Python numpy.full() 使用实例

The following are code examples for showing how to use . They are extracted from open source Python projects. You can vote up the examples you like or vote down the exmaples you don’t like. You can also save this page to your account.

Example 1

def plot_spikepattern(spike_trains, sim_time):
    """Plot set of spike trains (spike pattern)"""
    plt.ioff()

    plt.figure()
    for i in xrange(len(spike_trains)):
        spike_times = spike_trains[i].value
        plt.plot(spike_times, np.full(len(spike_times), i,
                 dtype=np.int), 'k.')
    plt.xlim((0.0, sim_time))
    plt.ylim((0, len(spike_trains)))
    plt.xlabel('Time (ms)')
    plt.ylabel('Neuron index')
    plt.show()

    plt.ion() 

Example 2

def label_and_build_mask(self, episode):
        is_catastrophe_array = np.array(
            [is_catastrophe(frame.image) for frame in episode.frames if frame.action is not None])
        # should_block_array = np.array([should_block(frame.image, frame.action) for frame in episode.frames])

        labels = np.full(len(episode.frames), fill_value=False, dtype=np.bool)
        mask = np.full(len(episode.frames), fill_value=True, dtype=np.bool)

        for i in range(len(episode.frames)):
            if i + self.block_radius + 1 >= len(episode.frames):
                mask[i] = False
                continue
            if is_catastrophe_array[i]:
                mask[i] = False
                continue
            for j in range(self.block_radius + 1):
                if is_catastrophe_array[i + j + 1]:
                    labels[i] = True
                    break
        return labels, mask 

Example 3

def label_and_build_mask(self, episode):
        is_catastrophe_array = np.array(
            [is_catastrophe(frame.image) for frame in episode.frames if frame.action is not None])
        # should_block_array = np.array([should_block(frame.image, frame.action) for frame in episode.frames])

        labels = np.full(len(episode.frames), fill_value=False, dtype=np.bool)
        mask = np.full(len(episode.frames), fill_value=True, dtype=np.bool)

        for i in range(len(episode.frames)):
            if i + self.block_radius + 1 >= len(episode.frames):
                mask[i] = False
                continue
            if is_catastrophe_array[i]:
                mask[i] = False
                continue
            for j in range(self.block_radius + 1):
                if is_catastrophe_array[i + j + 1]:
                    labels[i] = True
                    break
        return labels, mask 

Example 4

def label_and_build_mask(self, episode):
        is_catastrophe_array = np.array(
            [is_catastrophe(frame.image) for frame in episode.frames if frame.action is not None])
        # should_block_array = np.array([should_block(frame.image, frame.action) for frame in episode.frames])

        labels = np.full(len(episode.frames), fill_value=False, dtype=np.bool)
        mask = np.full(len(episode.frames), fill_value=True, dtype=np.bool)

        for i in range(len(episode.frames)):
            if i + self.block_radius + 1 >= len(episode.frames):
                mask[i] = False
                continue
            if is_catastrophe_array[i]:
                mask[i] = False
                continue
            for j in range(self.block_radius + 1):
                if is_catastrophe_array[i + j + 1]:
                    labels[i] = True
                    break
        return labels, mask 

Example 5

def label_and_build_mask(self, episode):
        is_catastrophe_array = np.array(
            [is_catastrophe(frame.image) for frame in episode.frames if frame.action is not None])
        # should_block_array = np.array([should_block(frame.image, frame.action) for frame in episode.frames])

        labels = np.full(len(episode.frames), fill_value=False, dtype=np.bool)
        mask = np.full(len(episode.frames), fill_value=True, dtype=np.bool)

        for i in range(len(episode.frames)):
            if i + self.block_radius + 1 >= len(episode.frames):
                mask[i] = False
                continue
            if is_catastrophe_array[i]:
                mask[i] = False
                continue
            for j in range(self.block_radius + 1):
                if is_catastrophe_array[i + j + 1]:
                    labels[i] = True
                    break
        return labels, mask 

Example 6

def label_and_build_mask(self, episode):
        is_catastrophe_array = np.array(
            [is_catastrophe(frame.image) for frame in episode.frames if frame.action is not None])
        # should_block_array = np.array([should_block(frame.image, frame.action) for frame in episode.frames])

        labels = np.full(len(episode.frames), fill_value=False, dtype=np.bool)
        mask = np.full(len(episode.frames), fill_value=True, dtype=np.bool)

        for i in range(len(episode.frames)):
            if i + self.block_radius + 1 >= len(episode.frames):
                mask[i] = False
                continue
            if is_catastrophe_array[i]:
                mask[i] = False
                continue
            for j in range(self.block_radius + 1):
                if is_catastrophe_array[i + j + 1]:
                    labels[i] = True
                    break
        return labels, mask 

Example 7

def setUp(self):
    super(BridgeTest, self).setUp()
    self.batch_size = 4
    self.encoder_cell = tf.contrib.rnn.MultiRNNCell(
        [tf.contrib.rnn.GRUCell(4), tf.contrib.rnn.GRUCell(8)])
    self.decoder_cell = tf.contrib.rnn.MultiRNNCell(
        [tf.contrib.rnn.LSTMCell(16), tf.contrib.rnn.GRUCell(8)])
    final_encoder_state = nest.map_structure(
        lambda x: tf.convert_to_tensor(
            value=np.random.randn(self.batch_size, x),
            dtype=tf.float32),
        self.encoder_cell.state_size)
    self.encoder_outputs = EncoderOutput(
        outputs=tf.convert_to_tensor(
            value=np.random.randn(self.batch_size, 10, 16), dtype=tf.float32),
        attention_values=tf.convert_to_tensor(
            value=np.random.randn(self.batch_size, 10, 16), dtype=tf.float32),
        attention_values_length=np.full([self.batch_size], 10),
        final_state=final_encoder_state) 

Example 8

def _normalise_data(self):
        self.train_x_mean = np.zeros(self.input_dim)
        self.train_x_std = np.ones(self.input_dim)

        self.train_y_mean = np.zeros(self.output_dim)
        self.train_y_std = np.ones(self.output_dim)

        if self.normalise_data:
            self.train_x_mean = np.mean(self.train_x, axis=0)
            self.train_x_std = np.std(self.train_x, axis=0)
            self.train_x_std[self.train_x_std == 0] = 1.

            self.train_x = (self.train_x - np.full(self.train_x.shape, self.train_x_mean, dtype=np.float32)) / \
                           np.full(self.train_x.shape, self.train_x_std, dtype=np.float32)

            self.test_x = (self.test_x - np.full(self.test_x.shape, self.train_x_mean, dtype=np.float32)) / \
                          np.full(self.test_x.shape, self.train_x_std, dtype=np.float32)

            self.train_y_mean = np.mean(self.train_y, axis=0)
            self.train_y_std = np.std(self.train_y, axis=0)

            if self.train_y_std == 0:
                self.train_y_std[self.train_y_std == 0] = 1.

            self.train_y = (self.train_y - self.train_y_mean) / self.train_y_std 

Example 9

def fit_predict(self, ts):
        """
        Unsupervised training of TSBitMaps.
        
        :param ts: 1-D numpy array or pandas.Series 
        :return labels: `+1` for normal observations and `-1` for abnormal observations
        """
        assert self._lag_window_size > self._feature_window_size, 'lag_window_size must be >= feature_window_size'

        self._ref_ts = ts
        scores = self._slide_chunks(ts)
        self._ref_bitmap_scores = scores

        thres = np.percentile(scores[self._lag_window_size: -self._lead_window_size + 1], self._q)

        labels = np.full(len(ts), 1)
        for idx, score in enumerate(scores):
            if score > thres:
                labels[idx] = -1

        return labels 

Example 10

def create_bitmap_grid(bitmap, n, num_bins, level_size):
    """
    Arranges a time-series bitmap into a 2-D grid for heatmap visualization
    """
    assert num_bins % n == 0, 'num_bins has to be a multiple of n'
    m = num_bins // n

    row_count = int(math.pow(m, level_size))
    col_count = int(math.pow(n, level_size))

    grid = np.full((row_count, col_count), 0.0)

    for feat, count in bitmap.items():
        i, j = symbols2index(m, n, feat)
        grid[i, j] = count
    return grid 

Example 11

def get_data(setname):
    dataset = CorporaDataSet(setname)
#    topic_word_array = dataset.getWordsInTopicMatrix()
#    topic_doc_array = dataset.getDocsInTopicMatrix()
    topic_word_array = dataset.getDocsInTopicMatrix()
    topic_doc_array = dataset.getWordsInTopicMatrix().T
    doc_length_array = numpy.full([topic_doc_array.shape[0]],1)
    vocabulary = dataset.loadVocabulary()[0].keys()
    print "topic word array shape: ",topic_word_array.shape
    print "topic doc shape: ",topic_doc_array.shape
    print "vocabulary: ",len(vocabulary)
    wordfreqs = mmread(setname + ".mtx").sum(1)
    word_freq_array = numpy.array(wordfreqs)[:,0]

    return {topic_word_key:topic_word_array,
            topic_doc_key:topic_doc_array,
            doc_length_key:doc_length_array,
            vocabulary_key:vocabulary,
            word_freq_key:word_freq_array} 

Example 12

def sphankel1(n, kr):
    """Spherical Hankel (first kind) of order n at kr

    Parameters
    ----------
    n : array_like
       Order
    kr: array_like
       Argument

    Returns
    -------
    hn1 : complex float
       Spherical Hankel function hn (first kind)
    """
    n, kr = scalar_broadcast_match(n, kr)
    hn1 = _np.full(n.shape, _np.nan, dtype=_np.complex_)
    kr_nonzero = kr != 0
    hn1[kr_nonzero] = _np.sqrt(_np.pi / 2) / _np.lib.scimath.sqrt(kr[kr_nonzero]) * hankel1(n[kr_nonzero] + 0.5, kr[kr_nonzero])
    return hn1 

Example 13

def sphankel2(n, kr):
    """Spherical Hankel (second kind) of order n at kr

    Parameters
    ----------
    n : array_like
       Order
    kr: array_like
       Argument

    Returns
    -------
    hn2 : complex float
       Spherical Hankel function hn (second kind)
    """
    n, kr = scalar_broadcast_match(n, kr)
    hn2 = _np.full(n.shape, _np.nan, dtype=_np.complex_)
    kr_nonzero = kr != 0
    hn2[kr_nonzero] = _np.sqrt(_np.pi / 2) / _np.lib.scimath.sqrt(kr[kr_nonzero]) * hankel2(n[kr_nonzero] + 0.5, kr[kr_nonzero])
    return hn2 

Example 14

def dsphankel1(n, kr):
    """Derivative spherical Hankel (first kind) of order n at kr

    Parameters
    ----------
    n : array_like
       Order
    kr: array_like
       Argument

    Returns
    -------
    dhn1 : complex float
       Derivative of spherical Hankel function hn' (second kind)
    """
    n, kr = scalar_broadcast_match(n, kr)
    dhn1 = _np.full(n.shape, _np.nan, dtype=_np.complex_)
    kr_nonzero = kr != 0
    dhn1[kr_nonzero] = 0.5 * (sphankel1(n[kr_nonzero] - 1, kr[kr_nonzero]) - sphankel1(n[kr_nonzero] + 1, kr[kr_nonzero]) - sphankel1(n[kr_nonzero], kr[kr_nonzero]) / kr[kr_nonzero])
    return dhn1 

Example 15

def dsphankel2(n, kr):
    """Derivative spherical Hankel (second kind) of order n at kr

    Parameters
    ----------
    n : array_like
       Order
    kr: array_like
       Argument

    Returns
    -------
    dhn2 : complex float
       Derivative of spherical Hankel function hn' (second kind)
    """
    n, kr = scalar_broadcast_match(n, kr)
    dhn2 = _np.full(n.shape, _np.nan, dtype=_np.complex_)
    kr_nonzero = kr != 0
    dhn2[kr_nonzero] = 0.5 * (sphankel2(n[kr_nonzero] - 1, kr[kr_nonzero]) - sphankel2(n[kr_nonzero] + 1, kr[kr_nonzero]) - sphankel2(n[kr_nonzero], kr[kr_nonzero]) / kr[kr_nonzero])
    return dhn2 

Example 16

def test_find_multiple_noisy(self):
        """ Test finding multiple particles (noisy) """
        self.atol = 5
        radius = np.random.random() * 15 + 15
        generated_image = self.generate_image(radius, 10, noise=0.2)
        actual_number = len(generated_image.coords)
        fits = find_disks(generated_image.image, (radius / 2.0,
                                                  radius * 2.0),
                          maximum=actual_number)

        _, coords = sort_positions(generated_image.coords,
                                   np.array([fits['y'].values,
                                             fits['x'].values]).T)

        if len(fits) == 0:  # Nothing found
            actual = np.repeat([[np.nan, np.nan, np.nan]], actual_number,
                                axis=0)
        else:
            actual = fits[['r', 'y', 'x']].values.astype(np.float64)

        expected = np.array([np.full(actual_number, radius, np.float64),
                             coords[:, 0], coords[:, 1]]).T

        return np.sqrt(((actual - expected)**2).mean(0)), [0] * 3 

Example 17

def test_fit(self):
        '''
        Tests the fit to samples.
        '''
        # Generate random variates
        size = 100
        samples = self.vine.rvs(size)
        # Fit mixed vine to samples
        is_continuous = np.full((self.dim), True, dtype=bool)
        is_continuous[1] = False
        vine_est = MixedVine.fit(samples, is_continuous)
        assert_approx_equal(vine_est.root.copulas[0].theta, 0.77490,
                            significant=5)
        assert_approx_equal(vine_est.root.input_layer.copulas[0].theta,
                            4.01646, significant=5)
        assert_approx_equal(vine_est.root.input_layer.copulas[1].theta,
                            4.56877, significant=5) 

Example 18

def _logcdf(self, samples):
        lower = np.full(2, -np.inf)
        upper = norm.ppf(samples)
        limit_flags = np.zeros(2)
        if upper.shape[0] > 0:

            def func1d(upper1d):
                '''
                Calculates the multivariate normal cumulative distribution
                function of a single sample.
                '''
                return mvn.mvndst(lower, upper1d, limit_flags, self.theta)[1]

            vals = np.apply_along_axis(func1d, -1, upper)
        else:
            vals = np.empty((0, ))
        old_settings = np.seterr(divide='ignore')
        vals = np.log(vals)
        np.seterr(**old_settings)
        vals[np.any(samples == 0.0, axis=1)] = -np.inf
        vals[samples[:, 0] == 1.0] = np.log(samples[samples[:, 0] == 1.0, 1])
        vals[samples[:, 1] == 1.0] = np.log(samples[samples[:, 1] == 1.0, 0])
        return vals 

Example 19

def test_aggregate_variance(self):
        result = self.raster_rdd.aggregate_by_cell(Operation.VARIANCE)

        band = np.array([[
            [1,   1.5, 2,   2.5, 3],
            [1.5, 2,   2.5, 3,   3.5],
            [2,   2.5, 3,   3.5, 4],
            [2.5, 3,   3.5, 4,   4.5],
            [3,   3.5, 4,   4.5, 5]]])

        expected = np.array([
            ((self.first - band) ** 2) + ((self.second - band) ** 2),
            ((self.first - band) ** 2) + ((self.second - band) ** 2)
        ])
        expected_2 = np.full((5, 5), -1.0)

        self.assertTrue((result.lookup(1, 0)[0].cells == expected).all())
        self.assertTrue((result.lookup(0, 0)[0].cells == expected_2).all()) 

Example 20

def test_aggregate_std(self):
        result = self.raster_rdd.aggregate_by_cell(Operation.STANDARD_DEVIATION)

        band = np.array([[
            [1,   1.5, 2,   2.5, 3],
            [1.5, 2,   2.5, 3,   3.5],
            [2,   2.5, 3,   3.5, 4],
            [2.5, 3,   3.5, 4,   4.5],
            [3,   3.5, 4,   4.5, 5]]])

        expected = np.array([
            (((self.first - band) ** 2) + ((self.second - band) ** 2)) ** (1/2),
            (((self.first - band) ** 2) + ((self.second - band) ** 2)) ** (1/2)
        ])
        expected_2 = np.full((5, 5), -1.0)

        self.assertTrue((result.lookup(1, 0)[0].cells == expected).all())
        self.assertTrue((result.lookup(0, 0)[0].cells == expected_2).all()) 

Example 21

def show_weather_bydate(self):
        self.weathdf['gap'] = self.weathdf['time_slotid'].apply(self.find_gap_by_timeslot)
        by_date = self.weathdf.groupby('time_date')
        size = len(by_date)
        col_len = row_len = math.ceil(math.sqrt(size))
        count = 1
        for name, group in by_date:
            ax=plt.subplot(row_len, col_len, count)
#             temp = np.empty(group['time_id'].shape[0])
#             temp.fill(2)
             
#             ax.plot(group['time_id'], group['gap']/group['gap'].max(), 'r', alpha=0.75)
#             ax.plot(group['time_id'], group['weather']/group['weather'].max())
            ax.bar(group['time_id'], group['weather'], width=1)
            ax.set_title(name)
            count = count + 1
#             plt.bar(group['time_id'], np.full(group['time_id'].shape[0], 5), width=1)
             
        plt.show()
        return 

Example 22

def _retrieve_sample(self, annotation):
        epsilon = 0.05
        high_val = 1 - epsilon
        low_val = 0 + epsilon
        coco_image = self._coco.loadImgs(annotation['image_id'])[0]
        image_path = os.path.join(self._config.data_dir['images'], coco_image['file_name'])
        image = utils.load_image(image_path)

        ann_mask = self._coco.annToMask(annotation)

        mask_categorical = np.full((ann_mask.shape[0], ann_mask.shape[1], self.num_classes()), low_val, dtype=np.float32)
        mask_categorical[:, :, 0] = high_val  # every pixel begins as background

        class_index = self._cid_to_id[annotation['category_id']]
        mask_categorical[ann_mask > 0, class_index] = high_val
        mask_categorical[ann_mask > 0, 0] = low_val  # remove background label from pixels of this (non-bg) category
        return image, mask_categorical 

Example 23

def round(self, decimals=0, out=None):
        """
        Return an array rounded a to the given number of decimals.

        Refer to `numpy.around` for full documentation.

        See Also
        --------
        numpy.around : equivalent function

        """
        result = self._data.round(decimals=decimals, out=out).view(type(self))
        if result.ndim > 0:
            result._mask = self._mask
            result._update_from(self)
        elif self._mask:
            # Return masked when the scalar is masked
            result = masked
        # No explicit output: we're done
        if out is None:
            return result
        if isinstance(out, MaskedArray):
            out.__setmask__(self._mask)
        return out 

Example 24

def reshape(a, new_shape, order='C'):
    """
    Returns an array containing the same data with a new shape.

    Refer to `MaskedArray.reshape` for full documentation.

    See Also
    --------
    MaskedArray.reshape : equivalent function

    """
    # We can't use 'frommethod', it whine about some parameters. Dmmit.
    try:
        return a.reshape(new_shape, order=order)
    except AttributeError:
        _tmp = narray(a, copy=False).reshape(new_shape, order=order)
        return _tmp.view(MaskedArray) 

Example 25

def dump(a, F):
    """
    Pickle a masked array to a file.

    This is a wrapper around ``cPickle.dump``.

    Parameters
    ----------
    a : MaskedArray
        The array to be pickled.
    F : str or file-like object
        The file to pickle `a` to. If a string, the full path to the file.

    """
    if not hasattr(F, 'readline'):
        F = open(F, 'w')
    return pickle.dump(a, F) 

Example 26

def create_merge_multiple(save_path, creators, shuffle=True):
  n_sample_total = 0
  creator_indices = []
  for i, creator in enumerate(creators):
    creator._read_list()
    n_sample_total += creator.n_samples
    creator_indices.append(np.full((creator.n_samples), i, dtype=np.int))
  creator_indices = np.concatenate(creator_indices)

  if shuffle:
    np.random.shuffle(creator_indices)

  print('Start creating dataset with {} examples. Output path: {}'.format(
        n_sample_total, save_path))
  writer = tf.python_io.TFRecordWriter(save_path)
  count = 0
  for i in range(n_sample_total):
    creator = creators[creator_indices[i]]
    example = creator._create_next_sample()
    if example is not None:
      writer.write(example.SerializeToString())
      count += 1
    if i > 0 and i % 100 == 0:
      print('Progress %d / %d' % (i, n_sample_total))
  print('Done creating %d samples' % count) 

Example 27

def list_to_padded_tokens(dialogues, tokenizer):

    # compute the length of the dialogue
    seq_length = [len(d) for d in dialogues]

    # Get dialogue numpy max size
    batch_size = len(dialogues)
    max_seq_length = max(seq_length)

    # Initialize numpy array
    padded_tokens = np.full((batch_size, max_seq_length), tokenizer.padding_token, dtype=np.int32)

    # fill the padded array with word_id
    for i, (one_path, l) in enumerate(zip(dialogues, seq_length)):
       padded_tokens[i, 0:l] = one_path

    return padded_tokens, seq_length 

Example 28

def __parse_pairs__(self, filepath, delimiter = ',', target_col = 2, column_names = list(), sequence_length = None):
        assert("target" in column_names)
        with open(filepath, "r") as f:
            lines = f.readlines()
            try:
                if sequence_length is None:
                    dataframe = pd.read_csv(filepath, sep = delimiter, skip_blank_lines = True,
                        header = None, names = column_names, index_col = False)
                    sequence_length = np.asarray(dataframe[["i", "j"]]).max()
            except ValueError:
                return None
            data = np.full((sequence_length, sequence_length), np.nan, dtype = np.double)
            np.fill_diagonal(data, Params.DISTANCE_WITH_ITSELF)
            for line in lines:
                elements = line.rstrip("\r\n").split(delimiter)
                i, j, k = int(elements[0]) - 1, int(elements[1]) - 1, float(elements[target_col])
                data[i, j] = data[j, i] = k
            if np.isnan(data).any():
                # sequence_length is wrong or the input file has missing pairs
                warnings.warn("Warning: Pairs of residues are missing from the contacts text file")
                warnings.warn("Number of missing pairs: %i " % np.isnan(data).sum())
            return data 

Example 29

def extended_2d_fancy_indexing(arr, sl1, sl2, value_of_nan):
    new_shape = tuple([sl1.stop - sl1.start, sl2.stop - sl2.start] + list(arr.shape[2:]))
    result = np.full(new_shape, value_of_nan, dtype = arr.dtype)
    x_lower = 0 if sl1.start < 0 else sl1.start
    x_upper = arr.shape[0] if sl1.stop > arr.shape[0] else sl1.stop
    y_lower = 0 if sl2.start < 0 else sl2.start
    y_upper = arr.shape[1] if sl2.stop > arr.shape[1] else sl2.stop

    new_x_lower = max(0, - sl1.stop + (sl1.stop - sl1.start))
    new_x_upper = new_x_lower + (x_upper - x_lower)
    new_y_lower = max(0, - sl2.stop + (sl2.stop - sl2.start))
    new_y_upper = new_y_lower + (y_upper - y_lower)

    if len(result.shape) == 2:
        result[new_x_lower:new_x_upper, new_y_lower:new_y_upper] = arr[x_lower:x_upper, y_lower:y_upper]
    elif len(result.shape) == 3:
        result[new_x_lower:new_x_upper, new_y_lower:new_y_upper, :] = arr[x_lower:x_upper, y_lower:y_upper, :]
    else:
        raise WrongTensorShapeError()
    return result 

Example 30

def select_action(self, t, greedy_action_func, action_value=None):
        a = greedy_action_func()
        if self.ou_state is None:
            if self.start_with_mu:
                self.ou_state = np.full(a.shape, self.mu, dtype=np.float32)
            else:
                sigma_stable = (self.sigma /
                                np.sqrt(2 * self.theta - self.theta ** 2))
                self.ou_state = np.random.normal(
                    size=a.shape,
                    loc=self.mu, scale=sigma_stable).astype(np.float32)
        else:
            self.evolve()
        noise = self.ou_state
        self.logger.debug('t:%s noise:%s', t, noise)
        return a + noise 

Example 31

def test_soft_copy_param(self):
        a = L.Linear(1, 5)
        b = L.Linear(1, 5)

        a.W.data[:] = 0.5
        b.W.data[:] = 1

        # a = (1 - tau) * a + tau * b
        copy_param.soft_copy_param(target_link=a, source_link=b, tau=0.1)

        np.testing.assert_almost_equal(a.W.data, np.full(a.W.data.shape, 0.55))
        np.testing.assert_almost_equal(b.W.data, np.full(b.W.data.shape, 1.0))

        copy_param.soft_copy_param(target_link=a, source_link=b, tau=0.1)

        np.testing.assert_almost_equal(
            a.W.data, np.full(a.W.data.shape, 0.595))
        np.testing.assert_almost_equal(b.W.data, np.full(b.W.data.shape, 1.0)) 

Example 32

def get_next_note_from_note(self, note):
    """Given a note, uses the model to predict the most probable next note.

    Args:
      note: A one-hot encoding of the note.
    Returns:
      Next note in the same format.
    """
    with self.graph.as_default():
      with tf.variable_scope(self.scope, reuse=True):
        singleton_lengths = np.full(self.batch_size, 1, dtype=int)

        input_batch = np.reshape(note,
                                 (self.batch_size, 1, rl_tuner_ops.NUM_CLASSES))

        softmax, self.state_value = self.session.run(
            [self.softmax, self.state_tensor],
            {self.melody_sequence: input_batch,
             self.initial_state: self.state_value,
             self.lengths: singleton_lengths})

        return self.get_note_from_softmax(softmax) 

Example 33

def set_pixels(self, pixels):

        hsv = np.full((self.X_MAX, self.Y_MAX, 3), 0xFF, dtype=np.uint8)
        hsv[:, :, self.wave_type] = self.pixels[2] / 0xFFFF * 0xFF
        if self.wave_type == self.VALUE:
            hsv[:, :, 1] = 0
        if self.darken_mids:
            hsv[:, :, 2] = np.abs(self.pixels[2] - (0xFFFF >> 1)) / 0xFFFF * 0xFF

        rgb = color_utils.hsv2rgb(hsv)
        pixels[:self.X_MAX, :self.Y_MAX] = rgb

        self.pixels.pop(0)

    ##
    # Calculate next frame of explicit finite difference wave
    # 

Example 34

def basic_check(self):
        # TODO Ghi: check the microstructure model is compatible.
        # if we want to be strict, only IndependentShpere should be valid, but in pratice any
        # model of sphere with a radius can make it!
        if not hasattr(self.layer.microstructure, "radius"):
            raise SMRTError("Only microstructure_model which defined a `radius` can be used with Rayleigh scattering")

    # The phase function is inherited from Rayleigh  // Don't remove the commented code
    #    def phase(self, m, mhu):

    # The ke function is inherited from Rayleigh  // Don't remove the commented code
    # def ke(self, mhu):
    #    return np.full(2*len(mhu), self.ks+self.ka)

    # The effective_permittivity is inherited from Rayleigh  // Don't remove the commented code
    # def effective_permittivity(self):
    #    return self._effective_permittivity 

Example 35

def basic_check(self):
        # TODO Ghi: check the microstructure model is compatible.
        # if we want to be strict, only IndependentShpere should be valid, but in pratice any
        # model of sphere with a radius can make it!
        if not hasattr(self.layer.microstructure, "radius"):
            raise SMRTError("Only microstructure_model which defined a `radius` can be used with Rayleigh scattering")

    # The phase function is inherited from Rayleigh  // Don't remove the commented code
    #    def phase(self, m, mhu):

    # The ke function is inherited from Rayleigh  // Don't remove the commented code
    # def ke(self, mhu):
    #    return np.full(2*len(mhu), self.ks+self.ka)

    # The effective_permittivity is inherited from Rayleigh  // Don't remove the commented code
    # def effective_permittivity(self):
    #    return self._effective_permittivity 

Example 36

def basic_check(self):
        # TODO Ghi: check the microstructure model is compatible.
        # if we want to be strict, only IndependentShpere should be valid, but in pratice any
        # model of sphere with a radius can make it!
        if not hasattr(self.layer.microstructure, "radius"):
            raise SMRTError("Only microstructure_model which defined a `radius` can be used with Rayleigh scattering")

    # The phase function is inherited from Rayleigh  // Don't remove the commented code
    #    def phase(self, m, mhu):

    # The ke function is inherited from Rayleigh  // Don't remove the commented code
    # def ke(self, mhu):
    #    return np.full(2*len(mhu), self.ks+self.ka)

    # The effective_permittivity is inherited from Rayleigh  // Don't remove the commented code
    # def effective_permittivity(self):
    #    return self._effective_permittivity 

Example 37

def test_allreduce_hint(hetr_device, config):
    if hetr_device == 'gpu':
        if 'gpu' not in ngt.transformer_choices():
            pytest.skip("GPUTransformer not available")

    input = config['input']
    device_id = config['device_id']
    axis_A = ng.make_axis(length=4, name='axis_A')
    parallel_axis = ng.make_axis(name='axis_parallel', length=16)

    with ng.metadata(device=hetr_device,
                     device_id=device_id,
                     parallel=parallel_axis):
        var_A = ng.variable(axes=[axis_A], initial_value=UniformInit(1, 1))
        var_B = ng.variable(axes=[axis_A], initial_value=UniformInit(input, input))
        var_B.metadata['reduce_func'] = 'sum'
        var_B_mean = var_B / len(device_id)
        var_minus = (var_A - var_B_mean)

    with closing(ngt.make_transformer_factory('hetr', device=hetr_device)()) as hetr:
        out_comp = hetr.computation(var_minus)
        result = out_comp()
        np_result = np.full((axis_A.length), config['expected_result'], np.float32)
        np.testing.assert_array_equal(result, np_result) 

Example 38

def test_fixed_lr(iter_buf, max_iter, base_lr):
    # set up
    name = 'fixed'
    params = {'name': name,
              'max_iter': max_iter,
              'base_lr': base_lr}

    # execute
    naive_lr = np.full(max_iter, base_lr)
    lr_op = lr_policies[name]['obj'](params)(iter_buf)
    with ExecutorFactory() as ex:
        compute_lr = ex.executor(lr_op, iter_buf)
        ng_lr = [compute_lr(i).item(0) for i in range(max_iter)]

        # compare
        ng.testing.assert_allclose(ng_lr, naive_lr, atol=1e-4, rtol=1e-3) 

Example 39

def plot_spiker(record, spike_trains_target, neuron_index=0):
    """Plot spikeraster and target timings for given neuron index"""
    plt.ioff()

    spike_trains = [np.array(i.spiketrains[neuron_index])
                    for i in record.segments]
    n_segments = record.size['segments']

    plt.figure()
    for i in xrange(len(spike_trains)):
        plt.plot(spike_trains[i], np.full(len(spike_trains[i]), i + 1,
                 dtype=np.int), 'k.')
    target_timings = spike_trains_target[neuron_index].value
    plt.plot(target_timings, np.full(len(target_timings), 1.025 * n_segments),
             'kx', markersize=8, markeredgewidth=2)
    plt.xlim((0., np.float(record.segments[0].t_stop)))
    plt.ylim((0, np.int(1.05 * n_segments)))
    plt.xlabel('Time (ms)')
    plt.ylabel('Trials')
    plt.title('Output neuron {}'.format(neuron_index))
    plt.show()

    plt.ion() 

Example 40

def __init__(self, index):
        self.name = 'Walkington(tetrahedron, {})'.format(index)

        if index == 'p5':
            self.degree = 5
            self.weights = 6 * numpy.concatenate([
                numpy.full(4, 0.018781320953002641800),
                numpy.full(4, 0.012248840519393658257),
                numpy.full(6, 0.0070910034628469110730),
                ])
            self.bary = numpy.concatenate([
                _xi1(0.31088591926330060980),
                _xi1(0.092735250310891226402),
                _xi11(0.045503704125649649492),
                ])
            self.points = self.bary[:, 1:]
            return

        # Default: scheme from general simplex
        w = walkington.Walkington(3, index)
        self.weights = w.weights
        self.bary = w.bary
        self.points = w.points
        self.degree = w.degree
        return 

Example 41

def _gen5_3(n):
    '''Spherical product Lobatto formula.
    '''
    data = []
    s = sqrt(n+3)
    for k in range(1, n+1):
        rk = sqrt((k+2) * (n+3))
        Bk = fr(2**(k-n) * (n+1), (k+1) * (k+2) * (n+3))
        arr = [rk] + (n-k) * [s]
        data += [
            (Bk, pm_array0(n, arr, range(k-1, n)))
            ]
    B0 = 1 - sum([item[0]*len(item[1]) for item in data])
    data += [
        (B0, numpy.full((1, n), 0))
        ]
    return 5, data 

Example 42

def setup_rw(params):
    pore = get_pore(**params)
    rw = RandomWalk(pore, **params)
    rw.add_wall_binding(t=params.t_bind, p=params.p_bind, eps=params.eps_bind)
    
    # define non-standard stopping criteria
    Tmax = params.Tmax
    Rmax = params.Rmax
    
    def success(self, r, z):
        return self.in_channel(r, z) & (z <= params.zstop)
    
    def fail(self, r, z):
        if self.t > Tmax:
            return np.full(r.shape, True, dtype=bool)
        toolong = (self.times[self.alive] + self.bind_times[self.alive]) > 5e6
        toofar = r**2 + z**2 > Rmax**2
        return toolong | toofar
    
    rw.set_stopping_criteria(success, fail)
    return rw

########### STREAMLINE PLOT  ########### 

Example 43

def move_ellipses(self, coll, cyl=False):
        xz = self.x[:, ::2] if not cyl else np.column_stack(
           [np.sqrt(np.sum(self.x[:, :2]**2, 1)), self.x[:, 2]])
        coll.set_offsets(xz)
        #inside = self.inside_wall()
        #margin = np.nonzero(self.alive)[0][self.inside_wall(2.)]
        colors = np.full((self.N,), "b", dtype=str)
        #colors[margin] = "r"
        colors[self.success] = "k"
        colors[self.fail] = "k"
        colors[self.alive & ~self.can_bind] = "r"
        #colors = [("r" if inside[i] else "g") if margin[i] else "b" for i in range(self.N)]
        coll.set_facecolors(colors)
        #y = self.x[:, 1]
        #d = 50.
        #sizes = self.params.rMolecule*(1. + y/d)
        #coll.set(widths=sizes, heights=sizes) 

Example 44

def sample_scalar(self, shape, a):
        AMAX = 30
        if a > AMAX:
            return np.random.poisson(a, shape)
        k = 1
        K = np.full(shape, k)
        s = a/np.expm1(a)
        S = s
        U = np.random.random(shape)
        new = S < U
        while np.any(new):
            k += 1
            K[new] = k
            s = s*a/float(k)
            S = S + s
            new = S < U
        return K 

Example 45

def values(cls, dataset, dimension, expanded, flat):
        dimension = dataset.get_dimension(dimension)
        idx = dataset.get_dimension_index(dimension)
        data = dataset.data
        if idx not in [0, 1] and not expanded:
            return data[dimension.name].values
        values = []
        columns = list(data.columns)
        arr = geom_to_array(data.geometry.iloc[0])
        ds = dataset.clone(arr, datatype=cls.subtypes, vdims=[])
        for i, d in enumerate(data.geometry):
            arr = geom_to_array(d)
            if idx in [0, 1]:
                ds.data = arr
                values.append(ds.interface.values(ds, dimension))
            else:
                arr = np.full(len(arr), data.iloc[i, columns.index(dimension.name)])
                values.append(arr)
            values.append([np.NaN])
        return np.concatenate(values[:-1]) if values else np.array([]) 

Example 46

def create_validTest_data(self):

		for i in range(len(self.validTestQ)):
			qId 		= self.validTestQ[i]
			item 		= self.corpus.QAnswers[qId].itemId
			question 	= self.corpus.QAnswers[qId].qFeature
			answer_list	= [qId, self.validTestNa[i]]
			
			Pairwise 	= self.create_dense_pairwise(item, qId)
			Question 	= self.create_sparse_one(qFeature = question)
			Answer 		= self.create_sparse_one(answer_list = answer_list) 
			Review 		= self.Review[item]
			TermtoTermR 	= self.create_sparse_two(item, qFeature = question)
			TermtoTermP 	= self.create_sparse_two(item, answer_list = answer_list)

			Question_I  	= (Question[0], Question[1] if Question[1].size == 1 and Question[1][0] == 0 else np.full((Question[1].size), 1.0/np.sqrt(Question[1].size)), Question[2])
			Answer_I    	= (Answer[0], Answer[1] if Answer[1].size == 1 and Answer[1][0] == 0 else np.full((Answer[1].size), 1.0/np.sqrt(Answer[1].size)), Answer[2])
			Review_I 	= (Review[0], np.full((Review[1].size), 1.0/np.sqrt(Review[1].size)), Review[2])
			
			self.validTestM.append((Pairwise, Question, Answer, Review, TermtoTermR, TermtoTermP, Question_I, Answer_I, Review_I)) 

Example 47

def setUp(self):
    super(BridgeTest, self).setUp()
    self.batch_size = 4
    self.encoder_cell = tf.contrib.rnn.MultiRNNCell(
        [tf.contrib.rnn.GRUCell(4), tf.contrib.rnn.GRUCell(8)])
    self.decoder_cell = tf.contrib.rnn.MultiRNNCell(
        [tf.contrib.rnn.LSTMCell(16), tf.contrib.rnn.GRUCell(8)])
    final_encoder_state = nest.map_structure(
        lambda x: tf.convert_to_tensor(
            value=np.random.randn(self.batch_size, x),
            dtype=tf.float32),
        self.encoder_cell.state_size)
    self.encoder_outputs = EncoderOutput(
        outputs=tf.convert_to_tensor(
            value=np.random.randn(self.batch_size, 10, 16), dtype=tf.float32),
        attention_values=tf.convert_to_tensor(
            value=np.random.randn(self.batch_size, 10, 16), dtype=tf.float32),
        attention_values_length=np.full([self.batch_size], 10),
        final_state=final_encoder_state) 

Example 48

def dominant_sets(graph_mat, max_k=0, tol=1e-5, max_iter=1000):
    graph_cardinality = graph_mat.shape[0]
    if max_k == 0:
        max_k = graph_cardinality
    clusters = np.zeros(graph_cardinality)
    already_clustered = np.full(graph_cardinality, False, dtype=np.bool)

    for k in range(max_k):
        if graph_cardinality - already_clustered.sum() <= ceil(0.05 * graph_cardinality):
            break
        # 1000 is added to obtain more similar values when x is normalized
        # x = np.random.random_sample(graph_cardinality) + 1000.0
        x = np.full(graph_cardinality, 1.0)
        x[already_clustered] = 0.0
        x /= x.sum()

        y = replicator(graph_mat, x, np.where(~already_clustered)[0], tol, max_iter)
        cluster = np.where(y >= 1.0 / (graph_cardinality * 1.5))[0]
        already_clustered[cluster] = True
        clusters[cluster] = k
    clusters[~already_clustered] = k
    return clusters 

Example 49

def _search_ann(self, search_keys, dnd_keys, update_LRU_order):
        batch_indices = []
        for act, ann in self.anns.items():
            # These are the indices we get back from ANN search
            indices = ann.query(search_keys)
            log.debug("ANN indices for action {}: {}".format(act, indices))
            # Create numpy array with full of corresponding action vector index
            action_indices = np.full(indices.shape, self.action_vector.index(act))
            log.debug("Action indices for action {}: {}".format(act, action_indices))
            # Riffle two arrays
            tf_indices = self._riffle_arrays(action_indices, indices)
            batch_indices.append(tf_indices)
            # Very important part: Modify LRU Order here
            # Doesn't work without tabular update of course!
            if update_LRU_order == 1:
                _ = [self.tf_index__state_hash[act][i] for i in indices.ravel()]
        np_batch = np.asarray(batch_indices)
        log.debug("Batch update indices: {}".format(np_batch))

        # Reshaping to gather_nd compatible format
        final_indices = np.asarray([np_batch[:, j, :, :] for j in range(np_batch.shape[1])], dtype=np.int32)

        return final_indices 

Example 50

def contains(self, other):
        if isinstance(other, Point):
            x = other._x
        elif isinstance(other, np.ndarray):
            x = other
        elif isinstance(other, Polygon):
            x = _points_to_array(other.vertices)
            return np.all(self.contains(x))
        else:
            raise TypeError("P must be point or ndarray")

        # keep track of whether each point is contained in a face
        bools = np.full(x.shape[0], False, dtype=bool)
        for f in self.faces:
            bools = np.logical_or(bools, f.contains(x))
        return bools 
点赞