The following are code examples for showing how to use . They are extracted from open source Python projects. You can vote up the examples you like or vote down the exmaples you don’t like. You can also save this page to your account.
Example 1
def go_nn_kdtree(eps=0, parallel=True): """ Using a specialized data structure, the KDTree This is not as performant because we're in a high dimensional space 0.777 accuracy? Should be 0.794 """ n_jobs = 1 if parallel: n_jobs = -1 neighbors = tree.query(Xtest, eps=eps, n_jobs=n_jobs) predictions = ytrain[neighbors[1]] acc = np.equal(predictions, ytest).mean() return acc
Example 2
def updateSpots(self, dataSet=None): if dataSet is None: dataSet = self.data invalidate = False if self.opts['pxMode']: mask = np.equal(dataSet['sourceRect'], None) if np.any(mask): invalidate = True opts = self.getSpotOpts(dataSet[mask]) sourceRect = self.fragmentAtlas.getSymbolCoords(opts) dataSet['sourceRect'][mask] = sourceRect self.fragmentAtlas.getAtlas() # generate atlas so source widths are available. dataSet['width'] = np.array(list(imap(QtCore.QRectF.width, dataSet['sourceRect'])))/2 dataSet['targetRect'] = None self._maxSpotPxWidth = self.fragmentAtlas.max_width else: self._maxSpotWidth = 0 self._maxSpotPxWidth = 0 self.measureSpotSizes(dataSet) if invalidate: self.invalidate()
Example 3
def getSpotOpts(self, recs, scale=1.0): if recs.ndim == 0: rec = recs symbol = rec['symbol'] if symbol is None: symbol = self.opts['symbol'] size = rec['size'] if size < 0: size = self.opts['size'] pen = rec['pen'] if pen is None: pen = self.opts['pen'] brush = rec['brush'] if brush is None: brush = self.opts['brush'] return (symbol, size*scale, fn.mkPen(pen), fn.mkBrush(brush)) else: recs = recs.copy() recs['symbol'][np.equal(recs['symbol'], None)] = self.opts['symbol'] recs['size'][np.equal(recs['size'], -1)] = self.opts['size'] recs['size'] *= scale recs['pen'][np.equal(recs['pen'], None)] = fn.mkPen(self.opts['pen']) recs['brush'][np.equal(recs['brush'], None)] = fn.mkBrush(self.opts['brush']) return recs
Example 4
def updateSpots(self, dataSet=None): if dataSet is None: dataSet = self.data invalidate = False if self.opts['pxMode']: mask = np.equal(dataSet['sourceRect'], None) if np.any(mask): invalidate = True opts = self.getSpotOpts(dataSet[mask]) sourceRect = self.fragmentAtlas.getSymbolCoords(opts) dataSet['sourceRect'][mask] = sourceRect self.fragmentAtlas.getAtlas() # generate atlas so source widths are available. dataSet['width'] = np.array(list(imap(QtCore.QRectF.width, dataSet['sourceRect'])))/2 dataSet['targetRect'] = None self._maxSpotPxWidth = self.fragmentAtlas.max_width else: self._maxSpotWidth = 0 self._maxSpotPxWidth = 0 self.measureSpotSizes(dataSet) if invalidate: self.invalidate()
Example 5
def getSpotOpts(self, recs, scale=1.0): if recs.ndim == 0: rec = recs symbol = rec['symbol'] if symbol is None: symbol = self.opts['symbol'] size = rec['size'] if size < 0: size = self.opts['size'] pen = rec['pen'] if pen is None: pen = self.opts['pen'] brush = rec['brush'] if brush is None: brush = self.opts['brush'] return (symbol, size*scale, fn.mkPen(pen), fn.mkBrush(brush)) else: recs = recs.copy() recs['symbol'][np.equal(recs['symbol'], None)] = self.opts['symbol'] recs['size'][np.equal(recs['size'], -1)] = self.opts['size'] recs['size'] *= scale recs['pen'][np.equal(recs['pen'], None)] = fn.mkPen(self.opts['pen']) recs['brush'][np.equal(recs['brush'], None)] = fn.mkBrush(self.opts['brush']) return recs
Example 6
def calc_metrics(self, data_gen, history, dataset, logs): y_true = [] predictions = [] for i in range(data_gen.steps): if self.verbose == 1: print "\r\tdone {}/{}".format(i, data_gen.steps), (x,y) = next(data_gen) pred = self.model.predict(x, batch_size=self.batch_size) if isinstance(x, list) and len(x) == 2: # deep supervision for m, t, p in zip(x[1].flatten(), y.flatten(), pred.flatten()): if np.equal(m, 1): y_true.append(t) predictions.append(p) else: y_true += list(y.flatten()) predictions += list(pred.flatten()) print "\n" predictions = np.array(predictions) predictions = np.stack([1-predictions, predictions], axis=1) ret = metrics.print_metrics_binary(y_true, predictions) for k, v in ret.iteritems(): logs[dataset + '_' + k] = v history.append(ret)
Example 7
def add(self, output, target): if torch.is_tensor(output): output = output.cpu().squeeze().numpy() if torch.is_tensor(target): target = target.cpu().squeeze().numpy() elif isinstance(target, numbers.Number): target = np.asarray([target]) assert np.ndim(output) == 1, \ 'wrong output size (1D expected)' assert np.ndim(target) == 1, \ 'wrong target size (1D expected)' assert output.shape[0] == target.shape[0], \ 'number of outputs and targets does not match' assert np.all(np.add(np.equal(target, 1), np.equal(target, 0))), \ 'targets should be binary (0, 1)' self.scores = np.append(self.scores, output) self.targets = np.append(self.targets, target)
Example 8
def validate_transitions_cpu_old(transitions, **kwargs): pre = np.array(transitions[0]) suc = np.array(transitions[1]) base = setting['base'] width = pre.shape[1] // base height = pre.shape[1] // base load(width,height) pre_validation = validate_states(pre, **kwargs) suc_validation = validate_states(suc, **kwargs) results = [] for pre, suc, pre_validation, suc_validation in zip(pre, suc, pre_validation, suc_validation): if pre_validation and suc_validation: c = to_configs(np.array([pre, suc]), verbose=False) succs = successors(c[0], width, height) results.append(np.any(np.all(np.equal(succs, c[1]), axis=1))) else: results.append(False) return results
Example 9
def setup(): setting['base'] = 14 def loader(width,height): from ..util.mnist import mnist base = setting['base'] x_train, y_train, _, _ = mnist() filters = [ np.equal(i,y_train) for i in range(9) ] imgs = [ x_train[f] for f in filters ] panels = [ imgs[0].reshape((28,28)) for imgs in imgs ] panels[8] = imgs[8][3].reshape((28,28)) panels[1] = imgs[8][3].reshape((28,28)) panels = np.array(panels) stepy = panels.shape[1]//base stepx = panels.shape[2]//base # unfortunately the method below generates "bolder" fonts # panels = panels[:,:stepy*base,:stepx*base,] # panels = panels.reshape((panels.shape[0],base,stepy,base,stepx)) # panels = panels.mean(axis=(2,4)) # panels = panels.round() panels = panels[:,::stepy,::stepx][:,:base,:base].round() panels = preprocess(panels) return panels setting['loader'] = loader
Example 10
def validate_transitions(transitions, check_states=True, **kwargs): pre = np.array(transitions[0]) suc = np.array(transitions[1]) if check_states: pre_validation = validate_states(pre, verbose=False, **kwargs) suc_validation = validate_states(suc, verbose=False, **kwargs) pre_configs = to_configs(pre, verbose=False, **kwargs) suc_configs = to_configs(suc, verbose=False, **kwargs) results = [] if check_states: for pre_c, suc_c, pre_validation, suc_validation in zip(pre_configs, suc_configs, pre_validation, suc_validation): if pre_validation and suc_validation: succs = successors(pre_c) results.append(np.any(np.all(np.equal(succs, suc_c), axis=1))) else: results.append(False) else: for pre_c, suc_c in zip(pre_configs, suc_configs): succs = successors(pre_c) results.append(np.any(np.all(np.equal(succs, suc_c), axis=1))) return results
Example 11
def validate_transitions(transitions, check_states=True, **kwargs): pre = np.array(transitions[0]) suc = np.array(transitions[1]) if check_states: pre_validation = validate_states(pre, verbose=False, **kwargs) suc_validation = validate_states(suc, verbose=False, **kwargs) pre_configs = to_configs(pre, verbose=False, **kwargs) suc_configs = to_configs(suc, verbose=False, **kwargs) results = [] if check_states: for pre_c, suc_c, pre_validation, suc_validation in zip(pre_configs, suc_configs, pre_validation, suc_validation): if pre_validation and suc_validation: succs = successors(pre_c) results.append(np.any(np.all(np.equal(succs, suc_c), axis=1))) else: results.append(False) else: for pre_c, suc_c in zip(pre_configs, suc_configs): succs = successors(pre_c) results.append(np.any(np.all(np.equal(succs, suc_c), axis=1))) return results
Example 12
def equal(x1, x2): """ Return (x1 == x2) element-wise. Unlike `numpy.equal`, this comparison is performed by first stripping whitespace characters from the end of the string. This behavior is provided for backward-compatibility with numarray. Parameters ---------- x1, x2 : array_like of str or unicode Input arrays of the same shape. Returns ------- out : ndarray or bool Output array of bools, or a single bool if x1 and x2 are scalars. See Also -------- not_equal, greater_equal, less_equal, greater, less """ return compare_chararrays(x1, x2, '==', True)
Example 13
def not_equal(x1, x2): """ Return (x1 != x2) element-wise. Unlike `numpy.not_equal`, this comparison is performed by first stripping whitespace characters from the end of the string. This behavior is provided for backward-compatibility with numarray. Parameters ---------- x1, x2 : array_like of str or unicode Input arrays of the same shape. Returns ------- out : ndarray or bool Output array of bools, or a single bool if x1 and x2 are scalars. See Also -------- equal, greater_equal, less_equal, greater, less """ return compare_chararrays(x1, x2, '!=', True)
Example 14
def greater_equal(x1, x2): """ Return (x1 >= x2) element-wise. Unlike `numpy.greater_equal`, this comparison is performed by first stripping whitespace characters from the end of the string. This behavior is provided for backward-compatibility with numarray. Parameters ---------- x1, x2 : array_like of str or unicode Input arrays of the same shape. Returns ------- out : ndarray or bool Output array of bools, or a single bool if x1 and x2 are scalars. See Also -------- equal, not_equal, less_equal, greater, less """ return compare_chararrays(x1, x2, '>=', True)
Example 15
def less_equal(x1, x2): """ Return (x1 <= x2) element-wise. Unlike `numpy.less_equal`, this comparison is performed by first stripping whitespace characters from the end of the string. This behavior is provided for backward-compatibility with numarray. Parameters ---------- x1, x2 : array_like of str or unicode Input arrays of the same shape. Returns ------- out : ndarray or bool Output array of bools, or a single bool if x1 and x2 are scalars. See Also -------- equal, not_equal, greater_equal, greater, less """ return compare_chararrays(x1, x2, '<=', True)
Example 16
def greater(x1, x2): """ Return (x1 > x2) element-wise. Unlike `numpy.greater`, this comparison is performed by first stripping whitespace characters from the end of the string. This behavior is provided for backward-compatibility with numarray. Parameters ---------- x1, x2 : array_like of str or unicode Input arrays of the same shape. Returns ------- out : ndarray or bool Output array of bools, or a single bool if x1 and x2 are scalars. See Also -------- equal, not_equal, greater_equal, less_equal, less """ return compare_chararrays(x1, x2, '>', True)
Example 17
def test_scalar_none_comparison(self): # Scalars should still just return False and not give a warnings. # The comparisons are flagged by pep8, ignore that. with warnings.catch_warnings(record=True) as w: warnings.filterwarnings('always', '', FutureWarning) assert_(not np.float32(1) == None) assert_(not np.str_('test') == None) # This is dubious (see below): assert_(not np.datetime64('NaT') == None) assert_(np.float32(1) != None) assert_(np.str_('test') != None) # This is dubious (see below): assert_(np.datetime64('NaT') != None) assert_(len(w) == 0) # For documentation purposes, this is why the datetime is dubious. # At the time of deprecation this was no behaviour change, but # it has to be considered when the deprecations are done. assert_(np.equal(np.datetime64('NaT'), None))
Example 18
def almost(a, b, decimal=6, fill_value=True): """ Returns True if a and b are equal up to decimal places. If fill_value is True, masked values considered equal. Otherwise, masked values are considered unequal. """ m = mask_or(getmask(a), getmask(b)) d1 = filled(a) d2 = filled(b) if d1.dtype.char == "O" or d2.dtype.char == "O": return np.equal(d1, d2).ravel() x = filled(masked_array(d1, copy=False, mask=m), fill_value).astype(float_) y = filled(masked_array(d2, copy=False, mask=m), 1).astype(float_) d = np.around(np.abs(x - y), decimal) <= 10.0 ** (-decimal) return d.ravel()
Example 19
def fail_if_equal(actual, desired, err_msg='',): """ Raises an assertion error if two items are equal. """ if isinstance(desired, dict): if not isinstance(actual, dict): raise AssertionError(repr(type(actual))) fail_if_equal(len(actual), len(desired), err_msg) for k, i in desired.items(): if k not in actual: raise AssertionError(repr(k)) fail_if_equal(actual[k], desired[k], 'key=%r\n%s' % (k, err_msg)) return if isinstance(desired, (list, tuple)) and isinstance(actual, (list, tuple)): fail_if_equal(len(actual), len(desired), err_msg) for k in range(len(desired)): fail_if_equal(actual[k], desired[k], 'item=%r\n%s' % (k, err_msg)) return if isinstance(actual, np.ndarray) or isinstance(desired, np.ndarray): return fail_if_array_equal(actual, desired, err_msg) msg = build_err_msg([actual, desired], err_msg) if not desired != actual: raise AssertionError(msg)
Example 20
def categorical_accuracy(y_true, y_pred, mask=True): ''' categorical_accuracy adjusted for padding mask ''' # if mask is not None: print y_true print y_pred eval_shape = (reduce(mul, y_true.shape[:-1]), y_true.shape[-1]) print eval_shape y_true_ = np.reshape(y_true, eval_shape) y_pred_ = np.reshape(y_pred, eval_shape) flat_mask = np.flatten(mask) comped = np.equal(np.argmax(y_true_, axis=-1), np.argmax(y_pred_, axis=-1)) ## not sure how to do this in tensor flow good_entries = flat_mask.nonzero()[0] return np.mean(np.gather(comped, good_entries)) # else: # return K.mean(K.equal(K.argmax(y_true, axis=-1), # K.argmax(y_pred, axis=-1)))
Example 21
def __estimate_entropy__(self): counts = self.feature_vector_counts #Counter(self.timeline_feature_vectors) #print counts #N = float(sum(counts.values())) N = float(len(self.timeline) + 1) max_H = np.log(float(len(list(filter(lambda x: x, counts))))) if np.equal(max_H, 0.0): return 0.0 entropy = 0.0 for key in counts.keys(): if counts[key] > 0: key_probability = counts[key] / N entropy += -(key_probability * np.log(key_probability)) entropy /= max_H #print u'N={0}, |counts|={3}, max_H={1}, entropy={2}, counter={4}'.format(N, max_H, entropy, len(counts), counts) return entropy
Example 22
def _f_dice(a, b): """DICE between two segmentations. Args: a: [..., H, W], binary mask b: [..., H, W], binary mask Returns: dice: [...] """ card_a = a.sum(axis=-1).sum(axis=-1) card_b = b.sum(axis=-1).sum(axis=-1) card_ab = (a * b).sum(axis=-1).sum(axis=-1) card_sum = card_a + card_b dice = 2 * card_ab / (card_sum + np.equal(card_sum, 0).astype('float32')) return dice
Example 23
def test_accuracy(): def cat_acc(y_pred, y_true): return np.expand_dims(np.equal(np.argmax(y_pred, axis=-1), np.argmax(y_true, axis=-1)), -1), objectives_test(objectives.accuracy, cat_acc, np_pred=[[0,0,.9], [0,.9,0], [.9,0,0]], np_true=[[0,0,1], [0,0,1], [0,0,1]]) def bi_acc(y_pred, y_true): return np.equal(np.round(y_pred), y_true) objectives_test(objectives.accuracy, bi_acc, np_pred=[[0], [0.6], [0.7]], np_true=[[0], [1], [1]])
Example 24
def test_convolutional_embedding_encoder(config, out_data_shape, out_data_length, out_seq_len): conv_embed = sockeye.encoder.ConvolutionalEmbeddingEncoder(config) data_nd = mx.nd.random_normal(shape=(_BATCH_SIZE, _SEQ_LEN, _NUM_EMBED)) data = mx.sym.Variable("data", shape=data_nd.shape) data_length = mx.sym.Variable("data_length", shape=_DATA_LENGTH_ND.shape) (encoded_data, encoded_data_length, encoded_seq_len) = conv_embed.encode(data=data, data_length=data_length, seq_len=_SEQ_LEN) exe = encoded_data.simple_bind(mx.cpu(), data=data_nd.shape) exe.forward(data=data_nd) assert exe.outputs[0].shape == out_data_shape exe = encoded_data_length.simple_bind(mx.cpu(), data_length=_DATA_LENGTH_ND.shape) exe.forward(data_length=_DATA_LENGTH_ND) assert np.equal(exe.outputs[0].asnumpy(), np.asarray(out_data_length)).all() assert encoded_seq_len == out_seq_len
Example 25
def equal(x1, x2): """ Return (x1 == x2) element-wise. Unlike `numpy.equal`, this comparison is performed by first stripping whitespace characters from the end of the string. This behavior is provided for backward-compatibility with numarray. Parameters ---------- x1, x2 : array_like of str or unicode Input arrays of the same shape. Returns ------- out : ndarray or bool Output array of bools, or a single bool if x1 and x2 are scalars. See Also -------- not_equal, greater_equal, less_equal, greater, less """ return compare_chararrays(x1, x2, '==', True)
Example 26
def not_equal(x1, x2): """ Return (x1 != x2) element-wise. Unlike `numpy.not_equal`, this comparison is performed by first stripping whitespace characters from the end of the string. This behavior is provided for backward-compatibility with numarray. Parameters ---------- x1, x2 : array_like of str or unicode Input arrays of the same shape. Returns ------- out : ndarray or bool Output array of bools, or a single bool if x1 and x2 are scalars. See Also -------- equal, greater_equal, less_equal, greater, less """ return compare_chararrays(x1, x2, '!=', True)
Example 27
def greater_equal(x1, x2): """ Return (x1 >= x2) element-wise. Unlike `numpy.greater_equal`, this comparison is performed by first stripping whitespace characters from the end of the string. This behavior is provided for backward-compatibility with numarray. Parameters ---------- x1, x2 : array_like of str or unicode Input arrays of the same shape. Returns ------- out : ndarray or bool Output array of bools, or a single bool if x1 and x2 are scalars. See Also -------- equal, not_equal, less_equal, greater, less """ return compare_chararrays(x1, x2, '>=', True)
Example 28
def less_equal(x1, x2): """ Return (x1 <= x2) element-wise. Unlike `numpy.less_equal`, this comparison is performed by first stripping whitespace characters from the end of the string. This behavior is provided for backward-compatibility with numarray. Parameters ---------- x1, x2 : array_like of str or unicode Input arrays of the same shape. Returns ------- out : ndarray or bool Output array of bools, or a single bool if x1 and x2 are scalars. See Also -------- equal, not_equal, greater_equal, greater, less """ return compare_chararrays(x1, x2, '<=', True)
Example 29
def greater(x1, x2): """ Return (x1 > x2) element-wise. Unlike `numpy.greater`, this comparison is performed by first stripping whitespace characters from the end of the string. This behavior is provided for backward-compatibility with numarray. Parameters ---------- x1, x2 : array_like of str or unicode Input arrays of the same shape. Returns ------- out : ndarray or bool Output array of bools, or a single bool if x1 and x2 are scalars. See Also -------- equal, not_equal, greater_equal, less_equal, less """ return compare_chararrays(x1, x2, '>', True)
Example 30
def test_scalar_none_comparison(self): # Scalars should still just return False and not give a warnings. # The comparisons are flagged by pep8, ignore that. with warnings.catch_warnings(record=True) as w: warnings.filterwarnings('always', '', FutureWarning) assert_(not np.float32(1) == None) assert_(not np.str_('test') == None) # This is dubious (see below): assert_(not np.datetime64('NaT') == None) assert_(np.float32(1) != None) assert_(np.str_('test') != None) # This is dubious (see below): assert_(np.datetime64('NaT') != None) assert_(len(w) == 0) # For documentation purposes, this is why the datetime is dubious. # At the time of deprecation this was no behaviour change, but # it has to be considered when the deprecations are done. assert_(np.equal(np.datetime64('NaT'), None))
Example 31
def almost(a, b, decimal=6, fill_value=True): """ Returns True if a and b are equal up to decimal places. If fill_value is True, masked values considered equal. Otherwise, masked values are considered unequal. """ m = mask_or(getmask(a), getmask(b)) d1 = filled(a) d2 = filled(b) if d1.dtype.char == "O" or d2.dtype.char == "O": return np.equal(d1, d2).ravel() x = filled(masked_array(d1, copy=False, mask=m), fill_value).astype(float_) y = filled(masked_array(d2, copy=False, mask=m), 1).astype(float_) d = np.around(np.abs(x - y), decimal) <= 10.0 ** (-decimal) return d.ravel()
Example 32
def fail_if_equal(actual, desired, err_msg='',): """ Raises an assertion error if two items are equal. """ if isinstance(desired, dict): if not isinstance(actual, dict): raise AssertionError(repr(type(actual))) fail_if_equal(len(actual), len(desired), err_msg) for k, i in desired.items(): if k not in actual: raise AssertionError(repr(k)) fail_if_equal(actual[k], desired[k], 'key=%r\n%s' % (k, err_msg)) return if isinstance(desired, (list, tuple)) and isinstance(actual, (list, tuple)): fail_if_equal(len(actual), len(desired), err_msg) for k in range(len(desired)): fail_if_equal(actual[k], desired[k], 'item=%r\n%s' % (k, err_msg)) return if isinstance(actual, np.ndarray) or isinstance(desired, np.ndarray): return fail_if_array_equal(actual, desired, err_msg) msg = build_err_msg([actual, desired], err_msg) if not desired != actual: raise AssertionError(msg)
Example 33
def grayscaleimage(self, value): try: if value.ndim == 2: self._grayscaleimage = value if (_np.equal(self._x,None).any() or _np.equal(self._y,None).any() or self._x.size != value.shape[1] or self._y.size != value.shape[0]): self._x = _np.linspace(1, value.shape[1], value.shape[1]) self._y = _np.linspace(1, value.shape[0], value.shape[0]) self.xunits = self.XUNITS self.yunits = self.YUNITS else: pass except: pass
Example 34
def paren_data(T, n_data): MAX_COUNT = 10 n_paren = 10 n_noise = 10 inputs = (np.random.rand(T, n_data)* (n_paren * 2 + n_noise)).astype(np.int32) counts = np.zeros((n_data, n_paren), dtype=np.int32) targets = np.zeros((T, n_data, n_paren), dtype = np.int32) opening_parens = (np.arange(0, n_paren)*2)[None, :] closing_parens = opening_parens + 1 for i in range(T): opened = np.equal(inputs[i, :, None], opening_parens) counts = np.minimum(MAX_COUNT, counts + opened) closed = np.equal(inputs[i, :, None], closing_parens) counts = np.maximum(0, counts - closed) targets[i, :, :] = counts x = np.transpose(inputs, [1,0]) y = np.transpose(targets, [1,0,2]) return x, y
Example 35
def is_connect_exist_nn(node_in, node_out, nn): """ check if the connection between node_in and node_out exists :param node_in: :param node_out: :param nn: Neural network instance :return: True if exists, False if DNE """ assert type(nn) == NeuralNetwork, "nn must be an instance of Neural Network" if nn.connect_genes is None: return False connect = [node_in, node_out] history = nn.connect_genes[:, :2] return any(np.equal(connect, history).all(1))
Example 36
def equal(x1, x2): """ Return (x1 == x2) element-wise. Unlike `numpy.equal`, this comparison is performed by first stripping whitespace characters from the end of the string. This behavior is provided for backward-compatibility with numarray. Parameters ---------- x1, x2 : array_like of str or unicode Input arrays of the same shape. Returns ------- out : ndarray or bool Output array of bools, or a single bool if x1 and x2 are scalars. See Also -------- not_equal, greater_equal, less_equal, greater, less """ return compare_chararrays(x1, x2, '==', True)
Example 37
def not_equal(x1, x2): """ Return (x1 != x2) element-wise. Unlike `numpy.not_equal`, this comparison is performed by first stripping whitespace characters from the end of the string. This behavior is provided for backward-compatibility with numarray. Parameters ---------- x1, x2 : array_like of str or unicode Input arrays of the same shape. Returns ------- out : ndarray or bool Output array of bools, or a single bool if x1 and x2 are scalars. See Also -------- equal, greater_equal, less_equal, greater, less """ return compare_chararrays(x1, x2, '!=', True)
Example 38
def greater_equal(x1, x2): """ Return (x1 >= x2) element-wise. Unlike `numpy.greater_equal`, this comparison is performed by first stripping whitespace characters from the end of the string. This behavior is provided for backward-compatibility with numarray. Parameters ---------- x1, x2 : array_like of str or unicode Input arrays of the same shape. Returns ------- out : ndarray or bool Output array of bools, or a single bool if x1 and x2 are scalars. See Also -------- equal, not_equal, less_equal, greater, less """ return compare_chararrays(x1, x2, '>=', True)
Example 39
def less_equal(x1, x2): """ Return (x1 <= x2) element-wise. Unlike `numpy.less_equal`, this comparison is performed by first stripping whitespace characters from the end of the string. This behavior is provided for backward-compatibility with numarray. Parameters ---------- x1, x2 : array_like of str or unicode Input arrays of the same shape. Returns ------- out : ndarray or bool Output array of bools, or a single bool if x1 and x2 are scalars. See Also -------- equal, not_equal, greater_equal, greater, less """ return compare_chararrays(x1, x2, '<=', True)
Example 40
def greater(x1, x2): """ Return (x1 > x2) element-wise. Unlike `numpy.greater`, this comparison is performed by first stripping whitespace characters from the end of the string. This behavior is provided for backward-compatibility with numarray. Parameters ---------- x1, x2 : array_like of str or unicode Input arrays of the same shape. Returns ------- out : ndarray or bool Output array of bools, or a single bool if x1 and x2 are scalars. See Also -------- equal, not_equal, greater_equal, less_equal, less """ return compare_chararrays(x1, x2, '>', True)
Example 41
def test_scalar_none_comparison(self): # Scalars should still just return false and not give a warnings. # The comparisons are flagged by pep8, ignore that. with warnings.catch_warnings(record=True) as w: warnings.filterwarnings('always', '', FutureWarning) assert_(not np.float32(1) == None) assert_(not np.str_('test') == None) # This is dubious (see below): assert_(not np.datetime64('NaT') == None) assert_(np.float32(1) != None) assert_(np.str_('test') != None) # This is dubious (see below): assert_(np.datetime64('NaT') != None) assert_(len(w) == 0) # For documentaiton purpose, this is why the datetime is dubious. # At the time of deprecation this was no behaviour change, but # it has to be considered when the deprecations is done. assert_(np.equal(np.datetime64('NaT'), None))
Example 42
def approx(a, b, fill_value=True, rtol=1e-5, atol=1e-8): """ Returns true if all components of a and b are equal to given tolerances. If fill_value is True, masked values considered equal. Otherwise, masked values are considered unequal. The relative error rtol should be positive and << 1.0 The absolute error atol comes into play for those elements of b that are very small or zero; it says how small a must be also. """ m = mask_or(getmask(a), getmask(b)) d1 = filled(a) d2 = filled(b) if d1.dtype.char == "O" or d2.dtype.char == "O": return np.equal(d1, d2).ravel() x = filled(masked_array(d1, copy=False, mask=m), fill_value).astype(float_) y = filled(masked_array(d2, copy=False, mask=m), 1).astype(float_) d = np.less_equal(umath.absolute(x - y), atol + rtol * umath.absolute(y)) return d.ravel()
Example 43
def almost(a, b, decimal=6, fill_value=True): """ Returns True if a and b are equal up to decimal places. If fill_value is True, masked values considered equal. Otherwise, masked values are considered unequal. """ m = mask_or(getmask(a), getmask(b)) d1 = filled(a) d2 = filled(b) if d1.dtype.char == "O" or d2.dtype.char == "O": return np.equal(d1, d2).ravel() x = filled(masked_array(d1, copy=False, mask=m), fill_value).astype(float_) y = filled(masked_array(d2, copy=False, mask=m), 1).astype(float_) d = np.around(np.abs(x - y), decimal) <= 10.0 ** (-decimal) return d.ravel()
Example 44
def fail_if_equal(actual, desired, err_msg='',): """ Raises an assertion error if two items are equal. """ if isinstance(desired, dict): if not isinstance(actual, dict): raise AssertionError(repr(type(actual))) fail_if_equal(len(actual), len(desired), err_msg) for k, i in desired.items(): if k not in actual: raise AssertionError(repr(k)) fail_if_equal(actual[k], desired[k], 'key=%r\n%s' % (k, err_msg)) return if isinstance(desired, (list, tuple)) and isinstance(actual, (list, tuple)): fail_if_equal(len(actual), len(desired), err_msg) for k in range(len(desired)): fail_if_equal(actual[k], desired[k], 'item=%r\n%s' % (k, err_msg)) return if isinstance(actual, np.ndarray) or isinstance(desired, np.ndarray): return fail_if_array_equal(actual, desired, err_msg) msg = build_err_msg([actual, desired], err_msg) if not desired != actual: raise AssertionError(msg)
Example 45
def get_same_status(pairs, items, target): text_compare = pairs item1 = items[['itemID', target]] item1 = item1.rename( columns={ 'itemID': 'itemID_1', target: target + '_1', } ) text_compare = pd.merge(text_compare, item1, how='left', on='itemID_1', left_index=True) item2 = items[['itemID', target]] item2 = item2.rename( columns={ 'itemID': 'itemID_2', target: target + '_2', } ) text_compare = pd.merge(text_compare, item2, how='left', on='itemID_2', left_index=True) text_compare[target + '_same'] = np.equal(text_compare[target + '_1'], text_compare[target + '_2']).astype(np.int32) # print(text_compare[target + '_same'].describe()) return text_compare[['id', target + '_same']]
Example 46
def gen_hull(p, p_mask, f_encode, f_probi, options): # p: n_sizes * n_samples * data_dim n_sizes = p.shape[0] n_samples = p.shape[1] if p.ndim == 3 else 1 hprev = f_encode(p_mask, p) # n_sizes * n_samples * data_dim points = numpy.zeros((n_samples, n_sizes), dtype='int64') h = hprev[-1] c = numpy.zeros((n_samples, options['dim_proj']), dtype=config.floatX) xi = numpy.zeros((n_samples,), dtype='int64') xi_mask = numpy.ones((n_samples,), dtype=config.floatX) for i in range(n_sizes): h, c, probi = f_probi(p_mask[i], xi, h, c, hprev, p_mask, p) xi = probi.argmax(axis=0) xi *= xi_mask.astype(numpy.int64) # Avoid compatibility problem in numpy 1.10 xi_mask = (numpy.not_equal(xi, 0)).astype(config.floatX) if numpy.equal(xi_mask, 0).all(): break points[:, i] = xi return points
Example 47
def VOCap(rec,prec): mpre = np.zeros([1,2+len(prec)]) mpre[0,1:len(prec)+1] = prec mrec = np.zeros([1,2+len(rec)]) mrec[0,1:len(rec)+1] = rec mrec[0,len(rec)+1] = 1.0 for i in range(mpre.size-2,-1,-1): mpre[0,i] = max(mpre[0,i],mpre[0,i+1]) i = np.argwhere( ~np.equal( mrec[0,1:], mrec[0,:mrec.shape[1]-1]) )+1 i = i.flatten() # compute area under the curve ap = np.sum( np.multiply( np.subtract( mrec[0,i], mrec[0,i-1]), mpre[0,i] ) ) return ap
Example 48
def equal(x1, x2): """ Return (x1 == x2) element-wise. Unlike `numpy.equal`, this comparison is performed by first stripping whitespace characters from the end of the string. This behavior is provided for backward-compatibility with numarray. Parameters ---------- x1, x2 : array_like of str or unicode Input arrays of the same shape. Returns ------- out : ndarray or bool Output array of bools, or a single bool if x1 and x2 are scalars. See Also -------- not_equal, greater_equal, less_equal, greater, less """ return compare_chararrays(x1, x2, '==', True)
Example 49
def greater_equal(x1, x2): """ Return (x1 >= x2) element-wise. Unlike `numpy.greater_equal`, this comparison is performed by first stripping whitespace characters from the end of the string. This behavior is provided for backward-compatibility with numarray. Parameters ---------- x1, x2 : array_like of str or unicode Input arrays of the same shape. Returns ------- out : ndarray or bool Output array of bools, or a single bool if x1 and x2 are scalars. See Also -------- equal, not_equal, less_equal, greater, less """ return compare_chararrays(x1, x2, '>=', True)
Example 50
def less_equal(x1, x2): """ Return (x1 <= x2) element-wise. Unlike `numpy.less_equal`, this comparison is performed by first stripping whitespace characters from the end of the string. This behavior is provided for backward-compatibility with numarray. Parameters ---------- x1, x2 : array_like of str or unicode Input arrays of the same shape. Returns ------- out : ndarray or bool Output array of bools, or a single bool if x1 and x2 are scalars. See Also -------- equal, not_equal, greater_equal, greater, less """ return compare_chararrays(x1, x2, '<=', True)