, layer.output_shape) nn.layers.set_all_param_values(model.l_out, metadata['param_values']) return model
Example 45
def build_model(): metadata_dir = utils.get_dir_path('models', pathfinder.METADATA_PATH) metadata_path = utils.find_model_metadata(metadata_dir, patch_config.__name__.split('.')[-1]) metadata = utils.load_pkl(metadata_path) print 'Build model' model = patch_config.build_model(patch_size=(window_size, window_size, window_size)) all_layers = nn.layers.get_all_layers(model.l_out) num_params = nn.layers.count_params(model.l_out) print ' number of parameters: %d' % num_params print string.ljust(' layer output shapes:', 36), print string.ljust('#params:', 10), print 'output shape:' for layer in all_layers: name = string.ljust(layer.__class__.__name__, 32) num_param = sum([np.prod(p.get_value().shape) for p in layer.get_params()]) num_param = string.ljust(num_param.__str__(), 10) print ' %s %s %s' % (name, num_param, layer.output_shape) nn.layers.set_all_param_values(model.l_out, metadata['param_values']) return model
Example 46
def build_model(): metadata_dir = utils.get_dir_path('models', pathfinder.METADATA_PATH) metadata_path = utils.find_model_metadata(metadata_dir, patch_config.__name__.split('.')[-1]) metadata = utils.load_pkl(metadata_path) print 'Build model' model = patch_config.build_model(patch_size=(window_size, window_size, window_size)) all_layers = nn.layers.get_all_layers(model.l_out) num_params = nn.layers.count_params(model.l_out) print ' number of parameters: %d' % num_params print string.ljust(' layer output shapes:', 36), print string.ljust('#params:', 10), print 'output shape:' for layer in all_layers: name = string.ljust(layer.__class__.__name__, 32) num_param = sum([np.prod(p.get_value().shape) for p in layer.get_params()]) num_param = string.ljust(num_param.__str__(), 10) print ' %s %s %s' % (name, num_param, layer.output_shape) nn.layers.set_all_param_values(model.l_out, metadata['param_values']) return model
Example 47
def build_model(): metadata_dir = utils.get_dir_path('models', pathfinder.METADATA_PATH) metadata_path = utils.find_model_metadata(metadata_dir, patch_config.__name__.split('.')[-1]) metadata = utils.load_pkl(metadata_path) print 'Build model' model = patch_config.build_model(patch_size=(window_size, window_size, window_size)) all_layers = nn.layers.get_all_layers(model.l_out) num_params = nn.layers.count_params(model.l_out) print ' number of parameters: %d' % num_params print string.ljust(' layer output shapes:', 36), print string.ljust('#params:', 10), print 'output shape:' for layer in all_layers: name = string.ljust(layer.__class__.__name__, 32) num_param = sum([np.prod(p.get_value().shape) for p in layer.get_params()]) num_param = string.ljust(num_param.__str__(), 10) print ' %s %s %s' % (name, num_param, layer.output_shape) nn.layers.set_all_param_values(model.l_out, metadata['param_values']) return model
Example 48
def adjust_prediction(self, probability, image): crf = dcrf.DenseCRF(np.prod(probability.shape), 2) # crf = dcrf.DenseCRF(np.prod(probability.shape), 1) binary_prob = np.stack((1 - probability, probability), axis=0) unary = unary_from_softmax(binary_prob) # unary = unary_from_softmax(np.expand_dims(probability, axis=0)) crf.setUnaryEnergy(unary) # per dimension scale factors sdims = [self.sdims] * 3 smooth = create_pairwise_gaussian(sdims=sdims, shape=probability.shape) crf.addPairwiseEnergy(smooth, compat=2) if self.schan: # per channel scale factors schan = [self.schan] * 6 appearance = create_pairwise_bilateral(sdims=sdims, schan=schan, img=image, chdim=3) crf.addPairwiseEnergy(appearance, compat=2) result = crf.inference(self.iter) crf_prediction = np.argmax(result, axis=0).reshape(probability.shape).astype(np.float32) return crf_prediction
Example 49
def _sample_cond_single(rng, marginal_pmf, n_group, out, eps): """Single sample from conditional probab. (call :func:`self.sample`)""" n_sites = len(marginal_pmf[-1]) # Probability of the incomplete output. Empty output has unit probab. out_p = 1.0 # `n_out` sites of the output have been sampled. We will add # at most `n_group` sites to the output at a time. for n_out in range(0, n_sites, n_group): # Select marginal probability distribution on (at most) # `n_out + n_group` sites. p = marginal_pmf[min(n_sites, n_out + n_group)] # Obtain conditional probab. from joint `p` and marginal `out_p` p = p.get(tuple(out[:n_out]) + (slice(None),) * (len(p) - n_out)) p = project_pmf(mp.prune(p).to_array() / out_p, eps, eps) # Sample from conditional probab. for next `n_group` sites choice = rng.choice(p.size, p=p.flat) out[n_out:n_out + n_group] = np.unravel_index(choice, p.shape) # Update probability of the partial output out_p *= np.prod(p.flat[choice]) # Verify we have the correct partial output probability p = marginal_pmf[-1].get(tuple(out)).to_array() assert abs(p - out_p) <= eps
Example 50
def _rcanonicalize(self, to_site): """Left-canonicalizes all local tensors _ltens[:to_site] in place :param to_site: Index of the site up to which canonicalization is to be performed """ assert 0 <= to_site < len(self), 'to_site={!r}'.format(to_site) lcanon, rcanon = self._lt.canonical_form for site in range(lcanon, to_site): ltens = self._lt[site] q, r = qr(ltens.reshape((-1, ltens.shape[-1]))) # if ltens.shape[-1] > prod(ltens.phys_shape) --> trivial comp. # can be accounted by adapting rank here newtens = (q.reshape(ltens.shape[:-1] + (-1,)), matdot(r, self._lt[site + 1])) self._lt.update(slice(site, site + 2), newtens, canonicalization=('left', None))