Python numpy.ascontiguousarray() 使用实例

The following are code examples for showing how to use . They are extracted from open source Python projects. You can vote up the examples you like or vote down the exmaples you don’t like. You can also save this page to your account.

Example 1

def _convert(matrix, arr):
    """Do the color space conversion.

    Parameters
    ----------
    matrix : array_like
        The 3x3 matrix to use.
    arr : array_like
        The input array.

    Returns
    -------
    out : ndarray, dtype=float
        The converted array.
    """
    arr = _prepare_colorarray(arr)
    arr = np.swapaxes(arr, 0, -1)
    oldshape = arr.shape
    arr = np.reshape(arr, (3, -1))
    out = np.dot(matrix, arr)
    out.shape = oldshape
    out = np.swapaxes(out, -1, 0)

    return np.ascontiguousarray(out) 

Example 2

def filter_sort_unique(self, max_objval=float('Inf')):
        # filter
        if max_objval < float('inf'):
            good_idx = self.objvals <= max_objval
            self.objvals = self.objvals[good_idx]
            self.solutions = self.solutions[good_idx]

        if len(self.objvals) > 0:
            sort_idx = np.argsort(self.objvals)
            self.objvals = self.objvals[sort_idx]
            self.solutions = self.solutions[sort_idx]

            # unique
            b = np.ascontiguousarray(self.solutions).view(
                np.dtype((np.void, self.solutions.dtype.itemsize * self.P)))
            _, unique_idx = np.unique(b, return_index=True)
            self.objvals = self.objvals[unique_idx]
            self.solutions = self.solutions[unique_idx] 

Example 3

def get_screen(self):
    screen = self.env.render(mode='rgb_array').transpose(
        (2, 0, 1))  # transpose into torch order (CHW)
    # Strip off the top and bottom of the screen
    screen = screen[:, 160:320]
    view_width = 320
    cart_location = self.get_cart_location()
    if cart_location < view_width // 2:
        slice_range = slice(view_width)
    elif cart_location > (self.screen_width - view_width // 2):
        slice_range = slice(-view_width, None)
    else:
        slice_range = slice(cart_location - view_width // 2,
                            cart_location + view_width // 2)
    # Strip off the edges, so that we have a square image centered on a cart
    screen = screen[:, :, slice_range]
    # Convert to float, rescare, convert to torch tensor
    # (this doesn't require a copy)
    screen = np.ascontiguousarray(screen, dtype=np.float32) / 255
    screen = torch.from_numpy(screen)
    # Resize, and add a batch dimension (BCHW)
    return self.resize(screen).numpy() 

Example 4

def _compute_targets(rois, overlaps, labels):
    """Compute bounding-box regression targets for an image."""
    # Indices of ground-truth ROIs
    gt_inds = np.where(overlaps == 1)[0]
    if len(gt_inds) == 0:
        # Bail if the image has no ground-truth ROIs
        return np.zeros((rois.shape[0], 5), dtype=np.float32)
    # Indices of examples for which we try to make predictions
    ex_inds = np.where(overlaps >= cfg.TRAIN.BBOX_THRESH)[0]

    # Get IoU overlap between each ex ROI and gt ROI
    ex_gt_overlaps = bbox_overlaps(
        np.ascontiguousarray(rois[ex_inds, :], dtype=np.float),
        np.ascontiguousarray(rois[gt_inds, :], dtype=np.float))

    # Find which gt ROI each ex ROI has max overlap with:
    # this will be the ex ROI's gt target
    gt_assignment = ex_gt_overlaps.argmax(axis=1)
    gt_rois = rois[gt_inds[gt_assignment], :]
    ex_rois = rois[ex_inds, :]

    targets = np.zeros((rois.shape[0], 5), dtype=np.float32)
    targets[ex_inds, 0] = labels[ex_inds]
    targets[ex_inds, 1:] = bbox_transform(ex_rois, gt_rois)
    return targets 

Example 5

def fit(self, X, y):
        """
        Estimate the topic distributions per document (theta), term
        distributions per topic (phi), and regression coefficients (eta).

        Parameters
        ----------
        X : array-like, shape = (n_docs, n_terms)
            The document-term matrix.

        y : array-like, shape = (n_docs,)
            Response values for each document.
        """

        self.doc_term_matrix = X
        self.n_docs, self.n_terms = X.shape
        self.n_tokens = X.sum()
        doc_lookup, term_lookup = self._create_lookups(X)
        # iterate
        self.theta, self.phi, self.eta, self.loglikelihoods = gibbs_sampler_slda(
            self.n_iter, self.n_report_iter,
            self.n_topics, self.n_docs, self.n_terms, self.n_tokens,
            self.alpha, self.beta, self.mu, self.nu2, self.sigma2,
            doc_lookup, term_lookup,
            np.ascontiguousarray(y, dtype=np.float64), self.seed) 

Example 6

def fit(self, X, y):
        """
        Estimate the topic distributions per document (theta), term
        distributions per topic (phi), and regression coefficients (eta).

        Parameters
        ----------
        X : array-like, shape = (n_docs, n_terms)
            The document-term matrix.

        y : array-like, shape = (n_docs,)
            Response values for each document.
        """

        self.doc_term_matrix = X
        self.n_docs, self.n_terms = X.shape
        self.n_tokens = X.sum()
        doc_lookup, term_lookup = self._create_lookups(X)
        # iterate
        self.theta, self.phi, self.eta, self.loglikelihoods = gibbs_sampler_blslda(
            self.n_iter, self.n_report_iter,
            self.n_topics, self.n_docs, self.n_terms, self.n_tokens,
            self.alpha, self.beta, self.mu, self.nu2, self.b,
            doc_lookup, term_lookup,
            np.ascontiguousarray(y, dtype=np.float64), self.seed) 

Example 7

def fit(self, X, y):
        """
        Estimate the topic distributions per document (theta), term
        distributions per topic (phi), and regression coefficients (eta).

        Parameters
        ----------
        X : array-like, shape = (n_docs, n_terms)
            The document-term matrix.

        y : array-like, shape = (n_docs,)
            Response values for each document.
        """

        self.doc_term_matrix = X
        self.n_docs, self.n_terms = X.shape
        self.n_tokens = X.sum()
        doc_lookup, term_lookup = self._create_lookups(X)
        # iterate
        self.theta, self.phi, self.eta, self.loglikelihoods = gibbs_sampler_slda(
            self.n_iter, self.n_report_iter,
            self.n_topics, self.n_docs, self.n_terms, self.n_tokens,
            self.alpha, self.beta, self.mu, self.nu2, self.sigma2,
            doc_lookup, term_lookup,
            np.ascontiguousarray(y, dtype=np.float64), self.seed) 

Example 8

def fit(self, X, y):
        """
        Estimate the topic distributions per document (theta), term
        distributions per topic (phi), and regression coefficients (eta).

        Parameters
        ----------
        X : array-like, shape = (n_docs, n_terms)
            The document-term matrix.

        y : array-like, shape = (n_docs,)
            Response values for each document.
        """

        self.doc_term_matrix = X
        self.n_docs, self.n_terms = X.shape
        self.n_tokens = X.sum()
        doc_lookup, term_lookup = self._create_lookups(X)
        # iterate
        self.theta, self.phi, self.eta, self.loglikelihoods = gibbs_sampler_blslda(
            self.n_iter, self.n_report_iter,
            self.n_topics, self.n_docs, self.n_terms, self.n_tokens,
            self.alpha, self.beta, self.mu, self.nu2, self.b,
            doc_lookup, term_lookup,
            np.ascontiguousarray(y, dtype=np.float64), self.seed) 

Example 9

def _compute_targets(rois, overlaps, labels):
    """Compute bounding-box regression targets for an image."""
    # Indices of ground-truth ROIs
    gt_inds = np.where(overlaps == 1)[0]
    if len(gt_inds) == 0:
        # Bail if the image has no ground-truth ROIs
        return np.zeros((rois.shape[0], 5), dtype=np.float32)
    # Indices of examples for which we try to make predictions
    ex_inds = np.where(overlaps >= cfg.TRAIN.BBOX_THRESH)[0]

    # Get IoU overlap between each ex ROI and gt ROI
    ex_gt_overlaps = bbox_overlaps(
        np.ascontiguousarray(rois[ex_inds, :], dtype=np.float),
        np.ascontiguousarray(rois[gt_inds, :], dtype=np.float))

    # Find which gt ROI each ex ROI has max overlap with:
    # this will be the ex ROI's gt target
    gt_assignment = ex_gt_overlaps.argmax(axis=1)
    gt_rois = rois[gt_inds[gt_assignment], :]
    ex_rois = rois[ex_inds, :]

    targets = np.zeros((rois.shape[0], 5), dtype=np.float32)
    targets[ex_inds, 0] = labels[ex_inds]
    targets[ex_inds, 1:] = bbox_transform(ex_rois, gt_rois)
    return targets 

Example 10

def console_fill_foreground(con,r,g,b) :
    if len(r) != len(g) or len(r) != len(b):
        raise TypeError('R, G and B must all have the same size.')

    if (numpy_available and isinstance(r, numpy.ndarray) and
        isinstance(g, numpy.ndarray) and isinstance(b, numpy.ndarray)):
        #numpy arrays, use numpy's ctypes functions
        r = numpy.ascontiguousarray(r, dtype=numpy.int_)
        g = numpy.ascontiguousarray(g, dtype=numpy.int_)
        b = numpy.ascontiguousarray(b, dtype=numpy.int_)
        cr = r.ctypes.data_as(POINTER(c_int))
        cg = g.ctypes.data_as(POINTER(c_int))
        cb = b.ctypes.data_as(POINTER(c_int))
    else:
        # otherwise convert using ctypes arrays
        cr = (c_int * len(r))(*r)
        cg = (c_int * len(g))(*g)
        cb = (c_int * len(b))(*b)

    _lib.TCOD_console_fill_foreground(con, cr, cg, cb) 

Example 11

def console_fill_background(con,r,g,b) :
    if len(r) != len(g) or len(r) != len(b):
        raise TypeError('R, G and B must all have the same size.')

    if (numpy_available and isinstance(r, numpy.ndarray) and
        isinstance(g, numpy.ndarray) and isinstance(b, numpy.ndarray)):
        #numpy arrays, use numpy's ctypes functions
        r = numpy.ascontiguousarray(r, dtype=numpy.int_)
        g = numpy.ascontiguousarray(g, dtype=numpy.int_)
        b = numpy.ascontiguousarray(b, dtype=numpy.int_)
        cr = r.ctypes.data_as(POINTER(c_int))
        cg = g.ctypes.data_as(POINTER(c_int))
        cb = b.ctypes.data_as(POINTER(c_int))
    else:
        # otherwise convert using ctypes arrays
        cr = (c_int * len(r))(*r)
        cg = (c_int * len(g))(*g)
        cb = (c_int * len(b))(*b)

    _lib.TCOD_console_fill_background(con, cr, cg, cb) 

Example 12

def predict(self, inputs):
    # uses MEMORY_DATA layer for loading images and postprocessing DENSE_CRF layer
    img = inputs[0].transpose((2, 0, 1))
    img = img[np.newaxis, :].astype(np.float32)
    label = np.zeros((1, 1, 1, 1), np.float32)
    data_dim = np.zeros((1, 1, 1, 2), np.float32)
    data_dim[0][0][0][0] = img.shape[2]
    data_dim[0][0][0][1] = img.shape[3]

    img      = np.ascontiguousarray(img, dtype=np.float32)
    label    = np.ascontiguousarray(label, dtype=np.float32)
    data_dim = np.ascontiguousarray(data_dim, dtype=np.float32)

    self.set_input_arrays(img, label, data_dim)
    out = self.forward()

    predictions = out[self.outputs[0]] # the output layer should be called crf_inf
    segm_result = predictions[0].argmax(axis=0).astype(np.uint8)

    return segm_result 

Example 13

def _compute_targets(rois, overlaps, labels):
    """Compute bounding-box regression targets for an image."""
    # Indices of ground-truth ROIs
    gt_inds = np.where(overlaps == 1)[0]
    # Indices of examples for which we try to make predictions
    ex_inds = np.where(overlaps >= cfg.TRAIN.BBOX_THRESH)[0]

    # Get IoU overlap between each ex ROI and gt ROI
    ex_gt_overlaps = bbox_overlaps(
        np.ascontiguousarray(rois[ex_inds, :], dtype=np.float),
        np.ascontiguousarray(rois[gt_inds, :], dtype=np.float))

    # Find which gt ROI each ex ROI has max overlap with:
    # this will be the ex ROI's gt target
    gt_assignment = ex_gt_overlaps.argmax(axis=1)
    gt_rois = rois[gt_inds[gt_assignment], :]
    ex_rois = rois[ex_inds, :]

    targets = np.zeros((rois.shape[0], 5), dtype=np.float32)
    targets[ex_inds, 0] = labels[ex_inds]
    targets[ex_inds, 1:] = bbox_transform(ex_rois, gt_rois)
    return targets 

Example 14

def write_features_hdf5(train, valid, test):
    f = h5py.File(args.hdf5, "w")

    train_grp = f.create_group("train")
    train_x = train_grp.create_dataset("train_x", train[0].shape, dtype='f', compression="gzip", compression_opts=9)
    train_y = train_grp.create_dataset("train_y", train[1].shape, dtype='i', compression="gzip", compression_opts=9)

    valid_grp = f.create_group("valid")
    valid_x = valid_grp.create_dataset("valid_x", valid[0].shape, dtype='f', compression="gzip", compression_opts=9)
    valid_y = valid_grp.create_dataset("valid_y", valid[1].shape, dtype='i', compression="gzip", compression_opts=9)

    test_grp = f.create_group("test")
    test_x = test_grp.create_dataset("test_x", test[0].shape, dtype='f', compression="gzip", compression_opts=9)
    test_y = test_grp.create_dataset("test_y", test[1].shape, dtype='i', compression="gzip", compression_opts=9)

    train_x.write_direct(np.ascontiguousarray(train[0], dtype=train[0].dtype))
    train_y.write_direct(np.ascontiguousarray(train[1], dtype=train[1].dtype))
    valid_x.write_direct(np.ascontiguousarray(valid[0], dtype=valid[0].dtype))
    valid_y.write_direct(np.ascontiguousarray(valid[1], dtype=valid[1].dtype))
    test_x.write_direct(np.ascontiguousarray(test[0], dtype=test[0].dtype))
    test_y.write_direct(np.ascontiguousarray(test[1], dtype=test[1].dtype))

    f.close() 

Example 15

def preprocess_image(img, cuda=False):
    means=[0.485, 0.456, 0.406]
    stds=[0.229, 0.224, 0.225]

    preprocessed_img = img.copy()[: , :, ::-1]
    for i in range(3):
        preprocessed_img[:, :, i] = preprocessed_img[:, :, i] - means[i]
        preprocessed_img[:, :, i] = preprocessed_img[:, :, i] / stds[i]
    preprocessed_img = \
        np.ascontiguousarray(np.transpose(preprocessed_img, (2, 0, 1)))
    preprocessed_img = torch.from_numpy(preprocessed_img)
    preprocessed_img.unsqueeze_(0)
    if cuda:
        preprocessed_img = Variable(preprocessed_img.cuda(), requires_grad=True)
    else:
        preprocessed_img = Variable(preprocessed_img, requires_grad=True)

    return preprocessed_img 

Example 16

def find_boundary(mesh,vals,threshold=0.5):
    """ Find boundary points on the phase diagram where the switching probability = threshold """
    boundary_points = []
    durs = mesh.points[:,0]
    volts = mesh.points[:,1]
    indices, indptr = mesh.vertex_neighbor_vertices
    for k in range(len(vals)):
        for k_nb in indptr[indices[k]:indices[k+1]]:
            if (vals[k]-threshold)*(vals[k_nb]-threshold)<0:
                x0 = find_cross([durs[k],vals[k]],[durs[k_nb],vals[k_nb]],cut=threshold)
                y0 = find_cross([volts[k],vals[k]],[volts[k_nb],vals[k_nb]],cut=threshold)
                boundary_points.append([x0,y0])

    boundary_points = np.array(boundary_points)
    if len(boundary_points) > 0:
        b = np.ascontiguousarray(boundary_points).view(np.dtype((np.void,
                            boundary_points.dtype.itemsize * boundary_points.shape[1])))
        _, idx = np.unique(b, return_index=True)
        boundary_points = boundary_points[idx]
        # Sort the boundary_points by x-axis
        boundary_points = sorted(boundary_points, key=itemgetter(0))
    return np.array(boundary_points) 

Example 17

def calc_information_sampling(data, bins, pys1, pxs, label, b, b1, len_unique_a, p_YgX, unique_inverse_x,
                              unique_inverse_y, calc_DKL=False):
	bins = bins.astype(np.float32)
	num_of_bins = bins.shape[0]
	# bins = stats.mstats.mquantiles(np.squeeze(data.reshape(1, -1)), np.linspace(0,1, num=num_of_bins))
	# hist, bin_edges = np.histogram(np.squeeze(data.reshape(1, -1)), normed=True)
	digitized = bins[np.digitize(np.squeeze(data.reshape(1, -1)), bins) - 1].reshape(len(data), -1)
	b2 = np.ascontiguousarray(digitized).view(
		np.dtype((np.void, digitized.dtype.itemsize * digitized.shape[1])))
	unique_array, unique_inverse_t, unique_counts = \
		np.unique(b2, return_index=False, return_inverse=True, return_counts=True)
	p_ts = unique_counts / float(sum(unique_counts))
	PXs, PYs = np.asarray(pxs).T, np.asarray(pys1).T
	if calc_DKL:
		pxy_given_T = np.array(
			[calc_probs(i, unique_inverse_t, label, b, b1, len_unique_a) for i in range(0, len(unique_array))]
		)
		p_XgT = np.vstack(pxy_given_T[:, 0])
		p_YgT = pxy_given_T[:, 1]
		p_YgT = np.vstack(p_YgT).T
		DKL_YgX_YgT = np.sum([inf_ut.KL(c_p_YgX, p_YgT.T) for c_p_YgX in p_YgX.T], axis=0)
		H_Xgt = np.nansum(p_XgT * np.log2(p_XgT), axis=1)
	local_IXT, local_ITY = calc_information_from_mat(PXs, PYs, p_ts, digitized, unique_inverse_x, unique_inverse_y,
	                                                 unique_array)
	return local_IXT, local_ITY 

Example 18

def calc_by_sampling_neurons(ws_iter_index, num_of_samples, label, sigma, bins, pxs):
	iter_infomration = []
	for j in range(len(ws_iter_index)):
		data = ws_iter_index[j]
		new_data = np.zeros((num_of_samples * data.shape[0], data.shape[1]))
		labels = np.zeros((num_of_samples * label.shape[0], label.shape[1]))
		x = np.zeros((num_of_samples * data.shape[0], 2))
		for i in range(data.shape[0]):
			cov_matrix = np.eye(data[i, :].shape[0]) * sigma
			t_i = np.random.multivariate_normal(data[i, :], cov_matrix, num_of_samples)
			new_data[num_of_samples * i:(num_of_samples * (i + 1)), :] = t_i
			labels[num_of_samples * i:(num_of_samples * (i + 1)), :] = label[i, :]
			x[num_of_samples * i:(num_of_samples * (i + 1)), 0] = i
		b = np.ascontiguousarray(x).view(np.dtype((np.void, x.dtype.itemsize * x.shape[1])))
		unique_array, unique_indices, unique_inverse_x, unique_counts = \
			np.unique(b, return_index=True, return_inverse=True, return_counts=True)
		b_y = np.ascontiguousarray(labels).view(np.dtype((np.void, labels.dtype.itemsize * labels.shape[1])))
		unique_array_y, unique_indices_y, unique_inverse_y, unique_counts_y = \
			np.unique(b_y, return_index=True, return_inverse=True, return_counts=True)
		pys1 = unique_counts_y / float(np.sum(unique_counts_y))
		iter_infomration.append(
			calc_information_for_layer(data=new_data, bins=bins, unique_inverse_x=unique_inverse_x,
			                           unique_inverse_y=unique_inverse_y, pxs=pxs, pys1=pys1))
		params = np.array(iter_infomration)
		return params 

Example 19

def extract_probs(label, x):
	"""calculate the probabilities of the given data and labels p(x), p(y) and (y|x)"""
	pys = np.sum(label, axis=0) / float(label.shape[0])
	b = np.ascontiguousarray(x).view(np.dtype((np.void, x.dtype.itemsize * x.shape[1])))
	unique_array, unique_indices, unique_inverse_x, unique_counts = \
		np.unique(b, return_index=True, return_inverse=True, return_counts=True)
	unique_a = x[unique_indices]
	b1 = np.ascontiguousarray(unique_a).view(np.dtype((np.void, unique_a.dtype.itemsize * unique_a.shape[1])))
	pxs = unique_counts / float(np.sum(unique_counts))
	p_y_given_x = []
	for i in range(0, len(unique_array)):
		indexs = unique_inverse_x == i
		py_x_current = np.mean(label[indexs, :], axis=0)
		p_y_given_x.append(py_x_current)
	p_y_given_x = np.array(p_y_given_x).T
	b_y = np.ascontiguousarray(label).view(np.dtype((np.void, label.dtype.itemsize * label.shape[1])))
	unique_array_y, unique_indices_y, unique_inverse_y, unique_counts_y = \
		np.unique(b_y, return_index=True, return_inverse=True, return_counts=True)
	pys1 = unique_counts_y / float(np.sum(unique_counts_y))
	return pys, pys1, p_y_given_x, b1, b, unique_a, unique_inverse_x, unique_inverse_y, pxs 

Example 20

def _compute_targets(rois, overlaps, labels):
    """Compute bounding-box regression targets for an image."""
    # Indices of ground-truth ROIs
    gt_inds = np.where(overlaps == 1)[0]
    if len(gt_inds) == 0:
        # Bail if the image has no ground-truth ROIs
        return np.zeros((rois.shape[0], 5), dtype=np.float32)
    # Indices of examples for which we try to make predictions
    ex_inds = np.where(overlaps >= cfg.TRAIN.BBOX_THRESH)[0]

    # Get IoU overlap between each ex ROI and gt ROI
    ex_gt_overlaps = bbox_overlaps(
        np.ascontiguousarray(rois[ex_inds, :], dtype=np.float),
        np.ascontiguousarray(rois[gt_inds, :], dtype=np.float))

    # Find which gt ROI each ex ROI has max overlap with:
    # this will be the ex ROI's gt target
    gt_assignment = ex_gt_overlaps.argmax(axis=1)
    gt_rois = rois[gt_inds[gt_assignment], :]
    ex_rois = rois[ex_inds, :]

    targets = np.zeros((rois.shape[0], 5), dtype=np.float32)
    targets[ex_inds, 0] = labels[ex_inds]
    targets[ex_inds, 1:] = bbox_transform(ex_rois, gt_rois)
    return targets 

Example 21

def test(filename, save_name):
    MEAN_VALUES = np.array([123.68, 116.78, 103.94])
    MEAN_VALUES = MEAN_VALUES.reshape((1, 1, 1, 3))
    image = scipy.misc.imread(filename, mode='RGB')
    image = scipy.misc.imresize(image, (HEIGHT,WIDTH))
    h,w,d = img.shape
    timg = np.reshape(image, (1, h, w, 3)) - MEAN_VALUES
    
    with tf.Session() as sess:
        images = tf.placeholder(tf.float32, shape=[1, h, w, d])
        genered = tf.nn.softmax(tf.squeeze(segMnet(images, multiplier),axis=0))
        saver = tf.train.Saver(tf.global_variables())
        model_file = tf.train.latest_checkpoint(MODEL_SAVE_PATH)
        if model_file:
            saver.restore(sess, model_file)
        else:
            raise Exception('Testing needs pre-trained model!')

        feed_dict = {images : timg}
        start = time.time()
        result = sess.run(genered,feed_dict=feed_dict)
        end = time.time()
        print ("cost time:%f"%(end-start))
    unary = unary_from_softmax(result.transpose((2,0,1)))
    unary = np.ascontiguousarray(unary)
    d = dcrf.DenseCRF(h*w, 2)
    d.setUnaryEnergy(unary)
    feats = create_pairwise_gaussian(sdims=(10, 10), shape=image.shape[:2])
    d.addPairwiseEnergy(feats, compat=3, kernel=dcrf.DIAG_KERNEL, normalization=dcrf.NORMALIZE_SYMMETRIC)
    feats = create_pairwise_bilateral(sdims=(50, 50), schan=(20, 20, 20), img=image, chdim=2)
    d.addPairwiseEnergy(feats, compat=10, kernel=dcrf.DIAG_KERNEL, normalization=dcrf.NORMALIZE_SYMMETRIC)
    Q = d.inference(50)
    MAP = np.argmax(Q,axis=0).reshape(h,w)

    img = np.zeros((h,w,4), dtype=np.int)
    img[:,:,0:3] = image
    img[:,:,3] = MAP * 255
    scipy.misc.imsave(save_name, img) 

Example 22

def to_coo(self, tensor_mode=False):
        userid, itemid, feedback = self.fields
        user_item_data = self.training[[userid, itemid]].values

        if tensor_mode:
            # TODO this recomputes feedback data every new functon call,
            # but if data has not changed - no need for this, make a property
            new_feedback, feedback_transform = self.reindex(self.training, feedback, inplace=False)
            self.index = self.index._replace(feedback=feedback_transform)

            idx = np.hstack((user_item_data, new_feedback[:, np.newaxis]))
            idx = np.ascontiguousarray(idx)
            val = np.ones(self.training.shape[0],)
        else:
            idx = user_item_data
            val = self.training[feedback].values

        shp = tuple(idx.max(axis=0) + 1)
        idx = idx.astype(np.intp)
        val = np.ascontiguousarray(val)
        return idx, val, shp 

Example 23

def _compute_targets(rois, overlaps, labels):
    """Compute bounding-box regression targets for an image."""
    # Indices of ground-truth ROIs
    gt_inds = np.where(overlaps == 1)[0]
    if len(gt_inds) == 0:
        # Bail if the image has no ground-truth ROIs
        return np.zeros((rois.shape[0], 5), dtype=np.float32)
    # Indices of examples for which we try to make predictions
    ex_inds = np.where(overlaps >= cfg.TRAIN.BBOX_THRESH)[0]

    # Get IoU overlap between each ex ROI and gt ROI
    ex_gt_overlaps = bbox_overlaps(
        np.ascontiguousarray(rois[ex_inds, :], dtype=np.float),
        np.ascontiguousarray(rois[gt_inds, :], dtype=np.float))

    # Find which gt ROI each ex ROI has max overlap with:
    # this will be the ex ROI's gt target
    gt_assignment = ex_gt_overlaps.argmax(axis=1)
    gt_rois = rois[gt_inds[gt_assignment], :]
    ex_rois = rois[ex_inds, :]

    targets = np.zeros((rois.shape[0], 5), dtype=np.float32)
    targets[ex_inds, 0] = labels[ex_inds]
    targets[ex_inds, 1:] = bbox_transform(ex_rois, gt_rois)
    return targets 

Example 24

def swap_axis_to_0(x, axis):
    """Insert a new singleton axis at position 0 and swap it with the
    specified axis. The resulting array has an additional dimension,
    with ``axis`` + 1 (which was ``axis`` before the insertion of the
    new axis) of ``x`` at position 0, and a singleton axis at position
    ``axis`` + 1.

    Parameters
    ----------
    x : ndarray
      Input array
    axis : int
      Index of axis in ``x`` to swap to axis index 0.

    Returns
    -------
    arr : ndarray
      Output array
    """

    return np.ascontiguousarray(np.swapaxes(x[np.newaxis, ...], 0, axis+1)) 

Example 25

def _compute_targets(rois, overlaps, labels):
    """Compute bounding-box regression targets for an image."""
    # Indices of ground-truth ROIs
    gt_inds = np.where(overlaps == 1)[0]
    if len(gt_inds) == 0:
        # Bail if the image has no ground-truth ROIs
        return np.zeros((rois.shape[0], 5), dtype=np.float32)
    # Indices of examples for which we try to make predictions
    ex_inds = np.where(overlaps >= cfg.TRAIN.BBOX_THRESH)[0]

    # Get IoU overlap between each ex ROI and gt ROI
    ex_gt_overlaps = bbox_overlaps(
        np.ascontiguousarray(rois[ex_inds, :], dtype=np.float),
        np.ascontiguousarray(rois[gt_inds, :], dtype=np.float))

    # Find which gt ROI each ex ROI has max overlap with:
    # this will be the ex ROI's gt target
    gt_assignment = ex_gt_overlaps.argmax(axis=1)
    gt_rois = rois[gt_inds[gt_assignment], :]
    ex_rois = rois[ex_inds, :]

    targets = np.zeros((rois.shape[0], 5), dtype=np.float32)
    targets[ex_inds, 0] = labels[ex_inds]
    targets[ex_inds, 1:] = bbox_transform(ex_rois, gt_rois)
    return targets 

Example 26

def write_tvl_direction_pairs(tvl_filename, tvl_header, direction_pairs):
        """Write the given directions to TVL.

        The direction pairs should be a list with lists containing the vector and value to write. For example:
        ((vec, val), (vec1, val1), ...) up to three pairs are allowed.

        Args:
            tvl_filename (str): the filename to write to
            tvl_header (:class:`list` or tuple): the header for the TVL file. This is a list of either 4 or 10 entries.
                4 entries: [version, res, gap, offset]
                10 entries: [version, x_res, x_gap, x_offset, y_res, y_gap, y_offset, z_res, z_gap, z_offset]
            direction_pairs (list of ndarrays): The list with direction pairs, only three are used.
                This is a list with (vector, magnitude) tuples in which the vectors are 4d volumes with for
                every voxel a 3d coordinate.
        """
        direction_pairs = direction_pairs[0:3]
        dir_matrix = np.zeros(direction_pairs[0][0].shape[0:3] + (12,))
        for ind, dirs in enumerate(direction_pairs):
            dir_matrix[..., ind*3:ind*3+3] = np.ascontiguousarray(TrackMark._ensure_3d(np.squeeze(dirs[0])))
            dir_matrix[..., 9 + ind] = np.ascontiguousarray(TrackMark._ensure_3d(np.squeeze(dirs[1])))

        TrackMark.write_tvl_matrix(tvl_filename, tvl_header, dir_matrix) 

Example 27

def _compute_targets(rois, overlaps, labels):
    """Compute bounding-box regression targets for an image."""
    # Indices of ground-truth ROIs
    gt_inds = np.where(overlaps == 1)[0]
    if len(gt_inds) == 0:
        # Bail if the image has no ground-truth ROIs
        return np.zeros((rois.shape[0], 5), dtype=np.float32)
    # Indices of examples for which we try to make predictions
    ex_inds = np.where(overlaps >= cfg.TRAIN.BBOX_THRESH)[0]

    # Get IoU overlap between each ex ROI and gt ROI
    ex_gt_overlaps = bbox_overlaps(
        np.ascontiguousarray(rois[ex_inds, :], dtype=np.float),
        np.ascontiguousarray(rois[gt_inds, :], dtype=np.float))

    # Find which gt ROI each ex ROI has max overlap with:
    # this will be the ex ROI's gt target
    gt_assignment = ex_gt_overlaps.argmax(axis=1)
    gt_rois = rois[gt_inds[gt_assignment], :]
    ex_rois = rois[ex_inds, :]

    targets = np.zeros((rois.shape[0], 5), dtype=np.float32)
    targets[ex_inds, 0] = labels[ex_inds]
    targets[ex_inds, 1:] = bbox_transform(ex_rois, gt_rois)
    return targets 

Example 28

def _compute_targets(rois, overlaps, labels):
    """Compute bounding-box regression targets for an image."""
    # Indices of ground-truth ROIs
    gt_inds = np.where(overlaps == 1)[0]
    if len(gt_inds) == 0:
        # Bail if the image has no ground-truth ROIs
        return np.zeros((rois.shape[0], 5), dtype=np.float32)
    # Indices of examples for which we try to make predictions
    ex_inds = np.where(overlaps >= cfg.TRAIN.BBOX_THRESH)[0]

    # Get IoU overlap between each ex ROI and gt ROI
    ex_gt_overlaps = bbox_overlaps(
        np.ascontiguousarray(rois[ex_inds, :], dtype=np.float),
        np.ascontiguousarray(rois[gt_inds, :], dtype=np.float))

    # Find which gt ROI each ex ROI has max overlap with:
    # this will be the ex ROI's gt target
    gt_assignment = ex_gt_overlaps.argmax(axis=1)
    gt_rois = rois[gt_inds[gt_assignment], :]
    ex_rois = rois[ex_inds, :]

    targets = np.zeros((rois.shape[0], 5), dtype=np.float32)
    targets[ex_inds, 0] = labels[ex_inds]
    targets[ex_inds, 1:] = bbox_transform(ex_rois, gt_rois)
    return targets 

Example 29

def _compute_targets(rois, overlaps, labels):
    """Compute bounding-box regression targets for an image."""
    # Indices of ground-truth ROIs
    gt_inds = np.where(overlaps == 1)[0]
    if len(gt_inds) == 0:
        # Bail if the image has no ground-truth ROIs
        return np.zeros((rois.shape[0], 5), dtype=np.float32)
    # Indices of examples for which we try to make predictions
    ex_inds = np.where(overlaps >= cfg.TRAIN.BBOX_THRESH)[0]

    # Get IoU overlap between each ex ROI and gt ROI
    ex_gt_overlaps = bbox_overlaps(
        np.ascontiguousarray(rois[ex_inds, :], dtype=np.float),
        np.ascontiguousarray(rois[gt_inds, :], dtype=np.float))

    # Find which gt ROI each ex ROI has max overlap with:
    # this will be the ex ROI's gt target
    gt_assignment = ex_gt_overlaps.argmax(axis=1)
    gt_rois = rois[gt_inds[gt_assignment], :]
    ex_rois = rois[ex_inds, :]

    targets = np.zeros((rois.shape[0], 5), dtype=np.float32)
    targets[ex_inds, 0] = labels[ex_inds]
    targets[ex_inds, 1:] = bbox_transform(ex_rois, gt_rois)
    return targets 

Example 30

def console_fill_foreground(con,r,g,b) :
    if len(r) != len(g) or len(r) != len(b):
        raise TypeError('R, G and B must all have the same size.')

    if (numpy_available and isinstance(r, numpy.ndarray) and
        isinstance(g, numpy.ndarray) and isinstance(b, numpy.ndarray)):
        #numpy arrays, use numpy's ctypes functions
        r = numpy.ascontiguousarray(r, dtype=numpy.int_)
        g = numpy.ascontiguousarray(g, dtype=numpy.int_)
        b = numpy.ascontiguousarray(b, dtype=numpy.int_)
        cr = r.ctypes.data_as(POINTER(c_int))
        cg = g.ctypes.data_as(POINTER(c_int))
        cb = b.ctypes.data_as(POINTER(c_int))
    else:
        # otherwise convert using ctypes arrays
        cr = (c_int * len(r))(*r)
        cg = (c_int * len(g))(*g)
        cb = (c_int * len(b))(*b)

    _lib.TCOD_console_fill_foreground(con, cr, cg, cb) 

Example 31

def console_fill_background(con,r,g,b) :
    if len(r) != len(g) or len(r) != len(b):
        raise TypeError('R, G and B must all have the same size.')

    if (numpy_available and isinstance(r, numpy.ndarray) and
        isinstance(g, numpy.ndarray) and isinstance(b, numpy.ndarray)):
        #numpy arrays, use numpy's ctypes functions
        r = numpy.ascontiguousarray(r, dtype=numpy.int_)
        g = numpy.ascontiguousarray(g, dtype=numpy.int_)
        b = numpy.ascontiguousarray(b, dtype=numpy.int_)
        cr = r.ctypes.data_as(POINTER(c_int))
        cg = g.ctypes.data_as(POINTER(c_int))
        cb = b.ctypes.data_as(POINTER(c_int))
    else:
        # otherwise convert using ctypes arrays
        cr = (c_int * len(r))(*r)
        cg = (c_int * len(g))(*g)
        cb = (c_int * len(b))(*b)

    _lib.TCOD_console_fill_background(con, cr, cg, cb) 

Example 32

def read_bed_chunk(filepath, nrows, ncols, row_start, row_end, col_start,
                   col_end):

    X = zeros((row_end - row_start, col_end - col_start), int64)

    ptr = ffi.cast("uint64_t *", X.ctypes.data)
    strides = empty(2, int64)
    strides[:] = X.strides
    strides //= 8

    e = lib.read_bed_chunk(filepath, nrows, ncols, row_start, col_start,
                           row_end, col_end, ptr,
                           ffi.cast("uint64_t *", strides.ctypes.data))
    if e != 0:
        raise RuntimeError("Failure while reading BED file %s." % filepath)

    X = ascontiguousarray(X, float)
    X[X == 3] = nan
    return X 

Example 33

def _compute_targets(rois, overlaps, labels):
    """Compute bounding-box regression targets for an image."""
    # Indices of ground-truth ROIs

    gt_inds = np.where(overlaps == 1)[0]
    # Indices of examples for which we try to make predictions
    ex_inds = np.where(overlaps >= cfg.TRAIN.BBOX_THRESH)[0]

    # Get IoU overlap between each ex ROI and gt ROI
    ex_gt_overlaps = bbox_overlaps(
        np.ascontiguousarray(rois[ex_inds, :], dtype=np.float),
        np.ascontiguousarray(rois[gt_inds, :], dtype=np.float))

    # Find which gt ROI each ex ROI has max overlap with:
    # this will be the ex ROI's gt target
    gt_assignment = ex_gt_overlaps.argmax(axis=1)
    gt_rois = rois[gt_inds[gt_assignment], :]
    ex_rois = rois[ex_inds, :]

    targets = np.zeros((rois.shape[0], 5), dtype=np.float32)
    targets[ex_inds, 0] = labels[ex_inds]
    targets[ex_inds, 1:] = bbox_transform(ex_rois, gt_rois)
    return targets 

Example 34

def preprocess_image(img):
	means=[0.485, 0.456, 0.406]
	stds=[0.229, 0.224, 0.225]

	preprocessed_img = img.copy()[: , :, ::-1]
	for i in range(3):
		preprocessed_img[:, :, i] = preprocessed_img[:, :, i] - means[i]
		preprocessed_img[:, :, i] = preprocessed_img[:, :, i] / stds[i]
	preprocessed_img = \
		np.ascontiguousarray(np.transpose(preprocessed_img, (2, 0, 1)))

	if use_cuda:
		preprocessed_img_tensor = torch.from_numpy(preprocessed_img).cuda()
	else:
		preprocessed_img_tensor = torch.from_numpy(preprocessed_img)

	preprocessed_img_tensor.unsqueeze_(0)
	return Variable(preprocessed_img_tensor, requires_grad = False) 

Example 35

def _sync_copyfrom(self, source_array):
        """Peform an synchronize copy from the array.
        Parameters
        ----------
        source_array : array_like
            The data source we should like to copy from.
        """
        if not isinstance(source_array, np.ndarray):
            try:
                source_array = np.array(source_array, dtype=np.float32)
            except:
                raise TypeError('array must be an array_like data,' +
                                'type %s is not supported'
                                % str(type(source_array)))
        source_array = np.ascontiguousarray(source_array, dtype=np.float32)
        if source_array.shape != self.shape:
            raise ValueError('array shape do not match the shape of NDArray')
        source_arr, shape = NDArray._numpyasarray(source_array)
        check_call(_LIB.DLArrayCopyFromTo(
            ctypes.byref(source_arr), self.handle, None))
        # de-allocate shape until now
        _ = shape 

Example 36

def console_fill_foreground(con,r,g,b) :
    if len(r) != len(g) or len(r) != len(b):
        raise TypeError('R, G and B must all have the same size.')

    if (numpy_available and isinstance(r, numpy.ndarray) and
        isinstance(g, numpy.ndarray) and isinstance(b, numpy.ndarray)):
        #numpy arrays, use numpy's ctypes functions
        r = numpy.ascontiguousarray(r, dtype=numpy.int_)
        g = numpy.ascontiguousarray(g, dtype=numpy.int_)
        b = numpy.ascontiguousarray(b, dtype=numpy.int_)
        cr = r.ctypes.data_as(POINTER(c_int))
        cg = g.ctypes.data_as(POINTER(c_int))
        cb = b.ctypes.data_as(POINTER(c_int))
    else:
        # otherwise convert using ctypes arrays
        cr = (c_int * len(r))(*r)
        cg = (c_int * len(g))(*g)
        cb = (c_int * len(b))(*b)

    _lib.TCOD_console_fill_foreground(con, cr, cg, cb) 

Example 37

def console_fill_background(con,r,g,b) :
    if len(r) != len(g) or len(r) != len(b):
        raise TypeError('R, G and B must all have the same size.')

    if (numpy_available and isinstance(r, numpy.ndarray) and
        isinstance(g, numpy.ndarray) and isinstance(b, numpy.ndarray)):
        #numpy arrays, use numpy's ctypes functions
        r = numpy.ascontiguousarray(r, dtype=numpy.int_)
        g = numpy.ascontiguousarray(g, dtype=numpy.int_)
        b = numpy.ascontiguousarray(b, dtype=numpy.int_)
        cr = r.ctypes.data_as(POINTER(c_int))
        cg = g.ctypes.data_as(POINTER(c_int))
        cb = b.ctypes.data_as(POINTER(c_int))
    else:
        # otherwise convert using ctypes arrays
        cr = (c_int * len(r))(*r)
        cg = (c_int * len(g))(*g)
        cb = (c_int * len(b))(*b)

    _lib.TCOD_console_fill_background(con, cr, cg, cb) 

Example 38

def _compute_targets(rois, overlaps, labels):
    """Compute bounding-box regression targets for an image."""
    # Indices of ground-truth ROIs
    gt_inds = np.where(overlaps == 1)[0]
    if len(gt_inds) == 0:
        # Bail if the image has no ground-truth ROIs
        return np.zeros((rois.shape[0], 5), dtype=np.float32)
    # Indices of examples for which we try to make predictions
    ex_inds = np.where(overlaps >= cfg.TRAIN.BBOX_THRESH)[0]

    # Get IoU overlap between each ex ROI and gt ROI
    ex_gt_overlaps = bbox_overlaps(
        np.ascontiguousarray(rois[ex_inds, :], dtype=np.float),
        np.ascontiguousarray(rois[gt_inds, :], dtype=np.float))

    # Find which gt ROI each ex ROI has max overlap with:
    # this will be the ex ROI's gt target
    gt_assignment = ex_gt_overlaps.argmax(axis=1)
    gt_rois = rois[gt_inds[gt_assignment], :]
    ex_rois = rois[ex_inds, :]

    targets = np.zeros((rois.shape[0], 5), dtype=np.float32)
    targets[ex_inds, 0] = labels[ex_inds]
    targets[ex_inds, 1:] = bbox_transform(ex_rois, gt_rois)
    return targets 

Example 39

def _compute_targets(rois, overlaps, labels):
    """Compute bounding-box regression targets for an image."""
    # Indices of ground-truth ROIs
    gt_inds = np.where(overlaps == 1)[0]
    if len(gt_inds) == 0:
        # Bail if the image has no ground-truth ROIs
        return np.zeros((rois.shape[0], 5), dtype=np.float32)
    # Indices of examples for which we try to make predictions
    ex_inds = np.where(overlaps >= cfg.TRAIN.BBOX_THRESH)[0]

    # Get IoU overlap between each ex ROI and gt ROI
    ex_gt_overlaps = bbox_overlaps(
        np.ascontiguousarray(rois[ex_inds, :], dtype=np.float),
        np.ascontiguousarray(rois[gt_inds, :], dtype=np.float))

    # Find which gt ROI each ex ROI has max overlap with:
    # this will be the ex ROI's gt target
    gt_assignment = ex_gt_overlaps.argmax(axis=1)
    gt_rois = rois[gt_inds[gt_assignment], :]
    ex_rois = rois[ex_inds, :]

    targets = np.zeros((rois.shape[0], 5), dtype=np.float32)
    targets[ex_inds, 0] = labels[ex_inds]
    targets[ex_inds, 1:] = bbox_transform(ex_rois, gt_rois)
    return targets 

Example 40

def _compute_targets(rois, overlaps, labels):
    """Compute bounding-box regression targets for an image."""
    # Indices of ground-truth ROIs
    gt_inds = np.where(overlaps == 1)[0]
    # Indices of examples for which we try to make predictions
    ex_inds = np.where(overlaps >= cfg.TRAIN.BBOX_THRESH)[0]

    # Get IoU overlap between each ex ROI and gt ROI
    ex_gt_overlaps = bbox_overlaps(
        np.ascontiguousarray(rois[ex_inds, :], dtype=np.float),
        np.ascontiguousarray(rois[gt_inds, :], dtype=np.float))

    # Find which gt ROI each ex ROI has max overlap with:
    # this will be the ex ROI's gt target
    gt_assignment = ex_gt_overlaps.argmax(axis=1)
    gt_rois = rois[gt_inds[gt_assignment], :]
    ex_rois = rois[ex_inds, :]

    targets = np.zeros((rois.shape[0], 5), dtype=np.float32)
    targets[ex_inds, 0] = labels[ex_inds]
    targets[ex_inds, 1:] = bbox_transform(ex_rois, gt_rois)
    return targets 

Example 41

def _compute_targets(rois, overlaps, labels):
    """Compute bounding-box regression targets for an image."""
    # Indices of ground-truth ROIs
    gt_inds = np.where(overlaps == 1)[0]
    if len(gt_inds) == 0:
        # Bail if the image has no ground-truth ROIs
        return np.zeros((rois.shape[0], 5), dtype=np.float32)
    # Indices of examples for which we try to make predictions
    ex_inds = np.where(overlaps >= cfg.TRAIN.BBOX_THRESH)[0]

    # Get IoU overlap between each ex ROI and gt ROI
    ex_gt_overlaps = bbox_overlaps(
        np.ascontiguousarray(rois[ex_inds, :], dtype=np.float),
        np.ascontiguousarray(rois[gt_inds, :], dtype=np.float))

    # Find which gt ROI each ex ROI has max overlap with:
    # this will be the ex ROI's gt target
    gt_assignment = ex_gt_overlaps.argmax(axis=1)
    gt_rois = rois[gt_inds[gt_assignment], :]
    ex_rois = rois[ex_inds, :]

    targets = np.zeros((rois.shape[0], 5), dtype=np.float32)
    targets[ex_inds, 0] = labels[ex_inds]
    targets[ex_inds, 1:] = bbox_transform(ex_rois, gt_rois)
    return targets 

Example 42

def _compute_targets(rois, overlaps, labels):
    """Compute bounding-box regression targets for an image."""
    # Indices of ground-truth ROIs
    gt_inds = np.where(overlaps == 1)[0]
    if len(gt_inds) == 0:
        # Bail if the image has no ground-truth ROIs
        return np.zeros((rois.shape[0], 5), dtype=np.float32)
    # Indices of examples for which we try to make predictions
    ex_inds = np.where(overlaps >= cfg.TRAIN.BBOX_THRESH)[0]

    # Get IoU overlap between each ex ROI and gt ROI
    ex_gt_overlaps = bbox_overlaps(
        np.ascontiguousarray(rois[ex_inds, :], dtype=np.float),
        np.ascontiguousarray(rois[gt_inds, :], dtype=np.float))

    # Find which gt ROI each ex ROI has max overlap with:
    # this will be the ex ROI's gt target
    gt_assignment = ex_gt_overlaps.argmax(axis=1)
    gt_rois = rois[gt_inds[gt_assignment], :]
    ex_rois = rois[ex_inds, :]

    targets = np.zeros((rois.shape[0], 5), dtype=np.float32)
    targets[ex_inds, 0] = labels[ex_inds]
    targets[ex_inds, 1:] = bbox_transform(ex_rois, gt_rois)
    return targets 

Example 43

def console_fill_foreground(con,r,g,b) :
    if len(r) != len(g) or len(r) != len(b):
        raise TypeError('R, G and B must all have the same size.')

    if (numpy_available and isinstance(r, numpy.ndarray) and
        isinstance(g, numpy.ndarray) and isinstance(b, numpy.ndarray)):
        #numpy arrays, use numpy's ctypes functions
        r = numpy.ascontiguousarray(r, dtype=numpy.int32)
        g = numpy.ascontiguousarray(g, dtype=numpy.int32)
        b = numpy.ascontiguousarray(b, dtype=numpy.int32)
        cr = r.ctypes.data_as(POINTER(c_int))
        cg = g.ctypes.data_as(POINTER(c_int))
        cb = b.ctypes.data_as(POINTER(c_int))
    else:
        # otherwise convert using ctypes arrays
        cr = (c_int * len(r))(*r)
        cg = (c_int * len(g))(*g)
        cb = (c_int * len(b))(*b)

    _lib.TCOD_console_fill_foreground(con, cr, cg, cb) 

Example 44

def console_fill_background(con,r,g,b) :
    if len(r) != len(g) or len(r) != len(b):
        raise TypeError('R, G and B must all have the same size.')

    if (numpy_available and isinstance(r, numpy.ndarray) and
        isinstance(g, numpy.ndarray) and isinstance(b, numpy.ndarray)):
        #numpy arrays, use numpy's ctypes functions
        r = numpy.ascontiguousarray(r, dtype=numpy.int32)
        g = numpy.ascontiguousarray(g, dtype=numpy.int32)
        b = numpy.ascontiguousarray(b, dtype=numpy.int32)
        cr = r.ctypes.data_as(POINTER(c_int))
        cg = g.ctypes.data_as(POINTER(c_int))
        cb = b.ctypes.data_as(POINTER(c_int))
    else:
        # otherwise convert using ctypes arrays
        cr = (c_int * len(r))(*r)
        cg = (c_int * len(g))(*g)
        cb = (c_int * len(b))(*b)

    _lib.TCOD_console_fill_background(con, cr, cg, cb) 

Example 45

def c_correlation(ar1,ar2,ax=0,dx=1.):
   lib = ctypes.cdll.LoadLibrary('/home/tulasi/P3D-PLASMA-PIC/p3dpy/helloworld.so')
   func = lib.c_correlation
   func.restype = None
   func.argtypes = [ndpointer(ctypes.c_double, flags="C_CONTIGUOUS"),   #ar1
                    ndpointer(ctypes.c_double, flags="C_CONTIGUOUS"),   #ar2
                    ctypes.c_double,              #dx
                    ctypes.c_int,                 #nlen
                    ctypes.c_int,                 #nx
                    ctypes.c_int,                 #ny
                    ctypes.c_int,                 #nz
                    ctypes.c_int,                 #ax
                    ndpointer(ctypes.c_double, flags="C_CONTIGUOUS"),   #r
                    ndpointer(ctypes.c_double, flags="C_CONTIGUOUS")]   #corr
# nlen finds the length of the array in the specified direction
   nlen=np.shape(ar2)[ax]/2; 
   nx=np.shape(ar1)[0]; 
   ny=np.shape(ar1)[1]; 
   nz=np.shape(ar1)[2]
   r=np.zeros(nlen);corr=np.zeros(nlen)
   func(np.ascontiguousarray(ar1),np.ascontiguousarray(ar2),dx,nlen,nx,ny,nz,ax,r,corr)
#  func(ar1,ar2,dx,nlen,nx,ny,nz,ax,r,corr)
   return r,corr 

Example 46

def _scale_data_to_float32(self, data):
        '''
            This function will convert data from local data dtype into float32, the default format of the algorithm
        '''
        if self.data_dtype != numpy.float32:
            data  = data.astype(numpy.float32)

        if self.dtype_offset != 0:
            data  -= self.dtype_offset

        if numpy.any(self.gain != 1):
            data *= self.gain

        return numpy.ascontiguousarray(data) 

Example 47

def _masks_as_c_order(masks):
    masks = masks.transpose((2, 0, 1))
    masks = np.ascontiguousarray(masks)
    return masks 

Example 48

def upload_boss_image(self, img, offset):
    shape = Vec(*img.shape[:3])
    offset = Vec(*offset)

    bounds = Bbox(offset, shape + offset)

    if bounds.volume() < 1:
      raise EmptyRequestException('Requested less than one pixel of volume. {}'.format(bounds))

    x_rng = [ bounds.minpt.x, bounds.maxpt.x ]
    y_rng = [ bounds.minpt.y, bounds.maxpt.y ]
    z_rng = [ bounds.minpt.z, bounds.maxpt.z ]

    layer_type = 'image' if self.layer_type == 'unknown' else self.layer_type

    chan = ChannelResource(
      collection_name=self.path.bucket, 
      experiment_name=self.path.dataset, 
      name=self.path.layer, # Channel
      type=layer_type, 
      datatype=self.dtype,
    )

    if img.shape[3] == 1:
      img = img.reshape( img.shape[:3] )

    rmt = BossRemote(boss_credentials)
    img = img.T
    img = np.ascontiguousarray(img.astype(self.dtype))

    rmt.create_cutout(chan, self.mip, x_rng, y_rng, z_rng, img) 

Example 49

def __new__(cls, buf, dataset_name, layer, mip, layer_type, bounds, *args, **kwargs):
    return super(VolumeCutout, cls).__new__(cls, shape=buf.shape, buffer=np.ascontiguousarray(buf), dtype=buf.dtype) 

Example 50

def distinct(self):
        b = np.ascontiguousarray(self.solutions).view(np.dtype((np.void, self.solutions.dtype.itemsize * self.P)))
        _, unique_ind = np.unique(b, return_index = True)
        unique_ind = np.sort(unique_ind)
        new = self.copy()
        new.objvals = self.objvals[unique_ind]
        new.solutions = self.solutions[unique_ind]
        return new 
点赞