The following are code examples for showing how to use . They are extracted from open source Python projects. You can vote up the examples you like or vote down the exmaples you don’t like. You can also save this page to your account.
Example 1
def getmarkercenter(image, pos): mkradius = getapproxmarkerradius(image) buffer = int(mkradius * 0.15) roisize = mkradius + buffer # half of the height or width x = pos[0] - roisize y = pos[1] - roisize w = 2 * roisize h = 2 * roisize roi = image[y:y+h, x:x+w] grayroi = getgrayimage(roi) ret, binimage = cv2.threshold(grayroi,0,255,cv2.THRESH_BINARY_INV+cv2.THRESH_OTSU) nlabels, labels, stats, centroids = cv2.connectedComponentsWithStats(binimage) # stats[0], centroids[0] are for the background label. ignore lblareas = stats[1:,cv2.CC_STAT_AREA] ave = np.average(centroids[1:], axis=0, weights=lblareas) return tuple(np.array([x, y]) + ave) # weighted average pos of centroids
Example 2
def calculate_gap(predictions, actuals, top_k=20): """Performs a local (numpy) calculation of the global average precision. Only the top_k predictions are taken for each of the videos. Args: predictions: Matrix containing the outputs of the model. Dimensions are 'batch' x 'num_classes'. actuals: Matrix containing the ground truth labels. Dimensions are 'batch' x 'num_classes'. top_k: How many predictions to use per video. Returns: float: The global average precision. """ gap_calculator = ap_calculator.AveragePrecisionCalculator() sparse_predictions, sparse_labels, num_positives = top_k_by_class(predictions, actuals, top_k) gap_calculator.accumulate(flatten(sparse_predictions), flatten(sparse_labels), sum(num_positives)) return gap_calculator.peek_ap_at_n()
Example 3
def calculate_gap(predictions, actuals, top_k=20): """Performs a local (numpy) calculation of the global average precision. Only the top_k predictions are taken for each of the videos. Args: predictions: Matrix containing the outputs of the model. Dimensions are 'batch' x 'num_classes'. actuals: Matrix containing the ground truth labels. Dimensions are 'batch' x 'num_classes'. top_k: How many predictions to use per video. Returns: float: The global average precision. """ gap_calculator = ap_calculator.AveragePrecisionCalculator() sparse_predictions, sparse_labels, num_positives = top_k_by_class(predictions, actuals, top_k) gap_calculator.accumulate(flatten(sparse_predictions), flatten(sparse_labels), sum(num_positives)) return gap_calculator.peek_ap_at_n()
Example 4
def minScalErr(stec,el,z,thisBias): """ this determines the slope of the vTEC vs. Elevation line, which should be minimized in the minimum scalloping technique for receiver bias removal inputs: stec - time indexed Series of slant TEC values el - corresponding elevation values, also Series z - mapping function values to convert to vTEC from entire file, may contain nans, Series thisBias - the bias to be tested and minimized """ intel=np.asarray(el[stec.index],int) # bin the elevation values into int sTEC=np.asarray(stec,float) zmap = z[stec.index] c=np.array([(i,np.average((sTEC[intel==i]-thisBias) /zmap[intel==i])) for i in np.unique(intel) if i>30]) return np.polyfit(c[:,0],c[:,1],1)[0]
Example 5
def score_fusion_strategy(strategy_name = 'average'): """Returns a function to compute a fusion strategy between different scores. Different strategies are employed: * ``'average'`` : The averaged score is computed using the :py:func:`numpy.average` function. * ``'min'`` : The minimum score is computed using the :py:func:`min` function. * ``'max'`` : The maximum score is computed using the :py:func:`max` function. * ``'median'`` : The median score is computed using the :py:func:`numpy.median` function. * ``None`` is also accepted, in which case ``None`` is returned. """ try: return { 'average' : numpy.average, 'min' : min, 'max' : max, 'median' : numpy.median, None : None }[strategy_name] except KeyError: # warn("score fusion strategy '%s' is unknown" % strategy_name) return None
Example 6
def calculate_gap(predictions, actuals, top_k=20): """Performs a local (numpy) calculation of the global average precision. Only the top_k predictions are taken for each of the videos. Args: predictions: Matrix containing the outputs of the model. Dimensions are 'batch' x 'num_classes'. actuals: Matrix containing the ground truth labels. Dimensions are 'batch' x 'num_classes'. top_k: How many predictions to use per video. Returns: float: The global average precision. """ gap_calculator = ap_calculator.AveragePrecisionCalculator() sparse_predictions, sparse_labels, num_positives = top_k_by_class(predictions, actuals, top_k) gap_calculator.accumulate(flatten(sparse_predictions), flatten(sparse_labels), sum(num_positives)) return gap_calculator.peek_ap_at_n()
Example 7
def __init__(self, parent, mlca, width=6, height=6, dpi=100): figure = Figure(figsize=(width, height), dpi=dpi, tight_layout=True) axes = figure.add_subplot(111) super(LCAResultsPlot, self).__init__(figure) self.setParent(parent) activity_names = [format_activity_label(next(iter(f.keys()))) for f in mlca.func_units] # From https://stanford.edu/~mwaskom/software/seaborn/tutorial/color_palettes.html cmap = sns.cubehelix_palette(8, start=.5, rot=-.75, as_cmap=True) hm = sns.heatmap( # mlca.results / np.average(mlca.results, axis=0), # Normalize to get relative results mlca.results, annot=True, linewidths=.05, cmap=cmap, xticklabels=["\n".join(x) for x in mlca.methods], yticklabels=activity_names, ax=axes, square=False, ) hm.tick_params(labelsize=8) self.setMinimumSize(self.size()) # sns.set_context("notebook")
Example 8
def model_sentiment(self, b, s, fo=0.99): """ Defines the real-time sentiment model given a dataframe of tweets. :param b: A ``TweetBin`` to calculate the new sentiment value. :param s: The initial Sentiment to begin calculation. :param fo: Fall-off factor """ df = b.df.loc[b.df.sentiment != 0] # drop rows having 0 sentiment newval = s.value if(len(df)>0): try: val = np.average( df.sentiment, weights=df.followers_count+df.friends_count ) except ZeroDivisionError: val = 0 newval = s.value*fo + val*(1-fo) return Sentiment(newval, b.influence, b.start, b.end)
Example 9
def calculate_gap(predictions, actuals, top_k=20): """Performs a local (numpy) calculation of the global average precision. Only the top_k predictions are taken for each of the videos. Args: predictions: Matrix containing the outputs of the model. Dimensions are 'batch' x 'num_classes'. actuals: Matrix containing the ground truth labels. Dimensions are 'batch' x 'num_classes'. top_k: How many predictions to use per video. Returns: float: The global average precision. """ gap_calculator = ap_calculator.AveragePrecisionCalculator() sparse_predictions, sparse_labels, num_positives = top_k_by_class(predictions, actuals, top_k) gap_calculator.accumulate(flatten(sparse_predictions), flatten(sparse_labels), sum(num_positives)) return gap_calculator.peek_ap_at_n()
Example 10
def best_average_value(df, train_end_time, metric, parameter): """Pick the model with the highest average metric value so far Arguments: metric (string) -- model evaluation metric, such as '[email protected]' parameter (string) -- model evaluation metric parameter, such as '300_abs' train_end_time (Timestamp) -- current train end time df (pandas.DataFrame) -- dataframe containing the columns: model_group_id, model_id, train_end_time, metric, parameter, raw_value, dist_from_best_case Returns: (int) the model group id to select, with highest mean raw metric value """ met_df = df.loc[ (df['metric'] == metric) & (df['parameter'] == parameter) ] # sample(frac=1) to shuffle rows so we don't accidentally introduce bias in breaking ties return _mg_best_avg_by(met_df, 'raw_value', metric)
Example 11
def load_cv_folds(model_name): models = [] for i in range(5): net = np.load(paths.predictions + model_name + '-split_{}.npz'.format(i)) net = { 'train': np.average(net['train'], axis=0), 'val': np.average(net['val'], axis=0), 'test': np.average(net['test'], axis=0) } models.append(net) labels_df = labels.get_labels_df() kf = sklearn.model_selection.KFold(n_splits=5, shuffle=True, random_state=1) split = kf.split(labels_df) folds = [] for i, ((train_idx, val_idx), net) in enumerate(zip(split, models)): val = labels_df.ix[val_idx] train = labels_df.ix[train_idx] folds.append((net, val, train)) print(i) return folds # load_cv_folds takes the model name
Example 12
def print_timing_analysis(self): border = 20 if len(self.timing_analysis) < 2 * border: return False analyis_lenght = len(self.timing_analysis) - border print('Total of {} pulse pairs has been sent' .format(analyis_lenght)) stamps = self.timing_analysis[border:analyis_lenght] deltas = [] for i in range(len(stamps) - 1, 2, -1): deltas.append(stamps[i] - stamps[i - 1]) # print('Filter out pen ups') deltas = [d for d in deltas if d < 0.1] print ('For {} pulses:'.format(analyis_lenght)) freq = 1 / np.average(deltas) print ('Pulse frequency was: {0:.2f} Hz' .format(freq)) print ('StdDev of sleep times: {0:.6f} seconds' .format(np.std(deltas))) self.timing_analysis = []
Example 13
def analyze_distance_to_target(self): if len(self.y_distances) > 0: average_y = np.average(self.y_distances) else: return self.y_distances = [] self.lag_log.append(average_y) if len(self.lag_log) > self.lag_cycles * 2: test_region = self.lag_log[-self.lag_cycles:] sum_lag = sum(test_region) if sum_lag < 0: if (abs(sum_lag) > self.lag_cycles * self.boost_threshold): return 1 if sum_lag > 0: if (abs(sum_lag) > self.lag_cycles * self.boost_threshold): return -1 return 0
Example 14
def print_timing_analysis(self): border = 10 if len(self.anoto_timing) < 2 * border: return False analyze_window = len(self.anoto_timing) - border stamps = self.anoto_timing[border:analyze_window] deltas = [] for i in range(len(stamps) - 1, 2, -1): deltas.append(stamps[i] - stamps[i - 1]) print ('Total of this many anoto events: {}' .format(len(self.anoto_timing))) print ('Number of all deltas {}'.format(len(deltas))) deltas = [d for d in deltas if d > 0.009] print ('Number of filtered deltas {}'.format(len(deltas))) # filter out pen ups deltas = [d for d in deltas if d < 0.5] freq = 1 / np.average(deltas) print ('Anoto sample frequency was: {0:.2f} Hz' .format(freq)) print ('StdDev of delays is {0:.3f} seconds' .format(np.std(deltas))) self.anoto_timing = []
Example 15
def test_basic(self): y1 = np.array([1, 2, 3]) assert_(average(y1, axis=0) == 2.) y2 = np.array([1., 2., 3.]) assert_(average(y2, axis=0) == 2.) y3 = [0., 0., 0.] assert_(average(y3, axis=0) == 0.) y4 = np.ones((4, 4)) y4[0, 1] = 0 y4[1, 0] = 2 assert_almost_equal(y4.mean(0), average(y4, 0)) assert_almost_equal(y4.mean(1), average(y4, 1)) y5 = rand(5, 5) assert_almost_equal(y5.mean(0), average(y5, 0)) assert_almost_equal(y5.mean(1), average(y5, 1)) y6 = np.matrix(rand(5, 5)) assert_array_equal(y6.mean(0), average(y6, 0))
Example 16
def test_returned(self): y = np.array([[1, 2, 3], [4, 5, 6]]) # No weights avg, scl = average(y, returned=True) assert_equal(scl, 6.) avg, scl = average(y, 0, returned=True) assert_array_equal(scl, np.array([2., 2., 2.])) avg, scl = average(y, 1, returned=True) assert_array_equal(scl, np.array([3., 3.])) # With weights w0 = [1, 2] avg, scl = average(y, weights=w0, axis=0, returned=True) assert_array_equal(scl, np.array([3., 3., 3.])) w1 = [1, 2, 3] avg, scl = average(y, weights=w1, axis=1, returned=True) assert_array_equal(scl, np.array([6., 6.])) w2 = [[0, 0, 1], [1, 2, 3]] avg, scl = average(y, weights=w2, axis=1, returned=True) assert_array_equal(scl, np.array([1., 6.]))
Example 17
def test_testAverage1(self): # Test of average. ott = array([0., 1., 2., 3.], mask=[True, False, False, False]) assert_equal(2.0, average(ott, axis=0)) assert_equal(2.0, average(ott, weights=[1., 1., 2., 1.])) result, wts = average(ott, weights=[1., 1., 2., 1.], returned=1) assert_equal(2.0, result) self.assertTrue(wts == 4.0) ott[:] = masked assert_equal(average(ott, axis=0).mask, [True]) ott = array([0., 1., 2., 3.], mask=[True, False, False, False]) ott = ott.reshape(2, 2) ott[:, 1] = masked assert_equal(average(ott, axis=0), [2.0, 0.0]) assert_equal(average(ott, axis=1).mask[0], [True]) assert_equal([2., 0.], average(ott, axis=0)) result, wts = average(ott, axis=0, returned=1) assert_equal(wts, [1., 0.])
Example 18
def adaboost(x, y, n): g_stp = [] u = [1/n]*n T = 15 for t in range(T): print(u) s, i, theta, errs = dsa(x, y, n, u) epsilon = np.average(errs, weights=u) / sum(u) scale = np.sqrt((1 - epsilon) / epsilon) for u_i in range(len(u)): if errs[u_i]: u[u_i] = u[u_i] * scale else: u[u_i] = u[u_i] / scale alpha = np.log(scale) g_stp.append((s, i, theta, alpha)) return g_stp
Example 19
def calc_coordinate_averages(coord_arrays): """ Calculate average of all coordinate touples for the correct color parameter: dictionary with color key and value as array of coords in (y,x) returns: dictionary with color key and value as array of coords in (x,y)!!! """ # TODO: Sort out all circles not matching specific pixel range coords = {} for key, array in coord_arrays.items(): temp = numpy.average(array, axis=0) coords[key] = (int(temp[1]), int(temp[0])) return coords ######################################################################################################### #########################################################################################################
Example 20
def calculate_gap(predictions, actuals, top_k=20): """Performs a local (numpy) calculation of the global average precision. Only the top_k predictions are taken for each of the videos. Args: predictions: Matrix containing the outputs of the model. Dimensions are 'batch' x 'num_classes'. actuals: Matrix containing the ground truth labels. Dimensions are 'batch' x 'num_classes'. top_k: How many predictions to use per video. Returns: float: The global average precision. """ gap_calculator = ap_calculator.AveragePrecisionCalculator() sparse_predictions, sparse_labels, num_positives = top_k_by_class(predictions, actuals, top_k) gap_calculator.accumulate(flatten(sparse_predictions), flatten(sparse_labels), sum(num_positives)) return gap_calculator.peek_ap_at_n()
Example 21
def calculate_gap(predictions, actuals, top_k=20): """Performs a local (numpy) calculation of the global average precision. Only the top_k predictions are taken for each of the videos. Args: predictions: Matrix containing the outputs of the model. Dimensions are 'batch' x 'num_classes'. actuals: Matrix containing the ground truth labels. Dimensions are 'batch' x 'num_classes'. top_k: How many predictions to use per video. Returns: float: The global average precision. """ gap_calculator = ap_calculator.AveragePrecisionCalculator() sparse_predictions, sparse_labels, num_positives = top_k_by_class(predictions, actuals, top_k) gap_calculator.accumulate(flatten(sparse_predictions), flatten(sparse_labels), sum(num_positives)) return gap_calculator.peek_ap_at_n()
Example 22
def compute_mean_ci(interp_sens, confidence = 0.95): sens_mean = np.zeros((interp_sens.shape[1]),dtype = 'float32') sens_lb = np.zeros((interp_sens.shape[1]),dtype = 'float32') sens_up = np.zeros((interp_sens.shape[1]),dtype = 'float32') Pz = (1.0-confidence)/2.0 for i in range(interp_sens.shape[1]): # get sorted vector vec = interp_sens[:,i] vec.sort() sens_mean[i] = np.average(vec) sens_lb[i] = vec[int(math.floor(Pz*len(vec)))] sens_up[i] = vec[int(math.floor((1.0-Pz)*len(vec)))] return sens_mean,sens_lb,sens_up
Example 23
def analyze(self): self.neighborgrid() # just looking at up and left to avoid needless doubel calculations slopes=np.concatenate((np.abs(self.left - self.center),np.abs(self.up - self.center))) return '\n'.join(["%-15s: %.3f"%t for t in [ ('height average', np.average(self.center)), ('height median', np.median(self.center)), ('height max', np.max(self.center)), ('height min', np.min(self.center)), ('height std', np.std(self.center)), ('slope average', np.average(slopes)), ('slope median', np.median(slopes)), ('slope max', np.max(slopes)), ('slope min', np.min(slopes)), ('slope std', np.std(slopes)) ]] )
Example 24
def calculate_gap(predictions, actuals, top_k=20): """Performs a local (numpy) calculation of the global average precision. Only the top_k predictions are taken for each of the videos. Args: predictions: Matrix containing the outputs of the model. Dimensions are 'batch' x 'num_classes'. actuals: Matrix containing the ground truth labels. Dimensions are 'batch' x 'num_classes'. top_k: How many predictions to use per video. Returns: float: The global average precision. """ gap_calculator = ap_calculator.AveragePrecisionCalculator() sparse_predictions, sparse_labels, num_positives = top_k_by_class(predictions, actuals, top_k) gap_calculator.accumulate(flatten(sparse_predictions), flatten(sparse_labels), sum(num_positives)) return gap_calculator.peek_ap_at_n()
Example 25
def write(self, global_step): batch_sizes = np.array(self.batch_sizes) fetches = [] feed_dict = {} summary_values = {} for name, values in self.batch_values.items(): summary_runner = self.manager.get_summary_runner(name) epoch_value = np.average(values, weights=batch_sizes) fetches.append(summary_runner.summary) feed_dict[summary_runner.placeholder] = epoch_value summary_values[name] = epoch_value epoch_summaries = self.manager.sess.run(fetches, feed_dict=feed_dict) for epoch_summary in epoch_summaries: self.writer.add_summary(epoch_summary, global_step) self.writer.flush() self.reset() return summary_values
Example 26
def drawGraph( self ): graph = gui.Surface( ( 300, 200 ) ) graph.set_colorkey( ( 0, 0, 0 ) ) gens = len( self.genScores ) for genome in range( 40 ): pointlist = [ ( 0, 200 ) ] for generation in range( gens ): x = int( 300 * ( generation+1 ) / gens ) y = 200 - int( 200 * self.genScores[ generation ][ genome ] / self.highScore ) pointlist.append( ( x, y ) ) if genome in [ 0, 19, 39 ]: gui.draw.lines( graph, ( 0, 0, 255 ), False, pointlist, 2 ) else: gui.draw.lines( graph, ( 112, 108, 90 ), False, pointlist, 1 ) pointlist = [ ( 0, 200 ) ] for generation in range( gens ): x = int( 300 * ( generation+1 ) / gens ) y = 200 - int( 200 * np.average( self.genScores[ generation ] ) / self.highScore ) pointlist.append( ( x, y ) ) gui.draw.lines( graph, ( 255, 0, 0 ), False, pointlist, 2 ) self.lastGraph = graph
Example 27
def integrate_blindly(self, target_time, step=None): """ Like `jitcdde`’s `integrate_blindly`, except for orthonormalising the separation functions after each step and the output being analogous to `jitcdde_lyap`’s `integrate`. """ dt,number,total_integration_time = self._prepare_blind_int(target_time, step) instantaneous_lyaps = [] for _ in range(number): self.DDE.get_next_step(dt) self.DDE.accept_step() self.DDE.forget(self.max_delay) norms = self.DDE.orthonormalise(self._n_lyap, self.max_delay) instantaneous_lyaps.append(np.log(norms)/dt) lyaps = np.average(instantaneous_lyaps, axis=0) return self.DDE.get_current_state()[:self.n_basic], lyaps, total_integration_time
Example 28
def integrate_blindly(self, target_time, step=None): """ Like `jitcdde`’s `integrate_blindly`, except for normalising and aligning the separation function after each step and the output being analogous to `jitcdde_restricted_lyap`’s `integrate`. """ dt,number,total_integration_time = self._prepare_blind_int(target_time, step) instantaneous_lyaps = [] for _ in range(number): self.DDE.get_next_step(dt) self.DDE.accept_step() self.DDE.forget(self.max_delay) norm = self.remove_projections() instantaneous_lyaps.append(np.log(norm)/dt) lyap = np.average(instantaneous_lyaps) state = self.DDE.get_current_state()[:self.n_basic] return state, lyap, total_integration_time
Example 29
def integrate_blindly(self, target_time, step=None): """ Like `jitcdde`’s `integrate_blindly`, except for normalising and aligning the separation function after each step and the output being analogous to `jitcdde_transversal_lyap`’s `integrate`. """ dt,number,total_integration_time = self._prepare_blind_int(target_time, step) instantaneous_lyaps = [] for _ in range(number): self.DDE.get_next_step(dt) self.DDE.accept_step() self.DDE.forget(self.max_delay) norm = self.DDE.normalise_indices(self.max_delay) instantaneous_lyaps.append(np.log(norm)/dt) lyap = np.average(instantaneous_lyaps) state = self.DDE.get_current_state()[self.G.main_indices] return state, lyap, total_integration_time
Example 30
def weighted_avg_and_std(values, weights=None): ''' Return the weighted average and standard deviation. `values` - np.ndarray of values to average. `weights` - Optional np.ndarray of weights. Otherwise all values are assumed equally weighted. Note the helpful np.fromiter() function, helpful building arrays. ''' if not isinstance(values, np.ndarray): raise TypeError("Values must be an np.array") if len(values) == 0: raise ValueError("Can't calculate with no values") if weights is not None: if not isinstance(weights, np.ndarray): raise TypeError("Weights must be None or an np.array") if len(values) != len(weights): raise ValueError("Length of values and weights differ") average = np.average(values, weights=weights) variance = np.average((values-average)**2, weights=weights) # Fast and numerically precise return (average, math.sqrt(variance))
Example 31
def printAnalysisStats(self): print("Analysis of %d metric datapoints" % len(self._analysis_metrics)) trade_mean, trade_std = weighted_avg_and_std(self._trade_prices, self._trade_volumes) print("Weighted mean trade price: %.2f" % trade_mean) print("Weighted STD trade price: %.2f" % trade_std) mean = np.average(list(map(abs, self._analysis_metrics))) print("Metric mean of abs: %s" % mean) std = np.std(self._analysis_metrics) print("Metric standard deviation: %f" % std) n_sigma = 2 faktor = 5 / (n_sigma * std) print("Best quantization factor: %f" % faktor) mean, sd = weighted_avg_and_std(self._trade_intervals) print("Mean gap between trades: %.2fs" % mean) print("SD of trade gaps: %.2fs" % sd)
Example 32
def get_similarity_scores(verb_token, vectorizer, tf_idf_matrix): """ Compute the cosine similarity score of a given verb token against the input corpus TF/IDF matrix. :param str verb_token: Surface form of a verb, e.g., *born* :param sklearn.feature_extraction.text.TfidfVectorizer vectorizer: Vectorizer used to transform verbs into vectors :return: cosine similarity score :rtype: ndarray """ verb_token_vector = vectorizer.transform([verb_token]) # Here the linear kernel is the same as the cosine similarity, but faster # cf. http://scikit-learn.org/stable/modules/metrics.html#cosine-similarity scores = linear_kernel(verb_token_vector, tf_idf_matrix) logger.debug("Corpus-wide TF/IDF scores for '%s': %s" % (verb_token, scores)) logger.debug("Average TF/IDF score for '%s': %f" % (verb_token, average(scores))) return scores
Example 33
def ndcg(self, rankers, cutoff): ''' rankers: instances of Ranker cutoff: cutoff for nDCG ''' result = defaultdict(list) for q in self.docs: documents = self.docs[q] rels = {id(d): d.rel for d in documents} for idx, ranker in enumerate(rankers): res = ranker.rank(documents) ranked_list = [id(d) for d in res] score = ndcg(ranked_list, rels, cutoff) result[idx].append(score) for idx in result: result[idx] = np.average(result[idx]) return result
Example 34
def calculate_gap(predictions, actuals, top_k=20): """Performs a local (numpy) calculation of the global average precision. Only the top_k predictions are taken for each of the videos. Args: predictions: Matrix containing the outputs of the model. Dimensions are 'batch' x 'num_classes'. actuals: Matrix containing the ground truth labels. Dimensions are 'batch' x 'num_classes'. top_k: How many predictions to use per video. Returns: float: The global average precision. """ gap_calculator = ap_calculator.AveragePrecisionCalculator() sparse_predictions, sparse_labels, num_positives = top_k_by_class(predictions, actuals, top_k) gap_calculator.accumulate(flatten(sparse_predictions), flatten(sparse_labels), sum(num_positives)) return gap_calculator.peek_ap_at_n()
Example 35
def correlations(A,B,pc_n=100): p = (1 - distance.correlation(A.flatten(),B.flatten())) spear = spearmanr(A.flatten(),B.flatten()) dist_genes = np.zeros(A.shape[0]) for i in range(A.shape[0]): dist_genes[i] = 1 - distance.correlation(A[i],B[i]) pg = (np.average(dist_genes[np.isfinite(dist_genes)])) dist_sample = np.zeros(A.shape[1]) for i in range(A.shape[1]): dist_sample[i] = 1 - distance.correlation(A[:,i],B[:,i]) ps = (np.average(dist_sample[np.isfinite(dist_sample)])) pc_dist = [] if pc_n > 0: u0,s0,vt0 = np.linalg.svd(A) u,s,vt = np.linalg.svd(B) for i in range(pc_n): pc_dist.append(abs(1 - distance.cosine(u0[:,i],u[:,i]))) pc_dist = np.array(pc_dist) return p,spear[0],pg,ps,pc_dist
Example 36
def record_tabular_misc_stat(key, values, placement='back'): if placement == 'front': prefix = "" suffix = key else: prefix = key suffix = "" if len(values) > 0: record_tabular(prefix + "Average" + suffix, np.average(values)) record_tabular(prefix + "Std" + suffix, np.std(values)) record_tabular(prefix + "Median" + suffix, np.median(values)) record_tabular(prefix + "Min" + suffix, np.min(values)) record_tabular(prefix + "Max" + suffix, np.max(values)) else: record_tabular(prefix + "Average" + suffix, np.nan) record_tabular(prefix + "Std" + suffix, np.nan) record_tabular(prefix + "Median" + suffix, np.nan) record_tabular(prefix + "Min" + suffix, np.nan) record_tabular(prefix + "Max" + suffix, np.nan)
Example 37
def step(self): """ Half of the step of k-means """ if self.step_completed: d = self.data.X points = [d[self.clusters == i] for i in range(len(self.centroids))] for i in range(len(self.centroids)): c_points = points[i] self.centroids[i, :] = (np.average(c_points, axis=0) if len(c_points) > 0 else np.nan) # reinitialize empty centroids nan_c = np.isnan(self.centroids).any(axis=1) if np.count_nonzero(nan_c) > 0: self.centroids[nan_c] = self.random_positioning( np.count_nonzero(nan_c)) self.centroids_moved = True else: self.clusters = self.find_clusters(self.centroids) self.centroids_moved = False self.step_no += 1 self.centroids_history = self.set_list( self.centroids_history, self.step_no, np.copy(self.centroids))
Example 38
def solint_numpy_indexing(dsref): start = time.time() dsref.as_numarray() tms = numpy.unique(dsref.x) # check if there is something to be averaged at all if len(tms)==len(dsref.x): return time.time() - start newds = dataset() for tm in tms: newds.append(tm, numpy.average(dsref.y[numpy.where(dsref.x==tm)]) ) dsref.x = newds.x dsref.y = newds.y return time.time() - start
Example 39
def solint_pure_python3(dsref): start = time.time() tms = set(dsref.x) # check if there is something to be averaged at all if len(tms)==len(dsref.x): return time.time() - start # accumulate data into bins of the same time r = reduce(lambda acc, (tm, y): acc[tm].add(y) or acc, \ itertools.izip(dsref.x, dsref.y), \ collections.defaultdict(average)) # do the averaging (x, y) = reduce(lambda (xl, yl), (tm, ys): (xl.append(tm) or xl, yl.append(ys.avg()) or yl), \ r.iteritems(), (list(), list())) dsref.x = x dsref.y = y return time.time() - start
Example 40
def calculate_gap(predictions, actuals, top_k=20): """Performs a local (numpy) calculation of the global average precision. Only the top_k predictions are taken for each of the videos. Args: predictions: Matrix containing the outputs of the model. Dimensions are 'batch' x 'num_classes'. actuals: Matrix containing the ground truth labels. Dimensions are 'batch' x 'num_classes'. top_k: How many predictions to use per video. Returns: float: The global average precision. """ gap_calculator = ap_calculator.AveragePrecisionCalculator() sparse_predictions, sparse_labels, num_positives = top_k_by_class(predictions, actuals, top_k) gap_calculator.accumulate(flatten(sparse_predictions), flatten(sparse_labels), sum(num_positives)) return gap_calculator.peek_ap_at_n()
Example 41
def calculate_gap(predictions, actuals, top_k=20): """Performs a local (numpy) calculation of the global average precision. Only the top_k predictions are taken for each of the videos. Args: predictions: Matrix containing the outputs of the model. Dimensions are 'batch' x 'num_classes'. actuals: Matrix containing the ground truth labels. Dimensions are 'batch' x 'num_classes'. top_k: How many predictions to use per video. Returns: float: The global average precision. """ gap_calculator = ap_calculator.AveragePrecisionCalculator() sparse_predictions, sparse_labels, num_positives = top_k_by_class(predictions, actuals, top_k) gap_calculator.accumulate(flatten(sparse_predictions), flatten(sparse_labels), sum(num_positives)) return gap_calculator.peek_ap_at_n()
Example 42
def markdown_overall_speedups(_type, _timing, r_benchmarks): txt_geomean = ' Geometeric mean :: ' txt_avg = ' Average :: ' txt_max = ' Maximum :: ' for _interp in r_benchmarks: txt_geomean += _interp + ': `' + ("%.3f" % geomean(r_benchmarks[_interp]) ) + 'x`, ' txt_avg += _interp + ': `' + ("%.3f" % np.average(r_benchmarks[_interp])) + 'x`, ' txt_max += _interp + ': `' + ("%.3f" % max(r_benchmarks[_interp]) ) + 'x`, ' if _interp not in benchmarks_stats_overall: benchmarks_stats_overall[_interp] = {} if _timing not in benchmarks_stats_overall[_interp]: benchmarks_stats_overall[_interp][_timing] = [] benchmarks_stats_overall[_interp][_timing] += r_benchmarks[_interp] txt_geomean += '\n\n' txt_avg += '\n\n' txt_max += '\n\n' if _type not in benchmarks_stats_types: benchmarks_stats_types[_type] = {} benchmarks_stats_types[_type][_timing] = [txt_geomean, txt_avg, txt_max]
Example 43
def calculate_hit_at_one(predictions, actuals): """Performs a local (numpy) calculation of the hit at one. Args: predictions: Matrix containing the outputs of the model. Dimensions are 'batch' x 'num_classes'. actuals: Matrix containing the ground truth labels. Dimensions are 'batch' x 'num_classes'. Returns: float: The average hit at one across the entire batch. """ top_prediction = numpy.argmax(predictions, 1) hits = actuals[numpy.arange(actuals.shape[0]), top_prediction] return numpy.average(hits)
Example 44
def calculate_precision_at_equal_recall_rate(predictions, actuals): """Performs a local (numpy) calculation of the PERR. Args: predictions: Matrix containing the outputs of the model. Dimensions are 'batch' x 'num_classes'. actuals: Matrix containing the ground truth labels. Dimensions are 'batch' x 'num_classes'. Returns: float: The average precision at equal recall rate across the entire batch. """ aggregated_precision = 0.0 num_videos = actuals.shape[0] for row in numpy.arange(num_videos): num_labels = int(numpy.sum(actuals[row])) top_indices = numpy.argpartition(predictions[row], -num_labels)[-num_labels:] item_precision = 0.0 for label_index in top_indices: if predictions[row][label_index] > 0: item_precision += actuals[row][label_index] item_precision /= top_indices.size aggregated_precision += item_precision aggregated_precision /= num_videos return aggregated_precision
Example 45
def calculate_hit_at_one(predictions, actuals): """Performs a local (numpy) calculation of the hit at one. Args: predictions: Matrix containing the outputs of the model. Dimensions are 'batch' x 'num_classes'. actuals: Matrix containing the ground truth labels. Dimensions are 'batch' x 'num_classes'. Returns: float: The average hit at one across the entire batch. """ top_prediction = numpy.argmax(predictions, 1) hits = actuals[numpy.arange(actuals.shape[0]), top_prediction] return numpy.average(hits)
Example 46
def calculate_precision_at_equal_recall_rate(predictions, actuals): """Performs a local (numpy) calculation of the PERR. Args: predictions: Matrix containing the outputs of the model. Dimensions are 'batch' x 'num_classes'. actuals: Matrix containing the ground truth labels. Dimensions are 'batch' x 'num_classes'. Returns: float: The average precision at equal recall rate across the entire batch. """ aggregated_precision = 0.0 num_videos = actuals.shape[0] for row in numpy.arange(num_videos): num_labels = int(numpy.sum(actuals[row])) top_indices = numpy.argpartition(predictions[row], -num_labels)[-num_labels:] item_precision = 0.0 for label_index in top_indices: if predictions[row][label_index] > 0: item_precision += actuals[row][label_index] item_precision /= top_indices.size aggregated_precision += item_precision aggregated_precision /= num_videos return aggregated_precision
Example 47
def calculate_hit_at_one(predictions, actuals): """Performs a local (numpy) calculation of the hit at one. Args: predictions: Matrix containing the outputs of the model. Dimensions are 'batch' x 'num_classes'. actuals: Matrix containing the ground truth labels. Dimensions are 'batch' x 'num_classes'. Returns: float: The average hit at one across the entire batch. """ top_prediction = numpy.argmax(predictions, 1) hits = actuals[numpy.arange(actuals.shape[0]), top_prediction] return numpy.average(hits)
Example 48
def calculate_precision_at_equal_recall_rate(predictions, actuals): """Performs a local (numpy) calculation of the PERR. Args: predictions: Matrix containing the outputs of the model. Dimensions are 'batch' x 'num_classes'. actuals: Matrix containing the ground truth labels. Dimensions are 'batch' x 'num_classes'. Returns: float: The average precision at equal recall rate across the entire batch. """ aggregated_precision = 0.0 num_videos = actuals.shape[0] for row in numpy.arange(num_videos): num_labels = int(numpy.sum(actuals[row])) top_indices = numpy.argpartition(predictions[row], -num_labels)[-num_labels:] item_precision = 0.0 for label_index in top_indices: if predictions[row][label_index] > 0: item_precision += actuals[row][label_index] item_precision /= top_indices.size aggregated_precision += item_precision aggregated_precision /= num_videos return aggregated_precision
Example 49
def get_regression_data(name, split, data_path=data_path): path = '{}{}.csv'.format(data_path, name) if not os.path.isfile(path): download(name +'.csv', data_path=data_path) data = pandas.read_csv(path, header=None).values if name in ['energy', 'naval']: # there are two Ys for these, but take only the first X_full = data[:, :-2] Y_full = data[:, -2] else: X_full = data[:, :-1] Y_full = data[:, -1] X, Y, Xs, Ys = make_split(X_full, Y_full, split) ############# whiten inputs X_mean, X_std = np.average(X, 0), np.std(X, 0)+1e-6 X = (X - X_mean)/X_std Xs = (Xs - X_mean)/X_std return X, Y[:, None], Xs, Ys[:, None]
Example 50
def test_weighted_average(self): """ Test results of weighted average against numpy.average """ stream = [np.random.random(size = (16,16)) for _ in range(5)] with self.subTest('float weights'): weights = [random() for _ in stream] from_iaverage = last(iaverage(stream, weights = weights)) from_numpy = np.average(np.dstack(stream), axis = 2, weights = np.array(weights)) self.assertTrue(np.allclose(from_iaverage, from_numpy)) with self.subTest('array weights'): weights = [np.random.random(size = stream[0].shape) for _ in stream] from_iaverage = last(iaverage(stream, weights = weights)) from_numpy = np.average(np.dstack(stream), axis = 2, weights = np.dstack(weights)) self.assertTrue(np.allclose(from_iaverage, from_numpy))