Python numpy.prod() 使用实例

The following are code examples for showing how to use . They are extracted from open source Python projects. You can vote up the examples you like or vote down the exmaples you don’t like. You can also save this page to your account.

Example 1

def _read_ctr_ticks(
        task_handle, high_tick, low_tick, num_samps_per_chan, timeout,
        interleaved=FillMode.GROUP_BY_CHANNEL):
    samps_per_chan_read = ctypes.c_int()

    cfunc = lib_importer.windll.DAQmxReadCtrTicks
    if cfunc.argtypes is None:
        with cfunc.arglock:
            if cfunc.argtypes is None:
                cfunc.argtypes = [
                    lib_importer.task_handle, ctypes.c_int, ctypes.c_double,
                    ctypes.c_int,
                    wrapped_ndpointer(dtype=numpy.uint32, flags=('C', 'W')),
                    wrapped_ndpointer(dtype=numpy.uint32, flags=('C', 'W')),
                    ctypes.c_uint, ctypes.POINTER(ctypes.c_int),
                    ctypes.POINTER(c_bool32)]

    error_code = cfunc(
        task_handle, num_samps_per_chan, timeout, interleaved.value,
        high_tick, low_tick, numpy.prod(high_tick.shape),
        ctypes.byref(samps_per_chan_read), None)
    check_for_error(error_code)

    return samps_per_chan_read.value 

Example 2

def load_raw(filename, volsize):
    """ inspired by mhd_utils from github"""
    dim = 3
    element_channels = 1
    np_type = np.ubyte

    arr = list(volsize)
    volume = np.prod(arr[0:dim - 1])

    shape = (arr[dim - 1], volume, element_channels)
    with open(filename,'rb') as fid:
        data = np.fromfile(fid, count=np.prod(shape),dtype = np_type)
    data.shape = shape

    arr.reverse()
    data = data.reshape(arr)
    
    return data 

Example 3

def _read_analog_f_64(
        task_handle, read_array, num_samps_per_chan, timeout,
        fill_mode=FillMode.GROUP_BY_CHANNEL):
    samps_per_chan_read = ctypes.c_int()

    cfunc = lib_importer.windll.DAQmxReadAnalogF64
    if cfunc.argtypes is None:
        with cfunc.arglock:
            if cfunc.argtypes is None:
                cfunc.argtypes = [
                    lib_importer.task_handle, ctypes.c_int, ctypes.c_double,
                    c_bool32,
                    wrapped_ndpointer(dtype=numpy.float64, flags=('C', 'W')),
                    ctypes.c_uint, ctypes.POINTER(ctypes.c_int),
                    ctypes.POINTER(c_bool32)]

    error_code = cfunc(
        task_handle, num_samps_per_chan, timeout, fill_mode.value,
        read_array, numpy.prod(read_array.shape),
        ctypes.byref(samps_per_chan_read), None)
    check_for_error(error_code)

    return samps_per_chan_read.value 

Example 4

def _read_binary_i_16(
        task_handle, read_array, num_samps_per_chan, timeout,
        fill_mode=FillMode.GROUP_BY_CHANNEL):
    samps_per_chan_read = ctypes.c_int()

    cfunc = lib_importer.windll.DAQmxReadBinaryI16
    if cfunc.argtypes is None:
        with cfunc.arglock:
            if cfunc.argtypes is None:
                cfunc.argtypes = [
                    lib_importer.task_handle, ctypes.c_int, ctypes.c_double,
                    ctypes.c_int,
                    wrapped_ndpointer(dtype=numpy.int16, flags=('C', 'W')),
                    ctypes.c_uint, ctypes.POINTER(ctypes.c_int),
                    ctypes.POINTER(c_bool32)]

    error_code = cfunc(
        task_handle, num_samps_per_chan, timeout, fill_mode.value,
        read_array, numpy.prod(read_array.shape),
        ctypes.byref(samps_per_chan_read), None)
    check_for_error(error_code)

    return samps_per_chan_read.value 

Example 5

def _read_binary_u_16(
        task_handle, read_array, num_samps_per_chan, timeout,
        fill_mode=FillMode.GROUP_BY_CHANNEL):
    samps_per_chan_read = ctypes.c_int()

    cfunc = lib_importer.windll.DAQmxReadBinaryU16
    if cfunc.argtypes is None:
        with cfunc.arglock:
            if cfunc.argtypes is None:
                cfunc.argtypes = [
                    lib_importer.task_handle, ctypes.c_int, ctypes.c_double,
                    ctypes.c_int,
                    wrapped_ndpointer(dtype=numpy.uint16, flags=('C', 'W')),
                    ctypes.c_uint, ctypes.POINTER(ctypes.c_int),
                    ctypes.POINTER(c_bool32)]

    error_code = cfunc(
        task_handle, num_samps_per_chan, timeout, fill_mode.value,
        read_array, numpy.prod(read_array.shape),
        ctypes.byref(samps_per_chan_read), None)
    check_for_error(error_code)

    return samps_per_chan_read.value 

Example 6

def _read_binary_i_32(
        task_handle, read_array, num_samps_per_chan, timeout,
        fill_mode=FillMode.GROUP_BY_CHANNEL):
    samps_per_chan_read = ctypes.c_int()

    cfunc = lib_importer.windll.DAQmxReadBinaryI32
    if cfunc.argtypes is None:
        with cfunc.arglock:
            if cfunc.argtypes is None:
                cfunc.argtypes = [
                    lib_importer.task_handle, ctypes.c_int, ctypes.c_double,
                    ctypes.c_int,
                    wrapped_ndpointer(dtype=numpy.int32, flags=('C', 'W')),
                    ctypes.c_uint, ctypes.POINTER(ctypes.c_int),
                    ctypes.POINTER(c_bool32)]

    error_code = cfunc(
        task_handle, num_samps_per_chan, timeout, fill_mode.value,
        read_array, numpy.prod(read_array.shape),
        ctypes.byref(samps_per_chan_read), None)
    check_for_error(error_code)

    return samps_per_chan_read.value 

Example 7

def _read_binary_u_32(
        task_handle, read_array, num_samps_per_chan, timeout,
        fill_mode=FillMode.GROUP_BY_CHANNEL):
    samps_per_chan_read = ctypes.c_int()

    cfunc = lib_importer.windll.DAQmxReadBinaryU32
    if cfunc.argtypes is None:
        with cfunc.arglock:
            if cfunc.argtypes is None:
                cfunc.argtypes = [
                    lib_importer.task_handle, ctypes.c_int, ctypes.c_double,
                    ctypes.c_int,
                    wrapped_ndpointer(dtype=numpy.uint32, flags=('C', 'W')),
                    ctypes.c_uint, ctypes.POINTER(ctypes.c_int),
                    ctypes.POINTER(c_bool32)]

    error_code = cfunc(
        task_handle, num_samps_per_chan, timeout, fill_mode.value,
        read_array, numpy.prod(read_array.shape),
        ctypes.byref(samps_per_chan_read), None)
    check_for_error(error_code)

    return samps_per_chan_read.value 

Example 8

def _read_digital_u_16(
        task_handle, read_array, num_samps_per_chan, timeout,
        fill_mode=FillMode.GROUP_BY_CHANNEL):
    samps_per_chan_read = ctypes.c_int()

    cfunc = lib_importer.windll.DAQmxReadDigitalU16
    if cfunc.argtypes is None:
        with cfunc.arglock:
            if cfunc.argtypes is None:
                cfunc.argtypes = [
                    lib_importer.task_handle, ctypes.c_int, ctypes.c_double,
                    ctypes.c_int,
                    wrapped_ndpointer(dtype=numpy.uint16, flags=('C', 'W')),
                    ctypes.c_uint, ctypes.POINTER(ctypes.c_int),
                    ctypes.POINTER(c_bool32)]

    error_code = cfunc(
        task_handle, num_samps_per_chan, timeout, fill_mode.value,
        read_array, numpy.prod(read_array.shape),
        ctypes.byref(samps_per_chan_read), None)
    check_for_error(error_code)

    return samps_per_chan_read.value 

Example 9

def _read_digital_u_32(
        task_handle, read_array, num_samps_per_chan, timeout,
        fill_mode=FillMode.GROUP_BY_CHANNEL):
    samps_per_chan_read = ctypes.c_int()

    cfunc = lib_importer.windll.DAQmxReadDigitalU32
    if cfunc.argtypes is None:
        with cfunc.arglock:
            if cfunc.argtypes is None:
                cfunc.argtypes = [
                    lib_importer.task_handle, ctypes.c_int, ctypes.c_double,
                    ctypes.c_int,
                    wrapped_ndpointer(dtype=numpy.uint32, flags=('C', 'W')),
                    ctypes.c_uint, ctypes.POINTER(ctypes.c_int),
                    ctypes.POINTER(c_bool32)]

    error_code = cfunc(
        task_handle, num_samps_per_chan, timeout, fill_mode.value,
        read_array, numpy.prod(read_array.shape),
        ctypes.byref(samps_per_chan_read), None)
    check_for_error(error_code)

    return samps_per_chan_read.value 

Example 10

def _read_counter_f_64(task_handle, read_array, num_samps_per_chan, timeout):
    samps_per_chan_read = ctypes.c_int()

    cfunc = lib_importer.windll.DAQmxReadCounterF64
    if cfunc.argtypes is None:
        with cfunc.arglock:
            if cfunc.argtypes is None:
                cfunc.argtypes = [
                    lib_importer.task_handle, ctypes.c_int, ctypes.c_double,
                    wrapped_ndpointer(dtype=numpy.float64, flags=('C', 'W')),
                    ctypes.c_uint, ctypes.POINTER(ctypes.c_int),
                    ctypes.POINTER(c_bool32)]

    error_code = cfunc(
        task_handle, num_samps_per_chan, timeout,
        read_array, numpy.prod(read_array.shape),
        ctypes.byref(samps_per_chan_read), None)
    check_for_error(error_code)

    return samps_per_chan_read.value 

Example 11

def _read_counter_u_32(task_handle, read_array, num_samps_per_chan, timeout):
    samps_per_chan_read = ctypes.c_int()

    cfunc = lib_importer.windll.DAQmxReadCounterU32
    if cfunc.argtypes is None:
        with cfunc.arglock:
            if cfunc.argtypes is None:
                cfunc.argtypes = [
                    lib_importer.task_handle, ctypes.c_int, ctypes.c_double,
                    wrapped_ndpointer(dtype=numpy.uint32, flags=('C', 'W')),
                    ctypes.c_uint, ctypes.POINTER(ctypes.c_int),
                    ctypes.POINTER(c_bool32)]

    error_code = cfunc(
        task_handle, num_samps_per_chan, timeout,
        read_array, numpy.prod(read_array.shape),
        ctypes.byref(samps_per_chan_read), None)
    check_for_error(error_code)

    return samps_per_chan_read.value 

Example 12

def _read_counter_u_32_ex(
        task_handle, read_array, num_samps_per_chan, timeout,
        fill_mode=FillMode.GROUP_BY_CHANNEL):
    samps_per_chan_read = ctypes.c_int()

    cfunc = lib_importer.windll.DAQmxReadCounterU32Ex
    if cfunc.argtypes is None:
        with cfunc.arglock:
            if cfunc.argtypes is None:
                cfunc.argtypes = [
                    lib_importer.task_handle, ctypes.c_int, ctypes.c_double,
                    ctypes.c_int,
                    wrapped_ndpointer(dtype=numpy.uint32, flags=('C', 'W')),
                    ctypes.c_uint, ctypes.POINTER(ctypes.c_int),
                    ctypes.POINTER(c_bool32)]

    error_code = cfunc(
        task_handle, num_samps_per_chan, timeout, fill_mode.value,
        read_array, numpy.prod(read_array.shape),
        ctypes.byref(samps_per_chan_read), None)
    check_for_error(error_code)

    return samps_per_chan_read.value 

Example 13

def _read_ctr_freq(
        task_handle, freq, duty_cycle, num_samps_per_chan, timeout,
        interleaved=FillMode.GROUP_BY_CHANNEL):
    samps_per_chan_read = ctypes.c_int()

    cfunc = lib_importer.windll.DAQmxReadCtrFreq
    if cfunc.argtypes is None:
        with cfunc.arglock:
            if cfunc.argtypes is None:
                cfunc.argtypes = [
                    lib_importer.task_handle, ctypes.c_int, ctypes.c_double,
                    ctypes.c_int,
                    wrapped_ndpointer(dtype=numpy.float64, flags=('C', 'W')),
                    wrapped_ndpointer(dtype=numpy.float64, flags=('C', 'W')),
                    ctypes.c_uint, ctypes.POINTER(ctypes.c_int),
                    ctypes.POINTER(c_bool32)]

    error_code = cfunc(
        task_handle, num_samps_per_chan, timeout, interleaved.value,
        freq, duty_cycle, numpy.prod(freq.shape),
        ctypes.byref(samps_per_chan_read), None)
    check_for_error(error_code)

    return samps_per_chan_read.value 

Example 14

def _read_ctr_time(
        task_handle, high_time, low_time, num_samps_per_chan, timeout,
        interleaved=FillMode.GROUP_BY_CHANNEL):
    samps_per_chan_read = ctypes.c_int()

    cfunc = lib_importer.windll.DAQmxReadCtrTime
    if cfunc.argtypes is None:
        with cfunc.arglock:
            if cfunc.argtypes is None:
                cfunc.argtypes = [
                    lib_importer.task_handle, ctypes.c_int, ctypes.c_double,
                    ctypes.c_int,
                    wrapped_ndpointer(dtype=numpy.float64, flags=('C', 'W')),
                    wrapped_ndpointer(dtype=numpy.float64, flags=('C', 'W')),
                    ctypes.c_uint, ctypes.POINTER(ctypes.c_int),
                    ctypes.POINTER(c_bool32)]

    error_code = cfunc(
        task_handle, num_samps_per_chan, timeout, interleaved.value,
        high_time, low_time, numpy.prod(high_time.shape),
        ctypes.byref(samps_per_chan_read), None)
    check_for_error(error_code)

    return samps_per_chan_read.value 

Example 15

def _pooling_layer(
      self, layer_name, inputs, size, stride, padding='SAME'):
    """Pooling layer operation constructor.

    Args:
      layer_name: layer name.
      inputs: input tensor
      size: kernel size.
      stride: stride
      padding: 'SAME' or 'VALID'. See tensorflow doc for detailed description.
    Returns:
      A pooling layer operation.
    """

    with tf.variable_scope(layer_name) as scope:
      out =  tf.nn.max_pool(inputs, 
                            ksize=[1, size, size, 1], 
                            strides=[1, stride, stride, 1],
                            padding=padding)
      activation_size = np.prod(out.get_shape().as_list()[1:])
      self.activation_counter.append((layer_name, activation_size))
      return out 

Example 16

def conv2d(x, num_filters, name, filter_size=(3, 3), stride=(1, 1), pad="SAME", dtype=tf.float32, collections=None):
    with tf.variable_scope(name):
        stride_shape = [1, stride[0], stride[1], 1]
        filter_shape = [filter_size[0], filter_size[1], int(x.get_shape()[3]), num_filters]

        # there are "num input feature maps * filter height * filter width"
        # inputs to each hidden unit
        fan_in = np.prod(filter_shape[:3])
        # each unit in the lower layer receives a gradient from:
        # "num output feature maps * filter height * filter width" /
        #   pooling size
        fan_out = np.prod(filter_shape[:2]) * num_filters
        # initialize weights with random weights
        w_bound = np.sqrt(6. / (fan_in + fan_out))

        w = tf.get_variable("W", filter_shape, dtype, tf.random_uniform_initializer(-w_bound, w_bound),
                            collections=collections)
        b = tf.get_variable("b", [1, 1, 1, num_filters], initializer=tf.constant_initializer(0.0),
                            collections=collections)
        return tf.nn.conv2d(x, w, stride_shape, pad) + b 

Example 17

def conv2d(x, num_filters, name, filter_size=(3, 3), stride=(1, 1), pad="SAME", dtype=tf.float32, collections=None):
    with tf.variable_scope(name):
        stride_shape = [1, stride[0], stride[1], 1]
        filter_shape = [filter_size[0], filter_size[1], int(x.get_shape()[3]), num_filters]

        # there are "num input feature maps * filter height * filter width"
        # inputs to each hidden unit
        fan_in = np.prod(filter_shape[:3])
        # each unit in the lower layer receives a gradient from:
        # "num output feature maps * filter height * filter width" /
        #   pooling size
        fan_out = np.prod(filter_shape[:2]) * num_filters
        # initialize weights with random weights
        w_bound = np.sqrt(6. / (fan_in + fan_out))

        w = tf.get_variable("W", filter_shape, dtype, tf.random_uniform_initializer(-w_bound, w_bound),
                            collections=collections)
        b = tf.get_variable("b", [1, 1, 1, num_filters], initializer=tf.constant_initializer(0.0),
                            collections=collections)
        return tf.nn.conv2d(x, w, stride_shape, pad) + b 

Example 18

def discriminator_labeler(image, output_dim, config, reuse=None):
    batch_size=tf.shape(image)[0]
    with tf.variable_scope("disc_labeler",reuse=reuse) as vs:
        dl_bn1 = batch_norm(name='dl_bn1')
        dl_bn2 = batch_norm(name='dl_bn2')
        dl_bn3 = batch_norm(name='dl_bn3')

        h0 = lrelu(conv2d(image, config.df_dim, name='dl_h0_conv'))#16,32,32,64
        h1 = lrelu(dl_bn1(conv2d(h0, config.df_dim*2, name='dl_h1_conv')))#16,16,16,128
        h2 = lrelu(dl_bn2(conv2d(h1, config.df_dim*4, name='dl_h2_conv')))#16,16,16,248
        h3 = lrelu(dl_bn3(conv2d(h2, config.df_dim*8, name='dl_h3_conv')))
        dim3=np.prod(h3.get_shape().as_list()[1:])
        h3_flat=tf.reshape(h3, [-1,dim3])
        D_labels_logits = linear(h3_flat, output_dim, 'dl_h3_Label')
        D_labels = tf.nn.sigmoid(D_labels_logits)
        variables = tf.contrib.framework.get_variables(vs)
    return D_labels, D_labels_logits, variables 

Example 19

def discriminator_gen_labeler(image, output_dim, config, reuse=None):
    batch_size=tf.shape(image)[0]
    with tf.variable_scope("disc_gen_labeler",reuse=reuse) as vs:
        dl_bn1 = batch_norm(name='dl_bn1')
        dl_bn2 = batch_norm(name='dl_bn2')
        dl_bn3 = batch_norm(name='dl_bn3')

        h0 = lrelu(conv2d(image, config.df_dim, name='dgl_h0_conv'))#16,32,32,64
        h1 = lrelu(dl_bn1(conv2d(h0, config.df_dim*2, name='dgl_h1_conv')))#16,16,16,128
        h2 = lrelu(dl_bn2(conv2d(h1, config.df_dim*4, name='dgl_h2_conv')))#16,16,16,248
        h3 = lrelu(dl_bn3(conv2d(h2, config.df_dim*8, name='dgl_h3_conv')))
        dim3=np.prod(h3.get_shape().as_list()[1:])
        h3_flat=tf.reshape(h3, [-1,dim3])
        D_labels_logits = linear(h3_flat, output_dim, 'dgl_h3_Label')
        D_labels = tf.nn.sigmoid(D_labels_logits)
        variables = tf.contrib.framework.get_variables(vs)
    return D_labels, D_labels_logits,variables 

Example 20

def discriminator_on_z(image, config, reuse=None):
    batch_size=tf.shape(image)[0]
    with tf.variable_scope("disc_z_labeler",reuse=reuse) as vs:
        dl_bn1 = batch_norm(name='dl_bn1')
        dl_bn2 = batch_norm(name='dl_bn2')
        dl_bn3 = batch_norm(name='dl_bn3')

        h0 = lrelu(conv2d(image, config.df_dim, name='dzl_h0_conv'))#16,32,32,64
        h1 = lrelu(dl_bn1(conv2d(h0, config.df_dim*2, name='dzl_h1_conv')))#16,16,16,128
        h2 = lrelu(dl_bn2(conv2d(h1, config.df_dim*4, name='dzl_h2_conv')))#16,16,16,248
        h3 = lrelu(dl_bn3(conv2d(h2, config.df_dim*8, name='dzl_h3_conv')))
        dim3=np.prod(h3.get_shape().as_list()[1:])
        h3_flat=tf.reshape(h3, [-1,dim3])
        D_labels_logits = linear(h3_flat, config.z_dim, 'dzl_h3_Label')
        D_labels = tf.nn.tanh(D_labels_logits)
        variables = tf.contrib.framework.get_variables(vs)
    return D_labels,variables 

Example 21

def decompose_size(size):
    """Computes the number of input and output units for a weight shape.
    
    Parameters
    ----------
    size 
        Integer shape tuple.
    
    Returns
    -------
    A tuple of scalars, `(fan_in, fan_out)`.
    """
    if len(size) == 2:
        fan_in = size[0]
        fan_out = size[1]

    elif len(size) == 4 or len(size) == 5:
        respective_field_size = np.prod(size[2:])
        fan_in = size[1] * respective_field_size
        fan_out = size[0] * respective_field_size

    else:
        fan_in = fan_out = int(np.sqrt(np.prod(size)))

    return fan_in, fan_out 

Example 22

def _random_overlay(self, static_hidden=False):
        """Construct random max pool locations."""

        s = self.shapes[2]

        if static_hidden:
            args = np.random.randint(s[2], size=np.prod(s) / s[2] / s[4])
            overlay = np.zeros(np.prod(s) / s[4], np.bool)
            overlay[args + np.arange(len(args)) * s[2]] = True
            overlay = overlay.reshape([s[0], s[1], s[3], s[2]])
            overlay = np.rollaxis(overlay, -1, 2)
            return arrays.extend(overlay, s[4])
        else:
            args = np.random.randint(s[2], size=np.prod(s) / s[2])
            overlay = np.zeros(np.prod(s), np.bool)
            overlay[args + np.arange(len(args)) * s[2]] = True
            overlay = overlay.reshape([s[0], s[1], s[3], s[4], s[2]])
            return np.rollaxis(overlay, -1, 2) 

Example 23

def finalization(self):
        '''
        Add sparse matrix multiplication on GPU
        Note: use "python-cuda-cffi" generated interface to access cusparse

        '''
        self.gpu_flag = 0

        self.CSR = cuda_cffi.cusparse.CSR.to_CSR(self.st['p'].astype(dtype), )
        self.CSRH = cuda_cffi.cusparse.CSR.to_CSR(self.st['p'].getH().tocsr().astype(dtype), )
        
        self.scikit_plan = cu_fft.Plan(self.st['Kd'], dtype, dtype)
#         self.pHp = cuda_cffi.cusparse.CSR.to_CSR(
#             self.st['pHp'].astype(dtype))
        
        self.gpu_flag = 1
        self.sn_gpu = pycuda.gpuarray.to_gpu(self.sn.astype(dtype))
#         tmp_array = skcuda.misc.ones((numpy.prod(self.st['Kd']),1),dtype=dtype)
#         tmp = cuda_cffi.cusolver.csrlsvqr(self.CSR, tmp_array) 

Example 24

def plan(self, om, Nd, Kd, Jd):
 
        
        self.debug = 0  # debug

        n_shift = tuple(0*x for x in Nd)
        self.st = plan(om, Nd, Kd, Jd)
        
        self.Nd = self.st['Nd']  # backup
        self.sn = self.st['sn']  # backup
        self.ndims=len(self.st['Nd']) # dimension
        self.linear_phase(n_shift)  
        # calculate the linear phase thing
        self.st['pH'] = self.st['p'].getH().tocsr()
        self.st['pHp']=  self.st['pH'].dot(self.st['p'])
        self.NdCPUorder, self.KdCPUorder, self.nelem =     preindex_copy(self.st['Nd'], self.st['Kd'])
#         self.st['W'] = self.pipe_density()
        self.shape = (self.st['M'], numpy.prod(self.st['Nd']))
        
#         print('untrimmed',self.st['pHp'].nnz)
#         self.truncate_selfadjoint(1e-1)
#         print('trimmed', self.st['pHp'].nnz) 

Example 25

def __call__(self, input_layer, output_size, scope=None, in_dim=None, stddev=0.02, bias_start=0.0):
        shape = input_layer.shape
        input_ = input_layer.tensor
        try:
            if len(shape) == 4:
                input_ = tf.reshape(input_, tf.pack([tf.shape(input_)[0], np.prod(shape[1:])]))
                input_.set_shape([None, np.prod(shape[1:])])
                shape = input_.get_shape().as_list()

            with tf.variable_scope(scope or "Linear"):
                matrix = self.variable("Matrix", [in_dim or shape[1], output_size], dt=tf.float32,
                                       init=tf.random_normal_initializer(stddev=stddev))
                bias = self.variable("bias", [output_size], init=tf.constant_initializer(bias_start))
                return input_layer.with_tensor(tf.matmul(input_, matrix) + bias, parameters=self.vars)
        except Exception:
            import ipdb; ipdb.set_trace() 

Example 26

def _meshgrid(self, height, width):
    with tf.variable_scope('_meshgrid'):
      # This should be equivalent to:
      #  x_t, y_t = np.meshgrid(np.linspace(-1, 1, width),
      #                         np.linspace(-1, 1, height))
      #  ones = np.ones(np.prod(x_t.shape))
      #  grid = np.vstack([x_t.flatten(), y_t.flatten(), ones])
      x_t = tf.matmul(tf.ones(shape=tf.pack([height, 1])),
                        tf.transpose(tf.expand_dims(tf.linspace(-1.0, 1.0, width), 1), [1, 0]))
      y_t = tf.matmul(tf.expand_dims(tf.linspace(-1.0, 1.0, height), 1),
                        tf.ones(shape=tf.pack([1, width])))

      x_t_flat = tf.reshape(x_t, (1, -1))
      y_t_flat = tf.reshape(y_t, (1, -1))

      ones = tf.ones_like(x_t_flat)
      grid = tf.concat(0, [x_t_flat, y_t_flat, ones])
      return grid 

Example 27

def build_model():
    metadata_dir = utils.get_dir_path('models', pathfinder.METADATA_PATH)
    metadata_path = utils.find_model_metadata(metadata_dir, patch_class_config.__name__.split('.')[-1])
    metadata = utils.load_pkl(metadata_path)

    print 'Build model'
    model = patch_class_config.build_model()
    all_layers = nn.layers.get_all_layers(model.l_out)
    num_params = nn.layers.count_params(model.l_out)
    print '  number of parameters: %d' % num_params
    print string.ljust('  layer output shapes:', 36),
    print string.ljust('#params:', 10),
    print 'output shape:'
    for layer in all_layers:
        name = string.ljust(layer.__class__.__name__, 32)
        num_param = sum([np.prod(p.get_value().shape) for p in layer.get_params()])
        num_param = string.ljust(num_param.__str__(), 10)
        print '    %s %s %s' % (name, num_param, layer.output_shape)

    nn.layers.set_all_param_values(model.l_out, metadata['param_values'])
    return model 

Example 28

def build_model():
    metadata_dir = utils.get_dir_path('models', pathfinder.METADATA_PATH)
    metadata_path = utils.find_model_metadata(metadata_dir, patch_class_config.__name__.split('.')[-1])
    metadata = utils.load_pkl(metadata_path)

    print 'Build model'
    model = patch_class_config.build_model()
    all_layers = nn.layers.get_all_layers(model.l_out)
    num_params = nn.layers.count_params(model.l_out)
    print '  number of parameters: %d' % num_params
    print string.ljust('  layer output shapes:', 36),
    print string.ljust('#params:', 10),
    print 'output shape:'
    for layer in all_layers:
        name = string.ljust(layer.__class__.__name__, 32)
        num_param = sum([np.prod(p.get_value().shape) for p in layer.get_params()])
        num_param = string.ljust(num_param.__str__(), 10)
        print '    %s %s %s' % (name, num_param, layer.output_shape)

    nn.layers.set_all_param_values(model.l_out, metadata['param_values'])
    return model 

Example 29

def build_model():
    metadata_dir = utils.get_dir_path('models', pathfinder.METADATA_PATH)
    metadata_path = utils.find_model_metadata(metadata_dir, patch_class_config.__name__.split('.')[-1])
    metadata = utils.load_pkl(metadata_path)

    print 'Build model'
    model = patch_class_config.build_model()
    all_layers = nn.layers.get_all_layers(model.l_out)
    num_params = nn.layers.count_params(model.l_out)
    print '  number of parameters: %d' % num_params
    print string.ljust('  layer output shapes:', 36),
    print string.ljust('#params:', 10),
    print 'output shape:'
    for layer in all_layers:
        name = string.ljust(layer.__class__.__name__, 32)
        num_param = sum([np.prod(p.get_value().shape) for p in layer.get_params()])
        num_param = string.ljust(num_param.__str__(), 10)
        print '    %s %s %s' % (name, num_param, layer.output_shape)

    nn.layers.set_all_param_values(model.l_out, metadata['param_values'])
    return model 

Example 30

def build_model():
    metadata_dir = utils.get_dir_path('models', pathfinder.METADATA_PATH)
    metadata_path = utils.find_model_metadata(metadata_dir, patch_class_config.__name__.split('.')[-1])
    metadata = utils.load_pkl(metadata_path)

    print 'Build model'
    model = patch_class_config.build_model()
    all_layers = nn.layers.get_all_layers(model.l_out)
    num_params = nn.layers.count_params(model.l_out)
    print '  number of parameters: %d' % num_params
    print string.ljust('  layer output shapes:', 36),
    print string.ljust('#params:', 10),
    print 'output shape:'
    for layer in all_layers:
        name = string.ljust(layer.__class__.__name__, 32)
        num_param = sum([np.prod(p.get_value().shape) for p in layer.get_params()])
        num_param = string.ljust(num_param.__str__(), 10)
        print '    %s %s %s' % (name, num_param, layer.output_shape)

    nn.layers.set_all_param_values(model.l_out, metadata['param_values'])
    return model 

Example 31

def build_model():
    metadata_dir = utils.get_dir_path('models', pathfinder.METADATA_PATH)
    metadata_path = utils.find_model_metadata(metadata_dir, patch_class_config.__name__.split('.')[-1])
    metadata = utils.load_pkl(metadata_path)

    print 'Build model'
    model = patch_class_config.build_model()
    all_layers = nn.layers.get_all_layers(model.l_out)
    num_params = nn.layers.count_params(model.l_out)
    print '  number of parameters: %d' % num_params
    print string.ljust('  layer output shapes:', 36),
    print string.ljust('#params:', 10),
    print 'output shape:'
    for layer in all_layers:
        name = string.ljust(layer.__class__.__name__, 32)
        num_param = sum([np.prod(p.get_value().shape) for p in layer.get_params()])
        num_param = string.ljust(num_param.__str__(), 10)
        print '    %s %s %s' % (name, num_param, layer.output_shape)

    nn.layers.set_all_param_values(model.l_out, metadata['param_values'])
    return model 

Example 32

def build_model():
    metadata_dir = utils.get_dir_path('models', pathfinder.METADATA_PATH)
    metadata_path = utils.find_model_metadata(metadata_dir, patch_class_config.__name__.split('.')[-1])
    metadata = utils.load_pkl(metadata_path)

    print 'Build model'
    model = patch_class_config.build_model()
    all_layers = nn.layers.get_all_layers(model.l_out)
    num_params = nn.layers.count_params(model.l_out)
    print '  number of parameters: %d' % num_params
    print string.ljust('  layer output shapes:', 36),
    print string.ljust('#params:', 10),
    print 'output shape:'
    for layer in all_layers:
        name = string.ljust(layer.__class__.__name__, 32)
        num_param = sum([np.prod(p.get_value().shape) for p in layer.get_params()])
        num_param = string.ljust(num_param.__str__(), 10)
        print '    %s %s %s' % (name, num_param, layer.output_shape)

    nn.layers.set_all_param_values(model.l_out, metadata['param_values'])
    return model 

Example 33

def build_model():
    metadata_dir = utils.get_dir_path('models', pathfinder.METADATA_PATH)
    metadata_path = utils.find_model_metadata(metadata_dir, patch_class_config.__name__.split('.')[-1])
    metadata = utils.load_pkl(metadata_path)

    print 'Build model'
    model = patch_class_config.build_model()
    all_layers = nn.layers.get_all_layers(model.l_out)
    num_params = nn.layers.count_params(model.l_out)
    print '  number of parameters: %d' % num_params
    print string.ljust('  layer output shapes:', 36),
    print string.ljust('#params:', 10),
    print 'output shape:'
    for layer in all_layers:
        name = string.ljust(layer.__class__.__name__, 32)
        num_param = sum([np.prod(p.get_value().shape) for p in layer.get_params()])
        num_param = string.ljust(num_param.__str__(), 10)
        print '    %s %s %s' % (name, num_param, layer.output_shape)

    nn.layers.set_all_param_values(model.l_out, metadata['param_values'])
    return model 

Example 34

def build_model():
    metadata_dir = utils.get_dir_path('models', pathfinder.METADATA_PATH)
    metadata_path = utils.find_model_metadata(metadata_dir, patch_class_config.__name__.split('.')[-1])
    metadata = utils.load_pkl(metadata_path)

    print 'Build model'
    model = patch_class_config.build_model()
    all_layers = nn.layers.get_all_layers(model.l_out)
    num_params = nn.layers.count_params(model.l_out)
    print '  number of parameters: %d' % num_params
    print string.ljust('  layer output shapes:', 36),
    print string.ljust('#params:', 10),
    print 'output shape:'
    for layer in all_layers:
        name = string.ljust(layer.__class__.__name__, 32)
        num_param = sum([np.prod(p.get_value().shape) for p in layer.get_params()])
        num_param = string.ljust(num_param.__str__(), 10)
        print '    %s %s %s' % (name, num_param, layer.output_shape)

    nn.layers.set_all_param_values(model.l_out, metadata['param_values'])
    return model 

Example 35

def build_model():
    metadata_dir = utils.get_dir_path('models', pathfinder.METADATA_PATH)
    metadata_path = utils.find_model_metadata(metadata_dir, patch_class_config.__name__.split('.')[-1])
    metadata = utils.load_pkl(metadata_path)

    print 'Build model'
    model = patch_class_config.build_model()
    all_layers = nn.layers.get_all_layers(model.l_out)
    num_params = nn.layers.count_params(model.l_out)
    print '  number of parameters: %d' % num_params
    print string.ljust('  layer output shapes:', 36),
    print string.ljust('#params:', 10),
    print 'output shape:'
    for layer in all_layers:
        name = string.ljust(layer.__class__.__name__, 32)
        num_param = sum([np.prod(p.get_value().shape) for p in layer.get_params()])
        num_param = string.ljust(num_param.__str__(), 10)
        print '    %s %s %s' % (name, num_param, layer.output_shape)

    nn.layers.set_all_param_values(model.l_out, metadata['param_values'])
    return model 

Example 36

def build_model():
    metadata_dir = utils.get_dir_path('models', pathfinder.METADATA_PATH)
    metadata_path = utils.find_model_metadata(metadata_dir, patch_class_config.__name__.split('.')[-1])
    metadata = utils.load_pkl(metadata_path)

    print 'Build model'
    model = patch_class_config.build_model()
    all_layers = nn.layers.get_all_layers(model.l_out)
    num_params = nn.layers.count_params(model.l_out)
    print '  number of parameters: %d' % num_params
    print string.ljust('  layer output shapes:', 36),
    print string.ljust('#params:', 10),
    print 'output shape:'
    for layer in all_layers:
        name = string.ljust(layer.__class__.__name__, 32)
        num_param = sum([np.prod(p.get_value().shape) for p in layer.get_params()])
        num_param = string.ljust(num_param.__str__(), 10)
        print '    %s %s %s' % (name, num_param, layer.output_shape)

    nn.layers.set_all_param_values(model.l_out, metadata['param_values'])
    return model 

Example 37

def build_model():
    metadata_dir = utils.get_dir_path('models', pathfinder.METADATA_PATH)
    metadata_path = utils.find_model_metadata(metadata_dir, patch_config.__name__.split('.')[-1])
    metadata = utils.load_pkl(metadata_path)

    print 'Build model'
    model = patch_config.build_model(patch_size=(window_size, window_size, window_size))
    all_layers = nn.layers.get_all_layers(model.l_out)
    num_params = nn.layers.count_params(model.l_out)
    print '  number of parameters: %d' % num_params
    print string.ljust('  layer output shapes:', 36),
    print string.ljust('#params:', 10),
    print 'output shape:'
    for layer in all_layers:
        name = string.ljust(layer.__class__.__name__, 32)
        num_param = sum([np.prod(p.get_value().shape) for p in layer.get_params()])
        num_param = string.ljust(num_param.__str__(), 10)
        print '    %s %s %s' % (name, num_param, layer.output_shape)

    nn.layers.set_all_param_values(model.l_out, metadata['param_values'])
    return model 

Example 38

def build_model():
    metadata_dir = utils.get_dir_path('models', pathfinder.METADATA_PATH)
    metadata_path = utils.find_model_metadata(metadata_dir, patch_config.__name__.split('.')[-1])
    metadata = utils.load_pkl(metadata_path)

    print 'Build model'
    model = patch_config.build_model(patch_size=(window_size, window_size, window_size))
    all_layers = nn.layers.get_all_layers(model.l_out)
    num_params = nn.layers.count_params(model.l_out)
    print '  number of parameters: %d' % num_params
    print string.ljust('  layer output shapes:', 36),
    print string.ljust('#params:', 10),
    print 'output shape:'
    for layer in all_layers:
        name = string.ljust(layer.__class__.__name__, 32)
        num_param = sum([np.prod(p.get_value().shape) for p in layer.get_params()])
        num_param = string.ljust(num_param.__str__(), 10)
        print '    %s %s %s' % (name, num_param, layer.output_shape)

    nn.layers.set_all_param_values(model.l_out, metadata['param_values'])
    return model 

Example 39

def build_model():
    print 'Build model'
    model = patch_config.build_model(patch_size=(window_size, window_size, window_size))
    all_layers = nn.layers.get_all_layers(model.l_out)
    num_params = nn.layers.count_params(model.l_out)
    print '  number of parameters: %d' % num_params
    print string.ljust('  layer output shapes:', 36),
    print string.ljust('#params:', 10),
    print 'output shape:'
    for layer in all_layers:
        name = string.ljust(layer.__class__.__name__, 32)
        num_param = sum([np.prod(p.get_value().shape) for p in layer.get_params()])
        num_param = string.ljust(num_param.__str__(), 10)
        print '    %s %s %s' % (name, num_param, layer.output_shape)

    return model 

Example 40

def build_model():
    metadata_dir = utils.get_dir_path('models', pathfinder.METADATA_PATH)
    metadata_path = utils.find_model_metadata(metadata_dir, patch_config.__name__.split('.')[-1])
    metadata = utils.load_pkl(metadata_path)

    print 'Build model'
    model = patch_config.build_model(patch_size=(window_size, window_size, window_size))
    all_layers = nn.layers.get_all_layers(model.l_out)
    num_params = nn.layers.count_params(model.l_out)
    print '  number of parameters: %d' % num_params
    print string.ljust('  layer output shapes:', 36),
    print string.ljust('#params:', 10),
    print 'output shape:'
    for layer in all_layers:
        name = string.ljust(layer.__class__.__name__, 32)
        num_param = sum([np.prod(p.get_value().shape) for p in layer.get_params()])
        num_param = string.ljust(num_param.__str__(), 10)
        print '    %s %s %s' % (name, num_param, layer.output_shape)

    nn.layers.set_all_param_values(model.l_out, metadata['param_values'])
    return model 

Example 41

def build_model():
    metadata_dir = utils.get_dir_path('models', pathfinder.METADATA_PATH)
    metadata_path = utils.find_model_metadata(metadata_dir, patch_config.__name__.split('.')[-1])
    metadata = utils.load_pkl(metadata_path)

    print 'Build model'
    model = patch_config.build_model(patch_size=(window_size, window_size, window_size))
    all_layers = nn.layers.get_all_layers(model.l_out)
    num_params = nn.layers.count_params(model.l_out)
    print '  number of parameters: %d' % num_params
    print string.ljust('  layer output shapes:', 36),
    print string.ljust('#params:', 10),
    print 'output shape:'
    for layer in all_layers:
        name = string.ljust(layer.__class__.__name__, 32)
        num_param = sum([np.prod(p.get_value().shape) for p in layer.get_params()])
        num_param = string.ljust(num_param.__str__(), 10)
        print '    %s %s %s' % (name, num_param, layer.output_shape)

    nn.layers.set_all_param_values(model.l_out, metadata['param_values'])
    return model 

Example 42

def build_model():
    metadata_dir = utils.get_dir_path('models', pathfinder.METADATA_PATH)
    metadata_path = utils.find_model_metadata(metadata_dir, patch_config.__name__.split('.')[-1])
    metadata = utils.load_pkl(metadata_path)

    print 'Build model'
    model = patch_config.build_model(patch_size=(window_size, window_size, window_size))
    all_layers = nn.layers.get_all_layers(model.l_out)
    num_params = nn.layers.count_params(model.l_out)
    print '  number of parameters: %d' % num_params
    print string.ljust('  layer output shapes:', 36),
    print string.ljust('#params:', 10),
    print 'output shape:'
    for layer in all_layers:
        name = string.ljust(layer.__class__.__name__, 32)
        num_param = sum([np.prod(p.get_value().shape) for p in layer.get_params()])
        num_param = string.ljust(num_param.__str__(), 10)
        print '    %s %s %s' % (name, num_param, layer.output_shape)

    nn.layers.set_all_param_values(model.l_out, metadata['param_values'])
    return model 

Example 43

def build_model():
    metadata_dir = utils.get_dir_path('models', pathfinder.METADATA_PATH)
    metadata_path = utils.find_model_metadata(metadata_dir, patch_config.__name__.split('.')[-1])
    metadata = utils.load_pkl(metadata_path)

    print 'Build model'
    model = patch_config.build_model(patch_size=(window_size, window_size, window_size))
    all_layers = nn.layers.get_all_layers(model.l_out)
    num_params = nn.layers.count_params(model.l_out)
    print '  number of parameters: %d' % num_params
    print string.ljust('  layer output shapes:', 36),
    print string.ljust('#params:', 10),
    print 'output shape:'
    for layer in all_layers:
        name = string.ljust(layer.__class__.__name__, 32)
        num_param = sum([np.prod(p.get_value().shape) for p in layer.get_params()])
        num_param = string.ljust(num_param.__str__(), 10)
        print '    %s %s %s' % (name, num_param, layer.output_shape)

    nn.layers.set_all_param_values(model.l_out, metadata['param_values'])
    return model 

Example 44

def build_model():
    metadata_dir = utils.get_dir_path('models', pathfinder.METADATA_PATH)
    metadata_path = utils.find_model_metadata(metadata_dir, patch_config.__name__.split('.')[-1])
    metadata = utils.load_pkl(metadata_path)

    print 'Build model'
    model = patch_config.build_model()
    all_layers = nn.layers.get_all_layers(model.l_out)
    num_params = nn.layers.count_params(model.l_out)
    print '  number of parameters: %d' % num_params
    print string.ljust('  layer output shapes:', 36),
    print string.ljust('#params:', 10),
    print 'output shape:'
    for layer in all_layers:
        name = string.ljust(layer.__class__.__name__, 32)
        num_param = sum([np.prod(p.get_value().shape) for p in layer.get_params()])
        num_param = string.ljust(num_param.__str__(), 10)
        print '    %s %s %s' % (name, num_param, layer.output_shape)

    nn.layers.set_all_param_values(model.l_out, metadata['param_values'])
    return model 

Example 45

def build_model():
    metadata_dir = utils.get_dir_path('models', pathfinder.METADATA_PATH)
    metadata_path = utils.find_model_metadata(metadata_dir, patch_config.__name__.split('.')[-1])
    metadata = utils.load_pkl(metadata_path)

    print 'Build model'
    model = patch_config.build_model(patch_size=(window_size, window_size, window_size))
    all_layers = nn.layers.get_all_layers(model.l_out)
    num_params = nn.layers.count_params(model.l_out)
    print '  number of parameters: %d' % num_params
    print string.ljust('  layer output shapes:', 36),
    print string.ljust('#params:', 10),
    print 'output shape:'
    for layer in all_layers:
        name = string.ljust(layer.__class__.__name__, 32)
        num_param = sum([np.prod(p.get_value().shape) for p in layer.get_params()])
        num_param = string.ljust(num_param.__str__(), 10)
        print '    %s %s %s' % (name, num_param, layer.output_shape)

    nn.layers.set_all_param_values(model.l_out, metadata['param_values'])
    return model 

Example 46

def build_model():
    metadata_dir = utils.get_dir_path('models', pathfinder.METADATA_PATH)
    metadata_path = utils.find_model_metadata(metadata_dir, patch_config.__name__.split('.')[-1])
    metadata = utils.load_pkl(metadata_path)

    print 'Build model'
    model = patch_config.build_model(patch_size=(window_size, window_size, window_size))
    all_layers = nn.layers.get_all_layers(model.l_out)
    num_params = nn.layers.count_params(model.l_out)
    print '  number of parameters: %d' % num_params
    print string.ljust('  layer output shapes:', 36),
    print string.ljust('#params:', 10),
    print 'output shape:'
    for layer in all_layers:
        name = string.ljust(layer.__class__.__name__, 32)
        num_param = sum([np.prod(p.get_value().shape) for p in layer.get_params()])
        num_param = string.ljust(num_param.__str__(), 10)
        print '    %s %s %s' % (name, num_param, layer.output_shape)

    nn.layers.set_all_param_values(model.l_out, metadata['param_values'])
    return model 

Example 47

def build_model():
    metadata_dir = utils.get_dir_path('models', pathfinder.METADATA_PATH)
    metadata_path = utils.find_model_metadata(metadata_dir, patch_config.__name__.split('.')[-1])
    metadata = utils.load_pkl(metadata_path)

    print 'Build model'
    model = patch_config.build_model(patch_size=(window_size, window_size, window_size))
    all_layers = nn.layers.get_all_layers(model.l_out)
    num_params = nn.layers.count_params(model.l_out)
    print '  number of parameters: %d' % num_params
    print string.ljust('  layer output shapes:', 36),
    print string.ljust('#params:', 10),
    print 'output shape:'
    for layer in all_layers:
        name = string.ljust(layer.__class__.__name__, 32)
        num_param = sum([np.prod(p.get_value().shape) for p in layer.get_params()])
        num_param = string.ljust(num_param.__str__(), 10)
        print '    %s %s %s' % (name, num_param, layer.output_shape)

    nn.layers.set_all_param_values(model.l_out, metadata['param_values'])
    return model 

Example 48

def adjust_prediction(self, probability, image):
        crf = dcrf.DenseCRF(np.prod(probability.shape), 2)
        # crf = dcrf.DenseCRF(np.prod(probability.shape), 1)

        binary_prob = np.stack((1 - probability, probability), axis=0)
        unary = unary_from_softmax(binary_prob)
        # unary = unary_from_softmax(np.expand_dims(probability, axis=0))
        crf.setUnaryEnergy(unary)

        # per dimension scale factors
        sdims = [self.sdims] * 3
        smooth = create_pairwise_gaussian(sdims=sdims, shape=probability.shape)
        crf.addPairwiseEnergy(smooth, compat=2)

        if self.schan:
            # per channel scale factors
            schan = [self.schan] * 6
            appearance = create_pairwise_bilateral(sdims=sdims, schan=schan, img=image, chdim=3)
            crf.addPairwiseEnergy(appearance, compat=2)

        result = crf.inference(self.iter)
        crf_prediction = np.argmax(result, axis=0).reshape(probability.shape).astype(np.float32)

        return crf_prediction 

Example 49

def _sample_cond_single(rng, marginal_pmf, n_group, out, eps):
        """Single sample from conditional probab. (call :func:`self.sample`)"""
        n_sites = len(marginal_pmf[-1])
        # Probability of the incomplete output. Empty output has unit probab.
        out_p = 1.0
        # `n_out` sites of the output have been sampled. We will add
        # at most `n_group` sites to the output at a time.
        for n_out in range(0, n_sites, n_group):
            # Select marginal probability distribution on (at most)
            # `n_out + n_group` sites.
            p = marginal_pmf[min(n_sites, n_out + n_group)]
            # Obtain conditional probab. from joint `p` and marginal `out_p`
            p = p.get(tuple(out[:n_out]) + (slice(None),) * (len(p) - n_out))
            p = project_pmf(mp.prune(p).to_array() / out_p, eps, eps)
            # Sample from conditional probab. for next `n_group` sites
            choice = rng.choice(p.size, p=p.flat)
            out[n_out:n_out + n_group] = np.unravel_index(choice, p.shape)
            # Update probability of the partial output
            out_p *= np.prod(p.flat[choice])
        # Verify we have the correct partial output probability
        p = marginal_pmf[-1].get(tuple(out)).to_array()
        assert abs(p - out_p) <= eps 

Example 50

def _rcanonicalize(self, to_site):
        """Left-canonicalizes all local tensors _ltens[:to_site] in place

        :param to_site: Index of the site up to which canonicalization is to be
            performed

        """
        assert 0 <= to_site < len(self), 'to_site={!r}'.format(to_site)

        lcanon, rcanon = self._lt.canonical_form
        for site in range(lcanon, to_site):
            ltens = self._lt[site]
            q, r = qr(ltens.reshape((-1, ltens.shape[-1])))
            # if ltens.shape[-1] > prod(ltens.phys_shape) --> trivial comp.
            # can be accounted by adapting rank here
            newtens = (q.reshape(ltens.shape[:-1] + (-1,)),
                       matdot(r, self._lt[site + 1]))
            self._lt.update(slice(site, site + 2), newtens,
                            canonicalization=('left', None)) 
点赞