The following are code examples for showing how to use . They are extracted from open source Python projects. You can vote up the examples you like or vote down the exmaples you don’t like. You can also save this page to your account.
Example 1
def extract_images(filename): """Extract the images into a 4D uint8 numpy array [index, y, x, depth].""" print('Extracting', filename) with gzip.open(filename) as bytestream: magic = _read32(bytestream) if magic != 2051: raise ValueError( 'Invalid magic number %d in MNIST image file: %s' % (magic, filename)) num_images = _read32(bytestream) rows = _read32(bytestream) cols = _read32(bytestream) buf = bytestream.read(rows * cols * num_images) data = numpy.frombuffer(buf, dtype=numpy.uint8) data = data.reshape(num_images, rows, cols, 1) return data
Example 2
def gl_init(self,array_table): self.gl_hide = False self.gl_vertex_array = gl.VertexArray() glBindVertexArray(self.gl_vertex_array) self.gl_vertex_buffer = gl.Buffer() glBindBuffer(GL_ARRAY_BUFFER,self.gl_vertex_buffer) self.gl_element_count = 3*gl_count_triangles(self) self.gl_element_buffer = gl.Buffer() glBindBuffer(GL_ELEMENT_ARRAY_BUFFER,self.gl_element_buffer) vertex_type = numpy.dtype([array_table[attribute].field() for attribute in self.attributes]) vertex_count = sum(len(primitive.vertices) for primitive in self.primitives) vertex_array = numpy.empty(vertex_count,vertex_type) for attribute in self.attributes: array_table[attribute].load(self,vertex_array) vertex_array,element_map = numpy.unique(vertex_array,return_inverse=True) element_array = gl_create_element_array(self,element_map,self.gl_element_count) glBufferData(GL_ARRAY_BUFFER,vertex_array.nbytes,vertex_array,GL_STATIC_DRAW) glBufferData(GL_ELEMENT_ARRAY_BUFFER,element_array.nbytes,element_array,GL_STATIC_DRAW)
Example 3
def extract_images(filename): """Extract the images into a 4D uint8 numpy array [index, y, x, depth].""" print('Extracting', filename) with gzip.open(filename) as bytestream: magic = _read32(bytestream) if magic != 2051: raise ValueError( 'Invalid magic number %d in MNIST image file: %s' % (magic, filename)) num_images = _read32(bytestream) rows = _read32(bytestream) cols = _read32(bytestream) buf = bytestream.read(rows * cols * num_images) data = numpy.frombuffer(buf, dtype=numpy.uint8) data = data.reshape(num_images, rows, cols, 1) return data
Example 4
def __keytransform__(self, key): if isinstance(key[0], np.ndarray): shape = key[0].shape dtype = key[0].dtype i = key[1] zero = True if len(key) == 2 else key[2] elif isinstance(key[0], tuple): if len(key) == 3: shape, dtype, i = key zero = True elif len(key) == 4: shape, dtype, i, zero = key else: raise TypeError("Wrong type of key for work array") assert isinstance(zero, bool) assert isinstance(i, int) self.fillzero = zero return (shape, np.dtype(dtype), i)
Example 5
def accumulate_strings(values, name="strings"): """Accumulates strings into a vector. Args: values: A 1-d string tensor that contains values to add to the accumulator. Returns: A tuple (value_tensor, update_op). """ tf.assert_type(values, tf.string) strings = tf.Variable( name=name, initial_value=[], dtype=tf.string, trainable=False, collections=[], validate_shape=True) value_tensor = tf.identity(strings) update_op = tf.assign( ref=strings, value=tf.concat([strings, values], 0), validate_shape=False) return value_tensor, update_op
Example 6
def test_expect_dtypes_with_tuple(self): allowed_dtypes = (dtype('datetime64[ns]'), dtype('float')) @expect_dtypes(a=allowed_dtypes) def foo(a, b): return a, b for d in allowed_dtypes: good_a = arange(3).astype(d) good_b = object() ret_a, ret_b = foo(good_a, good_b) self.assertIs(good_a, ret_a) self.assertIs(good_b, ret_b) with self.assertRaises(TypeError) as e: foo(arange(3, dtype='uint32'), object()) expected_message = ( "{qualname}() expected a value with dtype 'datetime64[ns]' " "or 'float64' for argument 'a', but got 'uint32' instead." ).format(qualname=qualname(foo)) self.assertEqual(e.exception.args[0], expected_message)
Example 7
def _classify_gems(counts0, counts1): """ Infer number of distinct transcriptomes present in each GEM (1 or 2) and report cr_constants.GEM_CLASS_GENOME0 for a single cell w/ transcriptome 0, report cr_constants.GEM_CLASS_GENOME1 for a single cell w/ transcriptome 1, report cr_constants.GEM_CLASS_MULTIPLET for multiple transcriptomes """ # Assumes that most of the GEMs are single-cell; model counts independently thresh0, thresh1 = [cr_constants.DEFAULT_MULTIPLET_THRESHOLD] * 2 if sum(counts0 > counts1) >= 1 and sum(counts1 > counts0) >= 1: thresh0 = np.percentile(counts0[counts0 > counts1], cr_constants.MULTIPLET_PROB_THRESHOLD) thresh1 = np.percentile(counts1[counts1 > counts0], cr_constants.MULTIPLET_PROB_THRESHOLD) doublet = np.logical_and(counts0 >= thresh0, counts1 >= thresh1) dtype = np.dtype('|S%d' % max(len(cls) for cls in cr_constants.GEM_CLASSES)) result = np.where(doublet, cr_constants.GEM_CLASS_MULTIPLET, cr_constants.GEM_CLASS_GENOME0).astype(dtype) result[np.logical_and(np.logical_not(result == cr_constants.GEM_CLASS_MULTIPLET), counts1 > counts0)] = cr_constants.GEM_CLASS_GENOME1 return result
Example 8
def widen_cat_column(old_ds, new_type): name = old_ds.name tmp_name = "__tmp_" + old_ds.name grp = old_ds.parent ds = grp.create_dataset(tmp_name, data = old_ds[:], shape = old_ds.shape, maxshape = (None,), dtype = new_type, compression = COMPRESSION, shuffle = True, chunks = (CHUNK_SIZE,)) del grp[name] grp.move(tmp_name, name) return ds
Example 9
def create_levels(ds, levels): # Create a dataset in the LEVEL_GROUP # and store as native numpy / h5py types level_grp = ds.file.get(LEVEL_GROUP) if level_grp is None: # Create a LEVEL_GROUP level_grp = ds.file.create_group(LEVEL_GROUP) ds_name = ds.name.split("/")[-1] dt = h5py.special_dtype(vlen=str) level_grp.create_dataset(ds_name, shape = [len(levels)], maxshape = (None,), dtype = dt, data = levels, compression = COMPRESSION, chunks = (CHUNK_SIZE,))
Example 10
def reg2bin_vector(begin, end): '''Vectorized tabix reg2bin -- much faster than reg2bin''' result = np.zeros(begin.shape) # Entries filled done = np.zeros(begin.shape, dtype=np.bool) for (bits, bins) in rev_bit_bins: begin_shift = begin >> bits new_done = (begin >> bits) == (end >> bits) mask = np.logical_and(new_done, np.logical_not(done)) offset = ((1 << (29 - bits)) - 1) / 7 result[mask] = offset + begin_shift[mask] done = new_done return result.astype(np.int32)
Example 11
def flip_code(code): if isinstance(code, (numpy.dtype,type)): # since several things map to complex64 we must carefully select # the opposite that is an exact match (ticket 1518) if code == numpy.int8: return gdalconst.GDT_Byte if code == numpy.complex64: return gdalconst.GDT_CFloat32 for key, value in codes.items(): if value == code: return key return None else: try: return codesexcept KeyError:
return None Example 12def make2d(array, cols=None, dtype=None): ''' Make a 2D array from an array of arrays. The `cols' and `dtype' arguments can be omitted if the array is not empty. ''' if (cols is None or dtype is None) and not len(array): raise RuntimeError("cols and dtype must be specified for empty " "array") if cols is None: cols = len(array[0]) if dtype is None: dtype = array[0].dtype return _np.fromiter(array, [('_', dtype, (cols,))], count=len(array))['_']Example 13
def _read(self, stream, text, byte_order): ''' Read the actual data from a PLY file. ''' if text: self._read_txt(stream) else: if self._have_list: # There are list properties, so a simple load is # impossible. self._read_bin(stream, byte_order) else: # There are no list properties, so loading the data is # much more straightforward. self._data = _np.fromfile(stream, self.dtype(byte_order), self.count) if len(self._data) < self.count: k = len(self._data) del self._data raise PlyParseError("early end-of-file", self, k) self._check_sanity()Example 14
def _read_bin(self, stream, byte_order): ''' Load a PLY element from a binary PLY file. The element may contain list properties. ''' self._data = _np.empty(self.count, dtype=self.dtype(byte_order)) for k in _range(self.count): for prop in self.properties: try: self._data[prop.name][k] = \ prop._read_bin(stream, byte_order) except StopIteration: raise PlyParseError("early end-of-file", self, k, prop)Example 15
def _merge_all(parts, dtype): if len(parts) == 1: return parts[0] else: nparts = [] for i in xrange(0, len(parts), 2): if i+1 < len(parts): npart = numpy.empty((len(parts[i])+len(parts[i+1]), 2), dtype) merge_elements = index_merge(parts[i], parts[i+1], npart) if merge_elements != len(npart): npart = npart[:merge_elements] nparts.append(npart) else: nparts.append(parts[i]) del parts return _merge_all(nparts, dtype)Example 16
def __init__(self, buf, offset = 0): # Accelerate class attributes self._encode = self.encode self._dtype = self.dtype self._xxh = self.xxh # Initialize buffer if offset: self._buf = self._likebuf = buffer(buf, offset) else: self._buf = buf self._likebuf = _likebuffer(buf) # Parse header and map index self.index_elements, self.index_offset = self._Header.unpack_from(self._buf, 0) self.index = numpy.ndarray(buffer = self._buf, offset = self.index_offset, dtype = self.dtype, shape = (self.index_elements, 3))Example 17
def test_rescaleData(): dtypes = map(np.dtype, ('ubyte', 'uint16', 'byte', 'int16', 'int', 'float')) for dtype1 in dtypes: for dtype2 in dtypes: data = (np.random.random(size=10) * 2**32 - 2**31).astype(dtype1) for scale, offset in [(10, 0), (10., 0.), (1, -50), (0.2, 0.5), (0.001, 0)]: if dtype2.kind in 'iu': lim = np.iinfo(dtype2) lim = lim.min, lim.max else: lim = (-np.inf, np.inf) s1 = np.clip(float(scale) * (data-float(offset)), *lim).astype(dtype2) s2 = pg.rescaleData(data, scale, offset, dtype2) assert s1.dtype == s2.dtype if dtype2.kind in 'iu': assert np.all(s1 == s2) else: assert np.allclose(s1, s2)Example 18
def solve3DTransform(points1, points2): """ Find a 3D transformation matrix that maps points1 onto points2. Points must be specified as either lists of 4 Vectors or (4, 3) arrays. """ import numpy.linalg pts = [] for inp in (points1, points2): if isinstance(inp, np.ndarray): A = np.empty((4,4), dtype=float) A[:,:3] = inp[:,:3] A[:,3] = 1.0 else: A = np.array([[inp[i].x(), inp[i].y(), inp[i].z(), 1] for i in range(4)]) pts.append(A) ## solve 3 sets of linear equations to determine transformation matrix elements matrix = np.zeros((4,4)) for i in range(3): ## solve Ax = B; x is one row of the desired transformation matrix matrix[i] = numpy.linalg.solve(pts[0], pts[1][:,i]) return matrixExample 19
def __init__(self, index, channel_names=None, channel_ids=None, name=None, description=None, file_origin=None, coordinates=None, **annotations): ''' Initialize a new :class:`ChannelIndex` instance. ''' # Inherited initialization # Sets universally recommended attributes, and places all others # in annotations super(ChannelIndex, self).__init__(name=name, description=description, file_origin=file_origin, **annotations) # Defaults if channel_names is None: channel_names = np.array([], dtype='S') if channel_ids is None: channel_ids = np.array([], dtype='i') # Store recommended attributes self.channel_names = np.array(channel_names) self.channel_ids = np.array(channel_ids) self.index = np.array(index) self.coordinates = coordinatesExample 20
def load_bytes(self, data_blocks, dtype='<i1', start=None, end=None, expected_size=None): """ Return list of bytes contained in the specified set of blocks. NB : load all data as files cannot exceed 4Gb find later other solutions to spare memory. """ chunks = list() raw = '' # keep only data blocks having # a size greater than zero blocks = [k for k in data_blocks if k.size > 0] for data_block in blocks : self.file.seek(data_block.start) raw = self.file.read(data_block.size)[0:expected_size] databytes = np.frombuffer(raw, dtype=dtype) chunks.append(databytes) # concatenate all chunks and return # the specified slice if len(chunks)>0 : databytes = np.concatenate(chunks) return databytes[start:end] else : return np.array([])Example 21
def load_channel_data(self, ep, ch): """ Return a numpy array containing the list of bytes corresponding to the specified episode and channel. """ #memorise the sample size and symbol sample_size = self.sample_size(ep, ch) sample_symbol = self.sample_symbol(ep, ch) #create a bit mask to define which #sample to keep from the file bit_mask = self.create_bit_mask(ep, ch) #load all bytes contained in an episode data_blocks = self.get_data_blocks(ep) databytes = self.load_bytes(data_blocks) raw = self.filter_bytes(databytes, bit_mask) #reshape bytes from the sample size dt = np.dtype(numpy_map[sample_symbol]) dt.newbyteorder('<') return np.frombuffer(raw.reshape([len(raw) / sample_size, sample_size]), dt)Example 22
def get_signal_data(self, ep, ch): """ Return a numpy array containing all samples of a signal, acquired on an Elphy analog channel, formatted as a list of (time, value) tuples. """ #get data from the file y_data = self.load_encoded_data(ep, ch) x_data = np.arange(0, len(y_data)) #create a recarray data = np.recarray(len(y_data), dtype=[('x', b_float), ('y', b_float)]) #put in the recarray the scaled data x_factors = self.x_scale_factors(ep, ch) y_factors = self.y_scale_factors(ep, ch) data['x'] = x_factors.scale(x_data) data['y'] = y_factors.scale(y_data) return dataExample 23
def get_tag_data(self, ep, tag_ch): """ Return a numpy array containing all samples of a signal, acquired on an Elphy tag channel, formatted as a list of (time, value) tuples. """ #get data from the file y_data = self.load_encoded_tags(ep, tag_ch) x_data = np.arange(0, len(y_data)) #create a recarray data = np.recarray(len(y_data), dtype=[('x', b_float), ('y', b_int)]) #put in the recarray the scaled data factors = self.x_tag_scale_factors(ep) data['x'] = factors.scale(x_data) data['y'] = y_data return dataExample 24
def get_event(self, ep, ch, marked_ks): """ Return a :class:`ElphyEvent` which is a descriptor of the specified event channel. """ assert ep in range(1, self.n_episodes + 1) assert ch in range(1, self.n_channels + 1) # find the event channel number evt_channel = np.where(marked_ks == -1)[0][0] assert evt_channel in range(1, self.n_events(ep) + 1) block = self.episode_block(ep) ep_blocks = self.get_blocks_stored_in_episode(ep) evt_blocks = [k for k in ep_blocks if k.identifier == 'REVT'] n_events = np.sum([k.n_events[evt_channel - 1] for k in evt_blocks], dtype=int) x_unit = block.ep_block.x_unit return ElphyEvent(self, ep, evt_channel, x_unit, n_events, ch_number=ch)Example 25
def load_encoded_events(self, episode, evt_channel, identifier): """ Return times stored as a 4-bytes integer in the specified event channel. """ data_blocks = self.group_blocks_of_type(episode, identifier) ep_blocks = self.get_blocks_stored_in_episode(episode) evt_blocks = [k for k in ep_blocks if k.identifier == identifier] #compute events on each channel n_events = np.sum([k.n_events for k in evt_blocks], dtype=int, axis=0) pre_events = np.sum(n_events[0:evt_channel - 1], dtype=int) start = pre_events end = start + n_events[evt_channel - 1] expected_size = 4 * np.sum(n_events, dtype=int) return self.load_bytes(data_blocks, dtype='<i4', start=start, end=end, expected_size=expected_size)Example 26
def load_encoded_spikes(self, episode, evt_channel, identifier): """ Return times stored as a 4-bytes integer in the specified spike channel. NB: it is meant for Blackrock-type, having an additional byte for each event time as spike sorting label. These additiona bytes are appended trailing the times. """ # to load the requested spikes for the specified episode and event channel: # get all the elphy blocks having as identifier 'RSPK' (or whatever) all_rspk_blocks = [k for k in self.blocks if k.identifier == identifier] rspk_block = all_rspk_blocks[episode-1] # RDATA(h?dI) REVT(NbVeV:I, NbEv:256I ... spike data are 4byte integers rspk_header = 4*( rspk_block.size - rspk_block.data_size-2 + len(rspk_block.n_events)) pre_events = np.sum(rspk_block.n_events[0:evt_channel-1], dtype=int, axis=0) # the real start is after header, preceeding events (which are 4byte) and preceeding labels (1byte) start = rspk_header + (4*pre_events) + pre_events end = start + 4*rspk_block.n_events[evt_channel-1] raw = self.load_bytes( [rspk_block], dtype='<i1', start=start, end=end, expected_size=rspk_block.size ) # re-encoding after reading byte by byte res = np.frombuffer(raw[0:(4*rspk_block.n_events[evt_channel-1])], dtype='<i4') res.sort() # sometimes timings are not sorted #print "load_encoded_data() - spikes:",res return resExample 27
def get_waveform_data(self, episode, electrode_id): """ Return waveforms corresponding to the specified spike channel. This function is triggered when the ``waveforms`` property of an :class:`Spike` descriptor instance is accessed. """ block = self.episode_block(episode) times, databytes = self.load_encoded_waveforms(episode, electrode_id) n_events, = databytes.shape wf_samples = databytes['waveform'].shape[1] dtype = [ ('time', float), ('electrode_id', int), ('unit_id', int), ('waveform', float, (wf_samples, 2)) ] data = np.empty(n_events, dtype=dtype) data['electrode_id'] = databytes['channel_id'][:, 0] data['unit_id'] = databytes['unit_id'][:, 0] data['time'] = databytes['elphy_time'][:, 0] * block.ep_block.dX data['waveform'][:, :, 0] = times * block.ep_block.dX data['waveform'][:, :, 1] = databytes['waveform'] * block.ep_block.dY_wf + block.ep_block.Y0_wf return dataExample 28
def get_rspk_data(self, spk_channel): """ Return times stored as a 4-bytes integer in the specified event channel. """ evt_blocks = self.get_blocks_of_type('RSPK') #compute events on each channel n_events = np.sum([k.n_events for k in evt_blocks], dtype=int, axis=0) pre_events = np.sum(n_events[0:spk_channel], dtype=int) # sum of array values up to spk_channel-1!!!! start = pre_events + (7 + len(n_events))# rspk header end = start + n_events[spk_channel] expected_size = 4 * np.sum(n_events, dtype=int) # constant return self.load_bytes(evt_blocks, dtype='<i4', start=start, end=end, expected_size=expected_size) # --------------------------------------------------------- # factories.pyExample 29
def __mmap_ncs_packet_headers(self, filename): """ Memory map of the Neuralynx .ncs file optimized for extraction of data packet headers Reading standard dtype improves speed, but timestamps need to be reconstructed """ filesize = getsize(self.sessiondir + sep + filename) # in byte if filesize > 16384: data = np.memmap(self.sessiondir + sep + filename, dtype='<u4', shape=((filesize - 16384) / 4 / 261, 261), mode='r', offset=16384) ts = data[:, 0:2] multi = np.repeat(np.array([1, 2 ** 32], ndmin=2), len(data), axis=0) timestamps = np.sum(ts * multi, axis=1) # timestamps = data[:,0] + (data[:,1] *2**32) header_u4 = data[:, 2:5] return timestamps, header_u4 else: return NoneExample 30
def __mmap_ncs_packet_timestamps(self, filename): """ Memory map of the Neuralynx .ncs file optimized for extraction of data packet headers Reading standard dtype improves speed, but timestamps need to be reconstructed """ filesize = getsize(self.sessiondir + sep + filename) # in byte if filesize > 16384: data = np.memmap(self.sessiondir + sep + filename, dtype='<u4', shape=(int((filesize - 16384) / 4 / 261), 261), mode='r', offset=16384) ts = data[:, 0:2] multi = np.repeat(np.array([1, 2 ** 32], ndmin=2), len(data), axis=0) timestamps = np.sum(ts * multi, axis=1) # timestamps = data[:,0] + data[:,1]*2**32 return timestamps else: return NoneExample 31
def __mmap_nev_file(self, filename): """ Memory map the Neuralynx .nev file """ nev_dtype = np.dtype([ ('reserved', '<i2'), ('system_id', '<i2'), ('data_size', '<i2'), ('timestamp', '<u8'), ('event_id', '<i2'), ('ttl_input', '<i2'), ('crc_check', '<i2'), ('dummy1', '<i2'), ('dummy2', '<i2'), ('extra', '<i4', (8,)), ('event_string', 'a128'), ]) if getsize(self.sessiondir + sep + filename) > 16384: return np.memmap(self.sessiondir + sep + filename, dtype=nev_dtype, mode='r', offset=16384) else: return NoneExample 32
def __extract_nev_file_spec(self): """ Extract file specification from an .nsx file """ filename = '.'.join([self._filenames['nsx'], 'nev']) # Header structure of files specification 2.2 and higher. For files 2.1 # and lower, the entries ver_major and ver_minor are not supported. dt0 = [ ('file_id', 'S8'), ('ver_major', 'uint8'), ('ver_minor', 'uint8')] nev_file_id = np.fromfile(filename, count=1, dtype=dt0)[0] if nev_file_id['file_id'].decode() == 'NEURALEV': spec = '{0}.{1}'.format( nev_file_id['ver_major'], nev_file_id['ver_minor']) else: raise IOError('NEV file type {0} is not supported'.format( nev_file_id['file_id'])) return specExample 33
def __read_nsx_data_variant_a(self, nsx_nb): """ Extract nsx data from a 2.1 .nsx file """ filename = '.'.join([self._filenames['nsx'], 'ns%i' % nsx_nb]) # get shape of data shape = ( self.__nsx_databl_param['2.1']('nb_data_points', nsx_nb), self.__nsx_basic_header[nsx_nb]['channel_count']) offset = self.__nsx_params['2.1']('bytes_in_headers', nsx_nb) # read nsx data # store as dict for compatibility with higher file specs data = {1: np.memmap( filename, dtype='int16', shape=shape, offset=offset)} return dataExample 34
def __read_nev_data(self, nev_data_masks, nev_data_types): """ Extract nev data from a 2.1 or 2.2 .nev file """ filename = '.'.join([self._filenames['nev'], 'nev']) data_size = self.__nev_basic_header['bytes_in_data_packets'] header_size = self.__nev_basic_header['bytes_in_headers'] # read all raw data packets and markers dt0 = [ ('timestamp', 'uint32'), ('packet_id', 'uint16'), ('value', 'S{0}'.format(data_size - 6))] raw_data = np.memmap(filename, offset=header_size, dtype=dt0) masks = self.__nev_data_masks(raw_data['packet_id']) types = self.__nev_data_types(data_size) data = {} for k, v in nev_data_masks.items(): data[k] = raw_data.view(types[k][nev_data_types[k]])[masks[k][v]] return dataExample 35
def __get_nev_rec_times(self): """ Extracts minimum and maximum time points from a nev file. """ filename = '.'.join([self._filenames['nev'], 'nev']) dt = [('timestamp', 'uint32')] offset = \ self.__get_file_size(filename) - \ self.__nev_params('bytes_in_data_packets') last_data_packet = np.memmap(filename, offset=offset, dtype=dt)[0] n_starts = [0 * self.__nev_params('event_unit')] n_stops = [ last_data_packet['timestamp'] * self.__nev_params('event_unit')] return n_starts, n_stopsExample 36
def __get_waveforms_dtype(self): """ Extracts the actual waveform dtype set for each channel. """ # Blackrock code giving the approiate dtype conv = {0: 'int8', 1: 'int8', 2: 'int16', 4: 'int32'} # get all electrode ids from nev ext header all_el_ids = self.__nev_ext_header[b'NEUEVWAV']['electrode_id'] # get the dtype of waveform (this is stupidly complicated) if self.__is_set( np.array(self.__nev_basic_header['additionnal_flags']), 0): dtype_waveforms = dict((k, 'int16') for k in all_el_ids) else: # extract bytes per waveform waveform_bytes = \ self.__nev_ext_header[b'NEUEVWAV']['bytes_per_waveform'] # extract dtype for waveforms fro each electrode dtype_waveforms = dict(zip(all_el_ids, conv[waveform_bytes])) return dtype_waveformsExample 37
def __read_comment(self,n_start,n_stop,data,lazy=False): event_unit = self.__nev_params('event_unit') if lazy: times = [] labels = np.array([],dtype='s') else: times = data['timestamp']*event_unit labels = data['comment'].astype(str) # mask for given time interval mask = (times >= n_start) & (times < n_stop) if np.sum(mask)>0: ev = Event( times = times[mask].astype(float), labels = labels[mask], name = 'comment') if lazy: ev.lazy_shape = np.sum(mask) else: ev = None return ev # --------------end------added by zhangbo 20170926--------Example 38
def reformat_integer_v1(data, nbchannel, header): """ reformat when dtype is int16 for ABF version 1 """ chans = [chan_num for chan_num in header['nADCSamplingSeq'] if chan_num >= 0] for n, i in enumerate(chans[:nbchannel]): # respect SamplingSeq data[:, n] /= header['fInstrumentScaleFactor'][i] data[:, n] /= header['fSignalGain'][i] data[:, n] /= header['fADCProgrammableGain'][i] if header['nTelegraphEnable'][i]: data[:, n] /= header['fTelegraphAdditGain'][i] data[:, n] *= header['fADCRange'] data[:, n] /= header['lADCResolution'] data[:, n] += header['fInstrumentOffset'][i] data[:, n] -= header['fSignalOffset'][i]Example 39
def solve3DTransform(points1, points2): """ Find a 3D transformation matrix that maps points1 onto points2. Points must be specified as either lists of 4 Vectors or (4, 3) arrays. """ import numpy.linalg pts = [] for inp in (points1, points2): if isinstance(inp, np.ndarray): A = np.empty((4,4), dtype=float) A[:,:3] = inp[:,:3] A[:,3] = 1.0 else: A = np.array([[inp[i].x(), inp[i].y(), inp[i].z(), 1] for i in range(4)]) pts.append(A) ## solve 3 sets of linear equations to determine transformation matrix elements matrix = np.zeros((4,4)) for i in range(3): ## solve Ax = B; x is one row of the desired transformation matrix matrix[i] = numpy.linalg.solve(pts[0], pts[1][:,i]) return matrixExample 40
def __init__(self, index, channel_names=None, channel_ids=None, name=None, description=None, file_origin=None, coordinates=None, **annotations): ''' Initialize a new :class:`ChannelIndex` instance. ''' # Inherited initialization # Sets universally recommended attributes, and places all others # in annotations super(ChannelIndex, self).__init__(name=name, description=description, file_origin=file_origin, **annotations) # Defaults if channel_names is None: channel_names = np.array([], dtype='S') if channel_ids is None: channel_ids = np.array([], dtype='i') # Store recommended attributes self.channel_names = np.array(channel_names) self.channel_ids = np.array(channel_ids) self.index = np.array(index) self.coordinates = coordinatesExample 41
def load_bytes(self, data_blocks, dtype='<i1', start=None, end=None, expected_size=None): """ Return list of bytes contained in the specified set of blocks. NB : load all data as files cannot exceed 4Gb find later other solutions to spare memory. """ chunks = list() raw = '' # keep only data blocks having # a size greater than zero blocks = [k for k in data_blocks if k.size > 0] for data_block in blocks : self.file.seek(data_block.start) raw = self.file.read(data_block.size)[0:expected_size] databytes = np.frombuffer(raw, dtype=dtype) chunks.append(databytes) # concatenate all chunks and return # the specified slice if len(chunks)>0 : databytes = np.concatenate(chunks) return databytes[start:end] else : return np.array([])Example 42
def load_channel_data(self, ep, ch): """ Return a numpy array containing the list of bytes corresponding to the specified episode and channel. """ #memorise the sample size and symbol sample_size = self.sample_size(ep, ch) sample_symbol = self.sample_symbol(ep, ch) #create a bit mask to define which #sample to keep from the file bit_mask = self.create_bit_mask(ep, ch) #load all bytes contained in an episode data_blocks = self.get_data_blocks(ep) databytes = self.load_bytes(data_blocks) raw = self.filter_bytes(databytes, bit_mask) #reshape bytes from the sample size dt = np.dtype(numpy_map[sample_symbol]) dt.newbyteorder('<') return np.frombuffer(raw.reshape([len(raw) / sample_size, sample_size]), dt)Example 43
def get_signal_data(self, ep, ch): """ Return a numpy array containing all samples of a signal, acquired on an Elphy analog channel, formatted as a list of (time, value) tuples. """ #get data from the file y_data = self.load_encoded_data(ep, ch) x_data = np.arange(0, len(y_data)) #create a recarray data = np.recarray(len(y_data), dtype=[('x', b_float), ('y', b_float)]) #put in the recarray the scaled data x_factors = self.x_scale_factors(ep, ch) y_factors = self.y_scale_factors(ep, ch) data['x'] = x_factors.scale(x_data) data['y'] = y_factors.scale(y_data) return dataExample 44
def get_tag_data(self, ep, tag_ch): """ Return a numpy array containing all samples of a signal, acquired on an Elphy tag channel, formatted as a list of (time, value) tuples. """ #get data from the file y_data = self.load_encoded_tags(ep, tag_ch) x_data = np.arange(0, len(y_data)) #create a recarray data = np.recarray(len(y_data), dtype=[('x', b_float), ('y', b_int)]) #put in the recarray the scaled data factors = self.x_tag_scale_factors(ep) data['x'] = factors.scale(x_data) data['y'] = y_data return dataExample 45
def load_encoded_events(self, episode, evt_channel, identifier): """ Return times stored as a 4-bytes integer in the specified event channel. """ data_blocks = self.group_blocks_of_type(episode, identifier) ep_blocks = self.get_blocks_stored_in_episode(episode) evt_blocks = [k for k in ep_blocks if k.identifier == identifier] #compute events on each channel n_events = np.sum([k.n_events for k in evt_blocks], dtype=int, axis=0) pre_events = np.sum(n_events[0:evt_channel - 1], dtype=int) start = pre_events end = start + n_events[evt_channel - 1] expected_size = 4 * np.sum(n_events, dtype=int) return self.load_bytes(data_blocks, dtype='<i4', start=start, end=end, expected_size=expected_size)Example 46
def load_encoded_spikes(self, episode, evt_channel, identifier): """ Return times stored as a 4-bytes integer in the specified spike channel. NB: it is meant for Blackrock-type, having an additional byte for each event time as spike sorting label. These additiona bytes are appended trailing the times. """ # to load the requested spikes for the specified episode and event channel: # get all the elphy blocks having as identifier 'RSPK' (or whatever) all_rspk_blocks = [k for k in self.blocks if k.identifier == identifier] rspk_block = all_rspk_blocks[episode-1] # RDATA(h?dI) REVT(NbVeV:I, NbEv:256I ... spike data are 4byte integers rspk_header = 4*( rspk_block.size - rspk_block.data_size-2 + len(rspk_block.n_events)) pre_events = np.sum(rspk_block.n_events[0:evt_channel-1], dtype=int, axis=0) # the real start is after header, preceeding events (which are 4byte) and preceeding labels (1byte) start = rspk_header + (4*pre_events) + pre_events end = start + 4*rspk_block.n_events[evt_channel-1] raw = self.load_bytes( [rspk_block], dtype='<i1', start=start, end=end, expected_size=rspk_block.size ) # re-encoding after reading byte by byte res = np.frombuffer(raw[0:(4*rspk_block.n_events[evt_channel-1])], dtype='<i4') res.sort() # sometimes timings are not sorted #print "load_encoded_data() - spikes:",res return resExample 47
def get_spiketrain(self, episode, electrode_id): """ Return a :class:`Spike` which is a descriptor of the specified spike channel. """ assert episode in range(1, self.n_episodes + 1) assert electrode_id in range(1, self.n_spiketrains(episode) + 1) # get some properties stored in the episode sub-block block = self.episode_block(episode) x_unit = block.ep_block.x_unit x_unit_wf = getattr(block.ep_block, 'x_unit_wf', None) y_unit_wf = getattr(block.ep_block, 'y_unit_wf', None) # number of spikes in the entire episode spk_blocks = [k for k in self.blocks if k.identifier == 'RSPK'] n_events = np.sum([k.n_events[electrode_id - 1] for k in spk_blocks], dtype=int) # number of samples in a waveform wf_sampling_frequency = 1.0 / block.ep_block.dX wf_blocks = [k for k in self.blocks if k.identifier == 'RspkWave'] if wf_blocks : wf_samples = wf_blocks[0].wavelength t_start = wf_blocks[0].pre_trigger * block.ep_block.dX else: wf_samples = 0 t_start = 0 return ElphySpikeTrain(self, episode, electrode_id, x_unit, n_events, wf_sampling_frequency, wf_samples, x_unit_wf, y_unit_wf, t_start)Example 48
def get_rspk_data(self, spk_channel): """ Return times stored as a 4-bytes integer in the specified event channel. """ evt_blocks = self.get_blocks_of_type('RSPK') #compute events on each channel n_events = np.sum([k.n_events for k in evt_blocks], dtype=int, axis=0) pre_events = np.sum(n_events[0:spk_channel], dtype=int) # sum of array values up to spk_channel-1!!!! start = pre_events + (7 + len(n_events))# rspk header end = start + n_events[spk_channel] expected_size = 4 * np.sum(n_events, dtype=int) # constant return self.load_bytes(evt_blocks, dtype='<i4', start=start, end=end, expected_size=expected_size) # --------------------------------------------------------- # factories.pyExample 49
def __mmap_ncs_packet_headers(self, filename): """ Memory map of the Neuralynx .ncs file optimized for extraction of data packet headers Reading standard dtype improves speed, but timestamps need to be reconstructed """ filesize = getsize(self.sessiondir + sep + filename) # in byte if filesize > 16384: data = np.memmap(self.sessiondir + sep + filename, dtype='<u4', shape=((filesize - 16384) / 4 / 261, 261), mode='r', offset=16384) ts = data[:, 0:2] multi = np.repeat(np.array([1, 2 ** 32], ndmin=2), len(data), axis=0) timestamps = np.sum(ts * multi, axis=1) # timestamps = data[:,0] + (data[:,1] *2**32) header_u4 = data[:, 2:5] return timestamps, header_u4 else: return NoneExample 50
def __mmap_nev_file(self, filename): """ Memory map the Neuralynx .nev file """ nev_dtype = np.dtype([ ('reserved', '<i2'), ('system_id', '<i2'), ('data_size', '<i2'), ('timestamp', '<u8'), ('event_id', '<i2'), ('ttl_input', '<i2'), ('crc_check', '<i2'), ('dummy1', '<i2'), ('dummy2', '<i2'), ('extra', '<i4', (8,)), ('event_string', 'a128'), ]) if getsize(self.sessiondir + sep + filename) > 16384: return np.memmap(self.sessiondir + sep + filename, dtype=nev_dtype, mode='r', offset=16384) else: return None