Python numpy.r_() 使用实例

The following are code examples for showing how to use . They are extracted from open source Python projects. You can vote up the examples you like or vote down the exmaples you don’t like. You can also save this page to your account.

Example 1

def primes_2_to_n(n):
    """
    Efficient algorithm to find and list primes from
    2 to `n'.

    Args:
        n (int): highest number from which to search for primes

    Returns:
        np array of all primes from 2 to n

    References:
        Robert William Hanks,
        https://stackoverflow.com/questions/2068372/fastest-way-to-list-all-primes-below-n/
    """
    sieve = np.ones(int(n / 3 + (n % 6 == 2)), dtype=np.bool)
    for i in range(1, int((n ** 0.5) / 3 + 1)):
        if sieve[i]:
            k = 3 * i + 1 | 1
            sieve[int(k * k / 3)::2 * k] = False
            sieve[int(k * (k - 2 * (i & 1) + 4) / 3)::2 * k] = False
    return np.r_[2, 3, ((3 * np.nonzero(sieve)[0][1:] + 1) | 1)] 

Example 2

def test(args):
    corpus = load_corpus(args.input)
    vocab, docs = corpus['vocab'], corpus['docs']
    n_vocab = len(vocab)

    doc_keys = docs.keys()
    X_docs = []
    for k in doc_keys:
        X_docs.append(vecnorm(doc2vec(docs[k], n_vocab), 'logmax1', 0))
        del docs[k]
    X_docs = np.r_[X_docs]

    vae = load_vae_model(args.load_model)

    doc_codes = vae.predict(X_docs)
    dump_json(dict(zip(doc_keys, doc_codes.tolist())), args.output)
    print 'Saved doc codes file to %s' % args.output

    # if args.save_topics:
    #     topics = get_topics(vae, revdict(vocab), topn=10)
    #     write_file(topics, args.save_topics)
    #     print 'Saved topics file to %s' % args.save_topics 

Example 3

def radial_filter_fullspec(max_order, NFFT, fs, array_configuration, amp_maxdB=40):
    """Generate NFFT/2 + 1 modal radial filter of orders 0:max_order for frequencies 0:fs/2, wraps radial_filter()

    Parameters
    ----------
    max_order : int
       Maximum order
    NFFT : int
       Order of FFT (number of bins), should be a power of 2.
    fs : int
       Sampling frequency
    array_configuration : ArrayConfiguration
       List/Tuple/ArrayConfiguration, see io.ArrayConfiguration
    amp_maxdB : int, optional
       Maximum modal amplification limit in dB [Default: 40]

    Returns
    -------
    dn : array_like
       Vector of modal frequency domain filter of shape [max_order + 1 x NFFT / 2 + 1]
    """

    freqs = _np.linspace(0, fs / 2, NFFT / 2 + 1)
    orders = _np.r_[0:max_order + 1]
    return radial_filter(orders, freqs, array_configuration, amp_maxdB=amp_maxdB) 

Example 4

def test_comp_controllable(self, pp_fixture):
        """
        """
        pcs, solver = pp_fixture
        I0 = np.r_[0.1, 0.2]
        IN = np.r_[0.1, 0.2]
        solver.set_start_interval(I0)
        solver.set_goal_interval(IN)
        # Basic checks
        res_ctrl = solver.solve_controllable_sets()
        assert res_ctrl is True
        ctrl_sets = solver.K
        for i in range(solver.N+1):
            assert ctrl_sets[i, 1] >= ctrl_sets[i, 0]
            assert ctrl_sets[i, 0] >= 0
        assert ctrl_sets[solver.N, 0] >= IN[0] - TINY
        assert ctrl_sets[solver.N, 1] <= IN[1] + TINY 

Example 5

def test_comp_topp(self, pp_fixture):
        pcs, solver = pp_fixture
        I0 = np.r_[0.1, 0.2]
        IN = np.r_[0.1, 0.2]
        solver.set_start_interval(I0)
        solver.set_goal_interval(IN)
        us, xs = solver.solve_topp(reg=0)

        # Proper parameteriation
        assert xs[0] <= I0[1] + TINY and xs[0] >= I0[0] - TINY
        assert xs[-1] <= IN[1] + TINY and xs[-1] >= IN[0] - TINY
        assert np.all(xs >= 0)
        for i in range(solver.N):
            Delta_i = solver.ss[i+1] - solver.ss[i]
            assert np.allclose(xs[i+1], xs[i] + 2 * us[i] * Delta_i)

        # Constraint satisfy-ability
        for i in range(solver.N):
            for c in pcs:
                if c.nm != 0:
                    assert np.all(
                        c.a[i] * us[i] + c.b[i] * xs[i] + c.c[i] <= TINY) 

Example 6

def set_start_interval(self, I0):
        """Set starting *squared* velocities interval.


        Parameters
        ----------
        I0: array, or float
            (2, 0) array, the interval of starting squared path velocities.
            Can also be a float.

        Raises
        ------
        AssertionError
            If `I0` is a single, negative float. Or if `I0[0] > I0[1]`.

        """
        I0 = np.r_[I0].astype(float)
        if I0.shape[0] == 1:
            I0 = np.array([I0[0], I0[0]])
        elif I0.shape[0] > 2:
            raise ValueError('Input I0 has wrong dimension: {}'.format(I0.shape))
        assert I0[1] >= I0[0], "Illegal input: non-increase end-points."
        assert I0[0] >= 0, "Illegal input: negative lower end-point."

        self.I0 = I0 

Example 7

def set_goal_interval(self, IN):
        """Set the goal squared velocity interval.

        Parameters
        ----------
        IN: array or float
            A single float, or a (2, ) array setting the goal
            `(x_lower, x_higher)` squared path velocities.

        Raises
        ------
        AssertionError
            If `IN` is a single, negative float. Or if `IN[0] > IN[1]`.

        """
        IN = np.r_[IN].astype(float)
        if IN.shape[0] == 1:
            IN = np.array([IN[0], IN[0]])
        elif IN.shape[0] > 2:
            raise ValueError('Input IN has wrong dimension: {}'.format(IN.shape))
        assert IN[1] >= IN[0], "Illegal input: non-increase end-points."
        assert IN[0] >= 0, "Illegal input: negative lower end-point."

        self.IN = IN 

Example 8

def getSensitivity(survey, A, B, M, N, model):

    if(survey == "Dipole-Dipole"):
        rx = DC.Rx.Dipole(np.r_[M, 0.], np.r_[N, 0.])
        src = DC.Src.Dipole([rx], np.r_[A, 0.], np.r_[B, 0.])
    elif(survey == "Pole-Dipole"):
        rx = DC.Rx.Dipole(np.r_[M, 0.], np.r_[N, 0.])
        src = DC.Src.Pole([rx], np.r_[A, 0.])
    elif(survey == "Dipole-Pole"):
        rx = DC.Rx.Pole(np.r_[M, 0.])
        src = DC.Src.Dipole([rx], np.r_[A, 0.], np.r_[B, 0.])
    elif(survey == "Pole-Pole"):
        rx = DC.Rx.Pole(np.r_[M, 0.])
        src = DC.Src.Pole([rx], np.r_[A, 0.])

    survey = DC.Survey([src])
    problem = DC.Problem3D_CC(mesh, sigmaMap=mapping)
    problem.Solver = SolverLU
    problem.pair(survey)
    fieldObj = problem.fields(model)

    J = problem.Jtvec(model, np.array([1.]), f=fieldObj)

    return J 

Example 9

def getSensitivity(survey,A,B,M,N,model):

    if(survey == "Dipole-Dipole"):
        rx = DC.Rx.Dipole_ky(np.r_[M,0.], np.r_[N,0.])
        src = DC.Src.Dipole([rx], np.r_[A,0.], np.r_[B,0.])
    elif(survey == "Pole-Dipole"):
        rx = DC.Rx.Dipole_ky(np.r_[M,0.], np.r_[N,0.])
        src = DC.Src.Pole([rx], np.r_[A,0.])
    elif(survey == "Dipole-Pole"):
        rx = DC.Rx.Pole_ky(np.r_[M,0.])
        src = DC.Src.Dipole([rx], np.r_[A,0.], np.r_[B,0.])
    elif(survey == "Pole-Pole"):
        rx = DC.Rx.Pole_ky(np.r_[M,0.])
        src = DC.Src.Pole([rx], np.r_[A,0.])

    survey = DC.Survey_ky([src])
    problem = DC.Problem2D_CC(mesh, sigmaMap = mapping)
    problem.Solver = SolverLU
    problem.pair(survey)
    fieldObj = problem.fields(model)

    J = problem.Jtvec(model, np.array([1.]), f=fieldObj)

    return J 

Example 10

def computeRotMatrix(self,Phi=False):
    
        #######################################
        # COMPUTE ROTATION MATRIX SUCH THAT m(t) = A*L(t)*A'*Hp
        # Default set such that phi1,phi2 = 0 is UXO pointed towards North
        
        if Phi is False:
            phi1 = np.radians(self.phi[0])
            phi2 = np.radians(self.phi[1])
            phi3 = np.radians(self.phi[2])
        else:
            phi1 = np.radians(Phi[0])           # Roll (CCW)
            phi2 = np.radians(Phi[1])           # Inclination (+ve is nose pointing down)
            phi3 = np.radians(Phi[2])           # Declination (degrees CW from North)
        
        # A1 = np.r_[np.c_[np.cos(phi1),-np.sin(phi1),0.],np.c_[np.sin(phi1),np.cos(phi1),0.],np.c_[0.,0.,1.]] # CCW Rotation about z-axis
        # A2 = np.r_[np.c_[1.,0.,0.],np.c_[0.,np.cos(phi2),np.sin(phi2)],np.c_[0.,-np.sin(phi2),np.cos(phi2)]] # CW Rotation about x-axis (rotates towards North)
        # A3 = np.r_[np.c_[np.cos(phi3),-np.sin(phi3),0.],np.c_[np.sin(phi3),np.cos(phi3),0.],np.c_[0.,0.,1.]] # CCW Rotation about z-axis (direction of head of object)

        A1 = np.r_[np.c_[np.cos(phi1),np.sin(phi1),0.],np.c_[-np.sin(phi1),np.cos(phi1),0.],np.c_[0.,0.,1.]] # CW Rotation about z-axis
        A2 = np.r_[np.c_[1.,0.,0.],np.c_[0.,np.cos(phi2),np.sin(phi2)],np.c_[0.,-np.sin(phi2),np.cos(phi2)]] # CW Rotation about x-axis (rotates towards North)
        A3 = np.r_[np.c_[np.cos(phi3),np.sin(phi3),0.],np.c_[-np.sin(phi3),np.cos(phi3),0.],np.c_[0.,0.,1.]] # CW Rotation about z-axis (direction of head of object)
        
        return np.dot(A3,np.dot(A2,A1)) 

Example 11

def defineSensorLoc(self,XYZ):
        #############################################
        # DEFINE TRANSMITTER AND RECEIVER LOCATIONS
        #
        # XYZ: N X 3 array containing transmitter center locations
        # **NOTE** for this sensor, we know where the receivers are relative to transmitters
        self.TxLoc = XYZ

        dx = np.kron([-0.18,0.,0.,0.,0.18],np.ones(3))
        dy = np.kron([0.,-0.18,0.,0.18,0.],np.ones(3))

        N = np.shape(XYZ)[0]

        X = np.kron(XYZ[:,0],np.ones((15))) + np.kron(np.ones((N)),dx)
        Y = np.kron(XYZ[:,1],np.ones((15))) + np.kron(np.ones((N)),dy)
        Z = np.kron(XYZ[:,2],np.ones((15)))

        self.RxLoc = np.c_[X,Y,Z]

        self.TxID = np.kron(np.arange(1,np.shape(XYZ)[0]+1),np.ones((15)))
        self.RxComp = np.kron(np.kron(np.ones(np.shape(XYZ)[0]),np.ones((5))),np.r_[1,2,3]) 

Example 12

def getSensitivity(survey, A, B, M, N, model):

    if(survey == "Dipole-Dipole"):
        rx = DC.Rx.Dipole_ky(np.r_[M, 0.], np.r_[N, 0.])
        src = DC.Src.Dipole([rx], np.r_[A, 0.], np.r_[B, 0.])
    elif(survey == "Pole-Dipole"):
        rx = DC.Rx.Dipole_ky(np.r_[M, 0.], np.r_[N, 0.])
        src = DC.Src.Pole([rx], np.r_[A, 0.])
    elif(survey == "Dipole-Pole"):
        rx = DC.Rx.Pole_ky(np.r_[M, 0.])
        src = DC.Src.Dipole([rx], np.r_[A, 0.], np.r_[B, 0.])
    elif(survey == "Pole-Pole"):
        rx = DC.Rx.Pole_ky(np.r_[M, 0.])
        src = DC.Src.Pole([rx], np.r_[A, 0.])

    survey = DC.Survey_ky([src])
    problem = DC.Problem2D_CC(mesh, sigmaMap=mapping)
    problem.Solver = SolverLU
    problem.pair(survey)
    fieldObj = problem.fields(model)

    J = problem.Jtvec(model, np.array([1.]), f=fieldObj)

    return J 

Example 13

def InteractiveDipole(self):
        def foo(orientation, normal, component, view, functype, flog, siglog, x1, y1, x2, y2, npts2D, npts, loc):
            f = np.r_[10**flog]
            sig = np.r_[10**siglog]
            return self.Dipole2Dviz(x1, y1, x2, y2, npts2D, npts, sig, f, srcLoc=np.r_[0., 0., 0.], orientation=orientation, component=component, view=view, normal=normal, functype=functype, loc=loc, dx=50.)

        out = widgetify(foo
            ,orientation=widgets.ToggleButtons(options=['x','y','z']) \
            ,normal=widgets.ToggleButtons(options=['X','Y','Z'], value="Z") \
            ,component=widgets.ToggleButtons(options=['real','imag','amplitude', 'phase']) \
            ,view=widgets.ToggleButtons(options=['x','y','z', 'vec']) \
            ,functype=widgets.ToggleButtons(options=["E_from_ED", "H_from_ED", "E_from_ED_galvanic", "E_from_ED_inductive"]) \
            ,flog=widgets.FloatSlider(min=-3, max=6, step=0.5, value=-3, continuous_update=False) \
            ,siglog=widgets.FloatSlider(min=-3, max=3, step=0.5, value=-3, continuous_update=False) \
            ,loc=widgets.FloatText(value=0.01) \
            ,x1=widgets.FloatText(value=-10) \
            ,y1=widgets.FloatText(value=0.01) \
            ,x2=widgets.FloatText(value=10) \
            ,y2=widgets.FloatText(value=0.01) \
            ,npts2D=widgets.IntSlider(min=4,max=200,step=2,value=40) \
            ,npts=widgets.IntSlider(min=4,max=200,step=2,value=40)
            )
        return out 

Example 14

def getSensitivity(survey, A, B, M, N, model):

    if(survey == "Dipole-Dipole"):
        rx = DC.Rx.Dipole(np.r_[M,0.], np.r_[N,0.])
        src = DC.Src.Dipole([rx], np.r_[A,0.], np.r_[B,0.])
    elif(survey == "Pole-Dipole"):
        rx = DC.Rx.Dipole(np.r_[M,0.], np.r_[N,0.])
        src = DC.Src.Pole([rx], np.r_[A,0.])
    elif(survey == "Dipole-Pole"):
        rx = DC.Rx.Pole(np.r_[M,0.])
        src = DC.Src.Dipole([rx], np.r_[A,0.], np.r_[B,0.])
    elif(survey == "Pole-Pole"):
        rx = DC.Rx.Pole(np.r_[M,0.])
        src = DC.Src.Pole([rx], np.r_[A,0.])

    survey = DC.Survey([src])
    problem = DC.Problem3D_CC(mesh, sigmaMap = sigmaMap)
    problem.Solver = SolverLU
    problem.pair(survey)
    fieldObj = problem.fields(model)

    J = problem.Jtvec(model, np.array([1.]), f=fieldObj)

    return J 

Example 15

def getSensitivity(survey,A,B,M,N,model):

    if(survey == "Dipole-Dipole"):
        rx = DC.Rx.Dipole(np.r_[M,0.], np.r_[N,0.])
        src = DC.Src.Dipole([rx], np.r_[A,0.], np.r_[B,0.])
    elif(survey == "Pole-Dipole"):
        rx = DC.Rx.Dipole(np.r_[M,0.], np.r_[N,0.])
        src = DC.Src.Pole([rx], np.r_[A,0.])
    elif(survey == "Dipole-Pole"):
        rx = DC.Rx.Pole(np.r_[M,0.])
        src = DC.Src.Dipole([rx], np.r_[A,0.], np.r_[B,0.])
    elif(survey == "Pole-Pole"):
        rx = DC.Rx.Pole(np.r_[M,0.])
        src = DC.Src.Pole([rx], np.r_[A,0.])

    Srv = DC.Survey([src])
    problem = DC.Problem3D_CC(mesh, sigmaMap = sigmaMap)
    problem.Solver = SolverLU
    problem.pair(Srv)
    fieldObj = problem.fields(model)

    J = problem.Jtvec(model, np.array([1.]), f=fieldObj)

    return J 

Example 16

def getSensitivity(survey,A,B,M,N,model):

    if(survey == "Dipole-Dipole"):
        rx = DC.Rx.Dipole_ky(np.r_[M,0.], np.r_[N,0.])
        src = DC.Src.Dipole([rx], np.r_[A,0.], np.r_[B,0.])
    elif(survey == "Pole-Dipole"):
        rx = DC.Rx.Dipole_ky(np.r_[M,0.], np.r_[N,0.])
        src = DC.Src.Pole([rx], np.r_[A,0.])
    elif(survey == "Dipole-Pole"):
        rx = DC.Rx.Pole_ky(np.r_[M,0.])
        src = DC.Src.Dipole([rx], np.r_[A,0.], np.r_[B,0.])
    elif(survey == "Pole-Pole"):
        rx = DC.Rx.Pole_ky(np.r_[M,0.])
        src = DC.Src.Pole([rx], np.r_[A,0.])

    survey = DC.Survey_ky([src])
    problem = DC.Problem2D_CC(mesh, sigmaMap = mapping)
    problem.Solver = SolverLU
    problem.pair(survey)
    fieldObj = problem.fields(model)

    J = problem.Jtvec(model, np.array([1.]), f=fieldObj)

    return J 

Example 17

def run(plotIt=True):
    sz = [16, 16]
    tM = discretize.TensorMesh(sz)
    qM = discretize.TreeMesh(sz)

    def refine(cell):
        if np.sqrt(((np.r_[cell.center]-0.5)**2).sum()) < 0.4:
            return 4
        return 3

    qM.refine(refine)
    rM = discretize.CurvilinearMesh(discretize.utils.exampleLrmGrid(sz, 'rotate'))

    if not plotIt:
        return
    fig, axes = plt.subplots(1, 3, figsize=(14, 5))
    opts = {}
    tM.plotGrid(ax=axes[0], **opts)
    axes[0].set_title('TensorMesh')
    qM.plotGrid(ax=axes[1], **opts)
    axes[1].set_title('TreeMesh')
    rM.plotGrid(ax=axes[2], **opts)
    axes[2].set_title('CurvilinearMesh') 

Example 18

def _getEdgeP(self, xEdge, yEdge, zEdge):
        if self.dim == 2: raise Exception('Not implemented') # this should be a reordering of the face inner product?

        ind1, ind2, ind3 = [], [], []
        for ind in self._sortedCells:
            p = self._pointer(ind)
            w = self._levelWidth(p[-1])

            posX = [0, 0] if xEdge == 'eX0' else [w, 0] if xEdge == 'eX1' else [0, w] if xEdge == 'eX2' else [w, w]
            posY = [0, 0] if yEdge == 'eY0' else [w, 0] if yEdge == 'eY1' else [0, w] if yEdge == 'eY2' else [w, w]
            posZ = [0, 0] if zEdge == 'eZ0' else [w, 0] if zEdge == 'eZ1' else [0, w] if zEdge == 'eZ2' else [w, w]

            ind1.append( self._ex2i[self._index([ p[0]          , p[1] + posX[0], p[2] + posX[1], p[3]])]                         )
            ind2.append( self._ey2i[self._index([ p[0] + posY[0], p[1]          , p[2] + posY[1], p[3]])] + self.ntEx             )
            ind3.append( self._ez2i[self._index([ p[0] + posZ[0], p[1] + posZ[1], p[2]          , p[3]])] + self.ntEx + self.ntEy )

        IND = np.r_[ind1, ind2, ind3]

        PXXX = sp.coo_matrix((np.ones(self.dim*self.nC), (range(self.dim*self.nC), IND)), shape=(self.dim*self.nC, self.ntE)).tocsr()

        Re = self._deflationMatrix('E')

        return PXXX * Re 

Example 19

def rotatePointsFromNormals(XYZ, n0, n1, x0=np.r_[0., 0., 0.]):
    """
        rotates a grid so that the vector n0 is aligned with the vector n1

        :param numpy.array n0: vector of length 3, should have norm 1
        :param numpy.array n1: vector of length 3, should have norm 1
        :param numpy.array x0: vector of length 3, point about which we perform the rotation
        :rtype: numpy.array, 3x3
        :return: rotation matrix which rotates the frame so that n0 is aligned with n1
    """

    R = rotationMatrixFromNormals(n0, n1)

    assert XYZ.shape[1] == 3, "Grid XYZ should be 3 wide"
    assert len(x0) == 3, "x0 should have length 3"

    X0 = np.ones([XYZ.shape[0], 1])*mkvc(x0)

    return (XYZ - X0).dot(R.T) + X0 # equivalent to (R*(XYZ - X0)).T + X0 

Example 20

def normals(self):
        """Face Normals

        :rtype: numpy.array
        :return: normals, (sum(nF), dim)
        """
        if self.dim == 2:
            nX = np.c_[
                np.ones(self.nFx), np.zeros(self.nFx)
            ]
            nY = np.c_[
                np.zeros(self.nFy), np.ones(self.nFy)
            ]
            return np.r_[nX, nY]
        elif self.dim == 3:
            nX = np.c_[
                np.ones(self.nFx), np.zeros(self.nFx), np.zeros(self.nFx)
            ]
            nY = np.c_[
                np.zeros(self.nFy), np.ones(self.nFy), np.zeros(self.nFy)
            ]
            nZ = np.c_[
                np.zeros(self.nFz), np.zeros(self.nFz), np.ones(self.nFz)
            ]
            return np.r_[nX, nY, nZ] 

Example 21

def tangents(self):
        """Edge Tangents

        :rtype: numpy.array
        :return: normals, (sum(nE), dim)
        """
        if self.dim == 2:
            tX = np.c_[
                np.ones(self.nEx), np.zeros(self.nEx)
            ]
            tY = np.c_[
                np.zeros(self.nEy), np.ones(self.nEy)
            ]
            return np.r_[tX, tY]
        elif self.dim == 3:
            tX = np.c_[
                np.ones(self.nEx), np.zeros(self.nEx), np.zeros(self.nEx)
            ]
            tY = np.c_[
                np.zeros(self.nEy), np.ones(self.nEy), np.zeros(self.nEy)
            ]
            tZ = np.c_[
                np.zeros(self.nEz), np.zeros(self.nEz), np.ones(self.nEz)
            ]
            return np.r_[tX, tY, tZ] 

Example 22

def test_counts(self):
        nc = 8
        h1 = np.random.rand(nc)*nc*0.5 + nc*0.5
        h2 = np.random.rand(nc)*nc*0.5 + nc*0.5
        h = [hi/np.sum(hi) for hi in [h1, h2]]  # normalize
        M = discretize.TreeMesh(h)
        M._refineCell([0, 0, 0])
        M._refineCell([0, 0, 1])
        M.number()
        # M.plotGrid(showIt=True)
        print(M)
        assert M.nhFx == 2
        assert M.nFx == 9

        assert np.allclose(M.vol.sum(), 1.0)

        assert np.allclose(np.r_[M._areaFxFull, M._areaFyFull], M._deflationMatrix('F') * M.area) 

Example 23

def test_faceDiv(self):

        hx, hy = np.r_[1., 2, 3, 4], np.r_[5., 6, 7, 8]
        T = discretize.TreeMesh([hx, hy], levels=2)
        T.refine(lambda xc: 2)
        # T.plotGrid(showIt=True)
        M = discretize.TensorMesh([hx, hy])
        assert M.nC == T.nC
        assert M.nF == T.nF
        assert M.nFx == T.nFx
        assert M.nFy == T.nFy
        assert M.nE == T.nE
        assert M.nEx == T.nEx
        assert M.nEy == T.nEy
        assert np.allclose(M.area, T.permuteF*T.area)
        assert np.allclose(M.edge, T.permuteE*T.edge)
        assert np.allclose(M.vol, T.permuteCC*T.vol)

        # plt.subplot(211).spy(M.faceDiv)
        # plt.subplot(212).spy(T.permuteCC*T.faceDiv*T.permuteF.T)
        # plt.show()

        assert (M.faceDiv - T.permuteCC*T.faceDiv*T.permuteF.T).nnz == 0 

Example 24

def test_faceDiv(self):

        hx, hy, hz = np.r_[1., 2, 3, 4], np.r_[5., 6, 7, 8], np.r_[9., 10, 11, 12]
        M = discretize.TreeMesh([hx, hy, hz], levels=2)
        M.refine(lambda xc: 2)
        # M.plotGrid(showIt=True)
        Mr = discretize.TensorMesh([hx, hy, hz])
        assert M.nC == Mr.nC
        assert M.nF == Mr.nF
        assert M.nFx == Mr.nFx
        assert M.nFy == Mr.nFy
        assert M.nE == Mr.nE
        assert M.nEx == Mr.nEx
        assert M.nEy == Mr.nEy
        assert np.allclose(Mr.area, M.permuteF*M.area)
        assert np.allclose(Mr.edge, M.permuteE*M.edge)
        assert np.allclose(Mr.vol, M.permuteCC*M.vol)

        # plt.subplot(211).spy(Mr.faceDiv)
        # plt.subplot(212).spy(M.permuteCC*M.faceDiv*M.permuteF.T)
        # plt.show()

        assert (Mr.faceDiv - M.permuteCC*M.faceDiv*M.permuteF.T).nnz == 0 

Example 25

def test_VectorIdenties(self):
        hx, hy, hz = [[(1, 4)], [(1, 4)], [(1, 4)]]

        M = discretize.TreeMesh([hx, hy, hz], levels=2)
        Mr = discretize.TensorMesh([hx, hy, hz])

        assert (M.faceDiv * M.edgeCurl).nnz == 0
        assert (Mr.faceDiv * Mr.edgeCurl).nnz == 0

        hx, hy, hz = np.r_[1., 2, 3, 4], np.r_[5., 6, 7, 8], np.r_[9., 10, 11, 12]

        M = discretize.TreeMesh([hx, hy, hz], levels=2)
        Mr = discretize.TensorMesh([hx, hy, hz])

        assert np.max(np.abs((M.faceDiv * M.edgeCurl).todense().flatten())) < TOL
        assert np.max(np.abs((Mr.faceDiv * Mr.edgeCurl).todense().flatten())) < TOL 

Example 26

def test_orderN2CC(self):
        self.name = "Averaging 2D: N2CC"
        fun = lambda x, y: (np.cos(x)+np.sin(y))
        self.getHere = lambda M: call2(fun, M.gridN)
        self.getThere = lambda M: call2(fun, M.gridCC)
        self.getAve = lambda M: M.aveN2CC
        self.orderTest()

    # def test_orderN2F(self):
    #     self.name = "Averaging 2D: N2F"
    #     fun = lambda x, y: (np.cos(x)+np.sin(y))
    #     self.getHere = lambda M: call2(fun, M.gridN)
    #     self.getThere = lambda M: np.r_[call2(fun, M.gridFx), call2(fun, M.gridFy)]
    #     self.getAve = lambda M: M.aveN2F
    #     self.orderTest()

    # def test_orderN2E(self):
    #     self.name = "Averaging 2D: N2E"
    #     fun = lambda x, y: (np.cos(x)+np.sin(y))
    #     self.getHere = lambda M: call2(fun, M.gridN)
    #     self.getThere = lambda M: np.r_[call2(fun, M.gridEx), call2(fun, M.gridEy)]
    #     self.getAve = lambda M: M.aveN2E
    #     self.orderTest() 

Example 27

def test_orderF2CCV(self):
        self.name = "Averaging 2D: F2CCV"
        funX = lambda x, y: (np.cos(x)+np.sin(y))
        funY = lambda x, y: (np.cos(y)*np.sin(x))
        self.getHere = lambda M: np.r_[call2(funX, M.gridFx), call2(funY, M.gridFy)]
        self.getThere = lambda M: np.r_[call2(funX, M.gridCC), call2(funY, M.gridCC)]
        self.getAve = lambda M: M.aveF2CCV
        self.orderTest()

    # def test_orderCC2F(self):
    #     self.name = "Averaging 2D: CC2F"
    #     fun = lambda x, y: (np.cos(x)+np.sin(y))
    #     self.getHere = lambda M: call2(fun, M.gridCC)
    #     self.getThere = lambda M: np.r_[call2(fun, M.gridFx), call2(fun, M.gridFy)]
    #     self.getAve = lambda M: M.aveCC2F
    #     self.expectedOrders = 1
    #     self.orderTest()
    #     self.expectedOrders = 2 

Example 28

def test_orderN2CC(self):
        self.name = "Averaging 3D: N2CC"
        fun = lambda x, y, z: (np.cos(x)+np.sin(y)+np.exp(z))
        self.getHere = lambda M: call3(fun, M.gridN)
        self.getThere = lambda M: call3(fun, M.gridCC)
        self.getAve = lambda M: M.aveN2CC
        self.orderTest()

#     def test_orderN2F(self):
#         self.name = "Averaging 3D: N2F"
#         fun = lambda x, y, z: (np.cos(x)+np.sin(y)+np.exp(z))
#         self.getHere = lambda M: call3(fun, M.gridN)
#         self.getThere = lambda M: np.r_[call3(fun, M.gridFx), call3(fun, M.gridFy), call3(fun, M.gridFz)]
#         self.getAve = lambda M: M.aveN2F
#         self.orderTest()

#     def test_orderN2E(self):
#         self.name = "Averaging 3D: N2E"
#         fun = lambda x, y, z: (np.cos(x)+np.sin(y)+np.exp(z))
#         self.getHere = lambda M: call3(fun, M.gridN)
#         self.getThere = lambda M: np.r_[call3(fun, M.gridEx), call3(fun, M.gridEy), call3(fun, M.gridEz)]
#         self.getAve = lambda M: M.aveN2E
#         self.orderTest() 

Example 29

def test_asArray_N_x_Dim(self):

        true = np.array([[1, 2, 3]])

        listArray = asArray_N_x_Dim([1, 2, 3], 3)
        self.assertTrue(np.all(true == listArray))
        self.assertTrue(true.shape == listArray.shape)

        listArray = asArray_N_x_Dim(np.r_[1, 2, 3], 3)
        self.assertTrue(np.all(true == listArray))
        self.assertTrue(true.shape == listArray.shape)

        listArray = asArray_N_x_Dim(np.array([[1, 2, 3.]]), 3)
        self.assertTrue(np.all(true == listArray))
        self.assertTrue(true.shape == listArray.shape)

        true = np.array([[1, 2], [4, 5]])

        listArray = asArray_N_x_Dim([[1, 2], [4, 5]], 2)
        self.assertTrue(np.all(true == listArray))
        self.assertTrue(true.shape == listArray.shape) 

Example 30

def test_mat_one(self):

        o = Identity()
        S = sdiag(np.r_[2, 3])

        def check(exp, ans):
            assert np.all((exp).todense() == ans)

        check(S * o, [[2, 0], [0, 3]])
        check(o * S, [[2, 0], [0, 3]])
        check(S * -o, [[-2, 0], [0, -3]])
        check(-o * S, [[-2, 0], [0, -3]])
        check(S/o, [[2, 0], [0, 3]])
        check(S/-o, [[-2, 0], [0, -3]])
        self.assertRaises(NotImplementedError, lambda: o/S)

        check(S + o, [[3, 0], [0, 4]])
        check(o + S, [[3, 0], [0, 4]])
        check(S - o, [[1, 0], [0, 2]])

        check(S + - o, [[1, 0], [0, 2]])
        check(- o + S, [[1, 0], [0, 2]]) 

Example 31

def test_numpy_one(self):
        o = Identity()
        n = np.r_[2., 3]

        assert np.all(n+1 == n+o)
        assert np.all(1+n == o+n)
        assert np.all(n-1 == n-o)
        assert np.all(1-n == o-n)
        assert np.all(n/1 == n/o)
        assert np.all(n/-1 == n/-o)
        assert np.all(1/n == o/n)
        assert np.all(-1/n == -o/n)
        assert np.all(n*1 == n*o)
        assert np.all(n*-1 == n*-o)
        assert np.all(1*n == o*n)
        assert np.all(-1*n == -o*n) 

Example 32

def test_float64_pass(self):
        # The number of units of least precision
        # In this case, use a few places above the lowest level (ie nulp=1)
        nulp = 5
        x = np.linspace(-20, 20, 50, dtype=np.float64)
        x = 10**x
        x = np.r_[-x, x]

        # Addition
        eps = np.finfo(x.dtype).eps
        y = x + x*eps*nulp/2.
        assert_array_almost_equal_nulp(x, y, nulp)

        # Subtraction
        epsneg = np.finfo(x.dtype).epsneg
        y = x - x*epsneg*nulp/2.
        assert_array_almost_equal_nulp(x, y, nulp) 

Example 33

def test_complex64_pass(self):
        nulp = 5
        x = np.linspace(-20, 20, 50, dtype=np.float32)
        x = 10**x
        x = np.r_[-x, x]
        xi = x + x*1j

        eps = np.finfo(x.dtype).eps
        y = x + x*eps*nulp/2.
        assert_array_almost_equal_nulp(xi, x + y*1j, nulp)
        assert_array_almost_equal_nulp(xi, y + x*1j, nulp)
        y = x + x*eps*nulp/4.
        assert_array_almost_equal_nulp(xi, y + y*1j, nulp)

        epsneg = np.finfo(x.dtype).epsneg
        y = x - x*epsneg*nulp/2.
        assert_array_almost_equal_nulp(xi, x + y*1j, nulp)
        assert_array_almost_equal_nulp(xi, y + x*1j, nulp)
        y = x - x*epsneg*nulp/4.
        assert_array_almost_equal_nulp(xi, y + y*1j, nulp) 

Example 34

def test_2d(self):
        # Tests mr_ on 2D arrays.
        a_1 = np.random.rand(5, 5)
        a_2 = np.random.rand(5, 5)
        m_1 = np.round_(np.random.rand(5, 5), 0)
        m_2 = np.round_(np.random.rand(5, 5), 0)
        b_1 = masked_array(a_1, mask=m_1)
        b_2 = masked_array(a_2, mask=m_2)
        # append columns
        d = mr_['1', b_1, b_2]
        self.assertTrue(d.shape == (5, 10))
        assert_array_equal(d[:, :5], b_1)
        assert_array_equal(d[:, 5:], b_2)
        assert_array_equal(d.mask, np.r_['1', m_1, m_2])
        d = mr_[b_1, b_2]
        self.assertTrue(d.shape == (10, 5))
        assert_array_equal(d[:5,:], b_1)
        assert_array_equal(d[5:,:], b_2)
        assert_array_equal(d.mask, np.r_[m_1, m_2]) 

Example 35

def from_points(cls, p, q, r): 
        abc = (p-r).cross(q-r)
        hp = np.r_[abc, -abc.dot(r)]
        return cls(hp) 

Example 36

def generateAllGaussianCenters(self, referenceSamples=None) :
        """
        Generates kernels in the region where the P(X_reference) takes large values
        """
        self.kernelBasis = referenceSamples.shape[1]
        return referenceSamples[:, numpy.r_[0:self.kernelBasis]] 

Example 37

def generateFirstNGaussianCenters(self, referenceSamples=None) :
        """
        Chooses the firts N samples as Gaussian centers as an optimization
        """
        numcols             = referenceSamples.shape[1]
        self.kernelBasis    = min(self.kernelBasis, numcols)
        return referenceSamples[:, numpy.r_[0:self.kernelBasis]] 

Example 38

def predict(self, dataframe):
        def is_invalid(row):
            valid_cpf = cpf.validate(str(row['recipient_id']).zfill(11))
            valid_cnpj = cnpj.validate(str(row['recipient_id']).zfill(14))
            good_doctype = row['document_type'] in ('bill_of_sale', 'simple_receipt', 'unknown')
            return good_doctype and (not (valid_cpf or valid_cnpj))
        return np.r_[dataframe.apply(is_invalid, axis=1)] 

Example 39

def predict(self, X=None):
        self._X['is_over_monthly_subquota_limit'] = False
        for metadata in self.limits:
            data, monthly_limit = metadata['data'], metadata['monthly_limit']
            if len(data):
                surplus_reimbursements = self.__find_surplus_reimbursements(data, monthly_limit)
                self._X.loc[surplus_reimbursements.index,
                            'is_over_monthly_subquota_limit'] = True
        results = self._X.loc[self.X.index, 'is_over_monthly_subquota_limit']
        return np.r_[results] 

Example 40

def predict(self, X):
        statuses = ['BAIXADA', 'NULA', 'SUSPENSA', 'INAPTA']
        self._X = X.apply(self.__compare_date, axis=1)
        return np.r_[self._X & X['situation'].isin(statuses)] 

Example 41

def disp(name=None, idx=None):
    """displays selected data from (files written by) the class
    `CMADataLogger`.

    The call ``cma.disp(name, idx)`` is a shortcut for
    ``cma.CMADataLogger(name).disp(idx)``.

    Arguments
    ---------
    `name`
        name of the logger, filename prefix, `None` evaluates to
        the default ``'outcmaes'``
    `idx`
        indices corresponding to rows in the data file; by
        default the first five, then every 100-th, and the last
        10 rows. Too large index values are removed.

    The best ever observed iteration is also printed by default.

    Examples
    --------
    ::

       import cma
       from numpy import r_
       # assume some data are available from previous runs
       cma.disp(None, r_[0, -1])  # first and last
       cma.disp(None, r_[0:int(1e9):100, -1]) # every 100-th and last
       cma.disp(idx=r_[0, -10:0]) # first and ten last
       cma.disp(idx=r_[0:int(1e9):1000, -10:0])

    :See also: `CMADataLogger.disp`

    """
    return CMADataLogger(name if name else CMADataLogger.default_prefix
                         ).disp(idx)

# END cmaplt.py 

Example 42

def vec(self):
        return np.r_[self.translation, self.quaternion] 

Example 43

def matrix(self):
        """:obj:`numpy.ndarray` of float: The canonical 4x4 matrix
        representation of this transform.

        The first three columns contain the columns of the rotation matrix
        followed by a zero, and the last column contains the translation vector
        followed by a one.
        """
        return np.r_[np.c_[self._rotation, self._translation], [[0,0,0,1]]] 

Example 44

def test_inverse(self):
        R_a_b = RigidTransform.random_rotation()
        t_a_b = RigidTransform.random_translation()
        T_a_b = RigidTransform(R_a_b, t_a_b, 'a', 'b')
        T_b_a = T_a_b.inverse()
        
        # multiple with numpy arrays
        M_a_b = np.r_[np.c_[R_a_b, t_a_b], [[0,0,0,1]]]
        M_b_a = np.linalg.inv(M_a_b)

        self.assertTrue(np.sum(np.abs(T_b_a.matrix - M_b_a)) < 1e-5, msg='Inverse gave incorrect transformation') 

        # check frames
        self.assertEqual(T_b_a.from_frame, 'b', msg='Inverse has incorrect input frame')
        self.assertEqual(T_b_a.to_frame, 'a', msg='Inverse has incorrect output frame') 

Example 45

def rank_bank_topic(bank_doc_map, doc_topic_dist):
    """Rank topics for banks
    """
    bank_topic_ranks = {}
    for each_bank in bank_doc_map:
        rank = []
        for each_doc in bank_doc_map[each_bank]:
            rank.append(calc_ranks(doc_topic_dist[each_doc]))
        rank = np.r_[rank]
        # compute ranking score
        bank_topic_ranks[each_bank] = np.mean(1. / rank, axis=0)
    return bank_topic_ranks 

Example 46

def train(args):
    corpus = load_corpus(args.input)
    n_vocab, docs = len(corpus['vocab']), corpus['docs']
    corpus.clear() # save memory

    X_docs = []
    for k in docs.keys():
        X_docs.append(vecnorm(doc2vec(docs[k], n_vocab), 'logmax1', 0))
        del docs[k]

    np.random.seed(0)
    np.random.shuffle(X_docs)
    # X_docs_noisy = corrupted_matrix(np.r_[X_docs], 0.1)

    n_val = args.n_val
    # X_train = np.r_[X_docs[:-n_val]]
    # X_val = np.r_[X_docs[-n_val:]]
    X_train = np.r_[X_docs[:-n_val]]
    del X_docs[:-n_val]
    X_val = np.r_[X_docs]
    del X_docs

    start = timeit.default_timer()

    vae = VarAutoEncoder(n_vocab, args.n_dim, comp_topk=args.comp_topk, ctype=args.ctype, save_model=args.save_model)
    vae.fit([X_train, X_train], [X_val, X_val], nb_epoch=args.n_epoch, batch_size=args.batch_size)

    print 'runtime: %ss' % (timeit.default_timer() - start) 

Example 47

def plot_tsne(doc_codes, doc_labels, classes_to_visual, save_file):
    # markers = ["D", "p", "*", "s", "d", "8", "^", "H", "v", ">", "<", "h", "|"]
    markers = ["o", "v", "8", "s", "p", "*", "h", "H", "+", "x", "D"]
    plt.rc('legend',**{'fontsize':30})
    classes_to_visual = list(set(classes_to_visual))
    C = len(classes_to_visual)
    while True:
        if C <= len(markers):
            break
        markers += markers

    class_ids = dict(zip(classes_to_visual, range(C)))

    if isinstance(doc_codes, dict) and isinstance(doc_labels, dict):
        codes, labels = zip(*[(code, doc_labels[doc]) for doc, code in doc_codes.items() if doc_labels[doc] in classes_to_visual])
    else:
        codes, labels = doc_codes, doc_labels

    X = np.r_[list(codes)]
    tsne = TSNE(perplexity=30, n_components=2, init='pca', n_iter=5000)
    np.set_printoptions(suppress=True)
    X = tsne.fit_transform(X)

    plt.figure(figsize=(10, 10), facecolor='white')

    for c in classes_to_visual:
        idx = np.array(labels) == c
        # idx = get_indices(labels, c)
        plt.plot(X[idx, 0], X[idx, 1], linestyle='None', alpha=1, marker=markers[class_ids[c]],
                        markersize=10, label=c)
    legend = plt.legend(loc='upper right', shadow=True)
    # plt.title("tsne")
    # plt.savefig(save_file)
    plt.savefig(save_file, format='eps', dpi=2000)
    plt.show() 

Example 48

def plot_tsne_3d(doc_codes, doc_labels, classes_to_visual, save_file, maker_size=None, opaque=None):
    markers = ["D", "p", "*", "s", "d", "8", "^", "H", "v", ">", "<", "h", "|"]
    plt.rc('legend',**{'fontsize':20})
    colors = ['r', 'b', 'g', 'c', 'm', 'y', 'k']
    C = len(classes_to_visual)
    while True:
        if C <= len(markers):
            break
        markers += markers
    while True:
        if C <= len(colors):
            break
        colors += colors

    class_ids = dict(zip(classes_to_visual, range(C)))

    if isinstance(doc_codes, dict) and isinstance(doc_labels, dict):
        codes, labels = zip(*[(code, doc_labels[doc]) for doc, code in doc_codes.items() if doc_labels[doc] in classes_to_visual])
    else:
        codes, labels = doc_codes, doc_labels

    X = np.r_[list(codes)]
    tsne = TSNE(perplexity=30, n_components=3, init='pca', n_iter=5000)
    np.set_printoptions(suppress=True)
    X = tsne.fit_transform(X)

    fig = plt.figure(figsize=(10, 10), facecolor='white')
    ax = fig.add_subplot(111, projection='3d')

    # The problem is that the legend function don't support the type returned by a 3D scatter.
    # So you have to create a "dummy plot" with the same characteristics and put those in the legend.
    scatter_proxy = []
    for i in range(C):
        cls = classes_to_visual[i]
        idx = np.array(labels) == cls
        ax.scatter(X[idx, 0], X[idx, 1], X[idx, 2], c=colors[i], alpha=opaque[i] if opaque else 1, s=maker_size[i] if maker_size else 20, marker=markers[i], label=cls)
        scatter_proxy.append(mpl.lines.Line2D([0],[0], linestyle="none", c=colors[i], marker=markers[i], label=cls))
    ax.legend(scatter_proxy, classes_to_visual, numpoints=1)
    plt.savefig(save_file)
    plt.show() 

Example 49

def DBN_visualize_pca_2d(doc_codes, doc_labels, classes_to_visual, save_file):
    """
        Visualize the input data on a 2D PCA plot. Depending on the number of components,
        the plot will contain an X amount of subplots.
        @param doc_codes:
        @param number_of_components: The number of principal components for the PCA plot.
    """

    # markers = ["p", "s", "h", "H", "+", "x", "D"]
    markers = ["o", "v", "8", "s", "p", "*", "h", "H", "+", "x", "D"]

    C = len(classes_to_visual)
    while True:
        if C <= len(markers):
            break
        markers += markers

    class_ids = dict(zip(classes_to_visual.keys(), range(C)))

    codes, labels = doc_codes, doc_labels

    X = np.r_[list(codes)]
    X = PCA(n_components=3).fit_transform(X)
    plt.figure(figsize=(10, 10), facecolor='white')

    x_pc, y_pc = 1, 2

    for c in classes_to_visual.keys():
        idx = np.array(labels) == c
        # idx = get_indices(labels, c)
        plt.plot(X[idx, x_pc], X[idx, y_pc], linestyle='None', alpha=0.6, marker=markers[class_ids[c]],
                        markersize=6, label=classes_to_visual[c])
        # plt.legend(c)
    plt.title('Projected on the first 2 PCs')
    plt.xlabel('PC %s' % x_pc)
    plt.ylabel('PC %s' % y_pc)
    # legend = plt.legend(loc='upper center', shadow=True)
    plt.savefig(save_file)
    plt.show() 

Example 50

def reuters_visualize_tsne(doc_codes, doc_labels, classes_to_visual, save_file):
    """
        Visualize the input data on a 2D PCA plot. Depending on the number of components,
        the plot will contain an X amount of subplots.
        @param doc_codes:
        @param number_of_components: The number of principal components for the PCA plot.
    """

    # markers = ["p", "s", "h", "H", "+", "x", "D"]
    markers = ["o", "v", "8", "s", "p", "*", "h", "H", "+", "x", "D"]

    C = len(classes_to_visual)
    while True:
        if C <= len(markers):
            break
        markers += markers

    class_names = classes_to_visual.keys()
    class_ids = dict(zip(class_names, range(C)))
    class_names = set(class_names)
    codes, labels = zip(*[(code, doc_labels[doc]) for doc, code in doc_codes.items() if class_names.intersection(set(doc_labels[doc]))])

    X = np.r_[list(codes)]
    tsne = TSNE(perplexity=30, n_components=2, init='pca', n_iter=5000)
    np.set_printoptions(suppress=True)
    X = tsne.fit_transform(X)

    plt.figure(figsize=(10, 10), facecolor='white')

    for c in classes_to_visual.keys():
        idx = get_indices(labels, c)
        plt.plot(X[idx, 0], X[idx, 1], linestyle='None', alpha=0.6, marker=markers[class_ids[c]],
                        markersize=6, label=classes_to_visual[c])
    legend = plt.legend(loc='upper center', shadow=True)
    plt.title("tsne")
    plt.savefig(save_file)
    plt.show() 
点赞