The following are code examples for showing how to use . They are extracted from open source Python projects. You can vote up the examples you like or vote down the exmaples you don’t like. You can also save this page to your account.
Example 1
def phormants(x, Fs): N = len(x) w = numpy.hamming(N) # Apply window and high pass filter. x1 = x * w x1 = lfilter([1], [1., 0.63], x1) # Get LPC. ncoeff = 2 + Fs / 1000 A, e, k = lpc(x1, ncoeff) #A, e, k = lpc(x1, 8) # Get roots. rts = numpy.roots(A) rts = [r for r in rts if numpy.imag(r) >= 0] # Get angles. angz = numpy.arctan2(numpy.imag(rts), numpy.real(rts)) # Get frequencies. frqs = sorted(angz * (Fs / (2 * math.pi))) return frqs
Example 2
def mdst(x, odd=True): """ Calculate modified discrete sine transform of input signal Parameters ---------- X : array_like The input signal odd : boolean, optional Switch to oddly stacked transform. Defaults to :code:`True`. Returns ------- out : array_like The output signal """ return -1 * numpy.imag(cmdct(x, odd=odd)) * numpy.sqrt(2)
Example 3
def get_phases(self): sizeimg = np.real(self.imgfft).shape mag = np.zeros(sizeimg) for x in range(sizeimg[0]): for y in range(sizeimg[1]): mag[x][y] = np.arctan2(np.real(self.imgfft[x][y]), np.imag(self.imgfft[x][y])) rpic = MyImage(mag) rpic.limit(1) return rpic # int my = y-output.height/2; # int mx = x-output.width/2; # float angle = atan2(my, mx) - HALF_PI ; # float radius = sqrt(mx*mx+my*my) / factor; # float ix = map(angle,-PI,PI,input.width,0); # float iy = map(radius,0,height,0,input.height); # int inputIndex = int(ix) + int(iy) * input.width; # int outputIndex = x + y * output.width; # if (inputIndex <= input.pixels.length-1) { # output.pixels[outputIndex] = input.pixels[inputIndex];
Example 4
def fftDf( df , part = "abs") : #Handle series or DataFrame if type(df) == pd.Series : df = pd.DataFrame(df) ise = True else : ise = False res = pd.DataFrame( index = np.fft.rfftfreq( df.index.size, d = dx( df ) ) ) for col in df.columns : if part == "abs" : res["FFT_"+col] = np.abs( np.fft.rfft(df[col]) ) / (0.5*df.index.size) elif part == "real" : res["FFT_"+col] = np.real( np.fft.rfft(df[col]) ) / (0.5*df.index.size) elif part == "imag" : res["FFT_"+col] = np.imag( np.fft.rfft(df[col]) ) / (0.5*df.index.size) if ise : return res.iloc[:,0] else : return res
Example 5
def test_psi(adjcube): """Tests retrieval of the wave functions and eigenvalues. """ from pydft.bases.fourier import psi, O, H cell = adjcube V = QHO(cell) W = W4(cell) Ns = W.shape[1] Psi, epsilon = psi(V, W, cell, forceR=False) #Make sure that the eigenvalues are real. assert np.sum(np.imag(epsilon)) < 1e-13 checkI = np.dot(Psi.conjugate().T, O(Psi, cell)) assert abs(np.sum(np.diag(checkI))-Ns) < 1e-13 # Should be the identity assert np.abs(np.sum(checkI)-Ns) < 1e-13 checkD = np.dot(Psi.conjugate().T, H(V, Psi, cell)) diagsum = np.sum(np.diag(checkD)) assert np.abs(np.sum(checkD)-diagsum) < 1e-12 # Should be diagonal # Should match the diagonal elements of previous matrix assert np.allclose(np.diag(checkD), epsilon)
Example 6
def fcn_ComputeFrequencyResponse(self,f,sig,mur,a,x0,y0,z0,X,Y,Z): """Compute Single Frequency Response at (X,Y,Z)""" m = self.m orient = self.orient xtx = self.xtx ytx = self.ytx ztx = self.ztx chi = fcn_ComputeExcitation_FEM(f,sig,mur,a) Hpx,Hpy,Hpz = fcn_ComputePrimary(m,orient,xtx,ytx,ztx,x0,y0,z0) mx = 4*np.pi*a**3*chi*Hpx/3 my = 4*np.pi*a**3*chi*Hpy/3 mz = 4*np.pi*a**3*chi*Hpz/3 R = np.sqrt((X-x0)**2 + (Y-y0)**2 + (Z-z0)**2) Hx = (1/(4*np.pi))*(3*(X-x0)*(mx*(X-x0) + my*(Y-y0) + mz*(Z-z0))/R**5 - mx/R**3) Hy = (1/(4*np.pi))*(3*(Y-y0)*(mx*(X-x0) + my*(Y-y0) + mz*(Z-z0))/R**5 - my/R**3) Hz = (1/(4*np.pi))*(3*(Z-z0)*(mx*(X-x0) + my*(Y-y0) + mz*(Z-z0))/R**5 - mz/R**3) Habs = np.sqrt(np.real(Hx)**2 + np.real(Hy)**2 + np.real(Hz)**2) + 1j*np.sqrt(np.imag(Hx)**2 + np.imag(Hy)**2 + np.imag(Hz)**2) return Hx, Hy, Hz, Habs
Example 7
def genSpectra(time,dipole,signal): fw, frequency = pade(time,dipole) fw_sig, frequency = pade(time,signal,alternate=True) fw_re = np.real(fw) fw_im = np.imag(fw) fw_abs = fw_re**2 + fw_im**2 #spectra = (fw_re*17.32)/(np.pi*field*damp_const) #spectra = (fw_re*17.32*514.220652)/(np.pi*field*damp_const) #numerator = np.imag((fw*np.conjugate(fw_sig))) numerator = np.imag(fw_abs*np.conjugate(fw_sig)) #numerator = np.abs((fw*np.conjugate(fw_sig))) #numerator = np.abs(fw) denominator = np.real(np.conjugate(fw_sig)*fw_sig) #denominator = 1.0 spectra = ((4.0*27.21138602*2*frequency*np.pi*(numerator))/(3.0*137.036*denominator)) spectra *= 1.0/100.0 #plt.plot(frequency*27.2114,fourier) #plt.show() return frequency, spectra
Example 8
def histogram_plot(data, sfreq, toffset, bins, log_scale, title): """Plot a histogram of the data for a given bin size.""" print("histogram") fig = plt.figure() ax = fig.add_subplot(1, 1, 1) ax.hist(numpy.real(data), bins, log=log_scale, histtype='bar', color=['green']) ax.hold(True) ax.hist(numpy.imag(data), bins, log=log_scale, histtype='bar', color=['blue']) ax.grid(True) ax.set_xlabel('adc value') ax.set_ylabel('frequency') ax.set_title(title) ax.hold(False) return fig
Example 9
def __init__(self,jet,kernels,k,x,y,pt,subpixel): self.jet = jet self.kernels = kernels self.k = k self.x = x self.y = y re = np.real(jet) im = np.imag(jet) self.mag = np.sqrt(re*re + im*im) self.phase = np.arctan2(re,im) if subpixel: d = np.array([[pt.X()-x],[pt.Y()-y]]) comp = np.dot(self.k,d) self.phase -= comp.flatten() self.jet = self.mag*np.exp(1.0j*self.phase)
Example 10
def __init__(self, qubit_names, quad="real"): super(PulseCalibration, self).__init__() self.qubit_names = qubit_names if isinstance(qubit_names, list) else [qubit_names] self.qubit = [QubitFactory(qubit_name) for qubit_name in qubit_names] if isinstance(qubit_names, list) else QubitFactory(qubit_names) self.filename = 'None' self.exp = None self.axis_descriptor = None self.cw_mode = False self.saved_settings = config.load_meas_file(config.meas_file) self.settings = deepcopy(self.saved_settings) #make a copy for used during calibration self.quad = quad if quad == "real": self.quad_fun = np.real elif quad == "imag": self.quad_fun = np.imag elif quad == "amp": self.quad_fun = np.abs elif quad == "phase": self.quad_fun = np.angle else: raise ValueError('Quadrature to calibrate must be one of ("real", "imag", "amp", "phase").') self.plot = self.init_plot()
Example 11
def fit_photon_number(xdata, ydata, params): ''' Fit number of measurement photons before a Ramsey. See McClure et al., Phys. Rev. App. 2016 input params: 1 - cavity decay rate kappa (MHz) 2 - detuning Delta (MHz) 3 - dispersive shift 2Chi (MHz) 4 - Ramsey decay time T2* (us) 5 - exp(-t_meas/T1) (us), only if starting from |1> (to include relaxation during the 1st msm't) 6 - initial qubit state (0/1) ''' params = [2*np.pi*p for p in params[:3]] + params[3:] # convert to angular frequencies def model_0(t, pa, pb): return (-np.imag(np.exp(-(1/params[3]+params[1]*1j)*t + (pa-pb*params[2]*(1-np.exp(-((params[0] + params[2]*1j)*t)))/(params[0]+params[2]*1j))*1j))) def model(t, pa, pb): return params[4]*model_0(t, pa, pb) + (1-params[4])*model_0(t, pa+np.pi, pb) if params[5] == 1 else model_0(t, pa, pb) popt, pcov = curve_fit(model, xdata, ydata, p0 = [0, 1]) perr = np.sqrt(np.diag(pcov)) finer_delays = np.linspace(np.min(xdata), np.max(xdata), 4*len(xdata)) fit_curve = model(finer_delays, *popt) return popt[1], perr[1], (finer_delays, fit_curve)
Example 12
def make_layout(self): self.lay = QtWidgets.QHBoxLayout() self.lay.setContentsMargins(0, 0, 0, 0) self.real = FloatSpinBox(label=self.labeltext, min=self.minimum, max=self.maximum, increment=self.singleStep, log_increment=self.log_increment, halflife_seconds=self.halflife_seconds, decimals=self.decimals) self.imag = FloatSpinBox(label=self.labeltext, min=self.minimum, max=self.maximum, increment=self.singleStep, log_increment=self.log_increment, halflife_seconds=self.halflife_seconds, decimals=self.decimals) self.real.value_changed.connect(self.value_changed) self.lay.addWidget(self.real) self.label = QtWidgets.QLabel(" + j") self.lay.addWidget(self.label) self.imag.value_changed.connect(self.value_changed) self.lay.addWidget(self.imag) self.setLayout(self.lay) self.setFocusPolicy(QtCore.Qt.ClickFocus)
Example 13
def set_value(self, obj, value): """ the master's setter writes its value to the slave lists """ real, complex = [], [] for v in value: # separate real from complex values if np.imag(v) == 0: real.append(v.real) else: complex.append(v) # avoid calling setup twice with obj.do_setup: setattr(obj, 'complex_' + self.name, complex) setattr(obj, 'real_' + self.name, real) # this property should have call_setup=True, such that obj._setup() # is called automatically after this function
Example 14
def plot_waveforms(waveforms, figTitle=''): channels = waveforms.keys() # plot plots = [] for (ct, chan) in enumerate(channels): fig = bk.figure(title=figTitle + repr(chan), plot_width=800, plot_height=350, y_range=[-1.05, 1.05], x_axis_label=u'Time (?s)') fig.background_fill_color = config.plotBackground if config.gridColor: fig.xgrid.grid_line_color = config.gridColor fig.ygrid.grid_line_color = config.gridColor waveformToPlot = waveforms[chan] xpts = np.linspace(0, len(waveformToPlot) / chan.phys_chan.sampling_rate / 1e-6, len(waveformToPlot)) fig.line(xpts, np.real(waveformToPlot), color='red') fig.line(xpts, np.imag(waveformToPlot), color='blue') plots.append(fig) bk.show(column(*plots))
Example 15
def merge_waveform(n, chAB, chAm1, chAm2, chBm1, chBm2): ''' Builds packed I and Q waveforms from the nth mini LL, merging in marker data. ''' wfAB = np.array([], dtype=np.complex) for entry in chAB['linkList'][n % len(chAB['linkList'])]: if not entry.isTimeAmp: wfAB = np.append(wfAB, chAB['wfLib'][entry.key]) else: wfAB = np.append(wfAB, chAB['wfLib'][entry.key][0] * np.ones(entry.length * entry.repeat)) wfAm1 = marker_waveform(chAm1['linkList'][n % len(chAm1['linkList'])], chAm1['wfLib']) wfAm2 = marker_waveform(chAm2['linkList'][n % len(chAm2['linkList'])], chAm2['wfLib']) wfBm1 = marker_waveform(chBm1['linkList'][n % len(chBm1['linkList'])], chBm1['wfLib']) wfBm2 = marker_waveform(chBm2['linkList'][n % len(chBm2['linkList'])], chBm2['wfLib']) wfA = pack_waveform(np.real(wfAB), wfAm1, wfAm2) wfB = pack_waveform(np.imag(wfAB), wfBm1, wfBm2) return wfA, wfB
Example 16
def check(value, value_list, difference): n = True if len(value_list) == 0: value_list.append(value) else: for x in value_list: if np.abs(np.real(x) - np.real(value)) < difference and \ np.abs(np.imag(x) - np.imag(value)) < difference: n = False else: pass if n == True: value_list.append(value) return value_list # This function converts a list of lists into a numpy array. It only takes the # list of lists as input, and returns the array as output. If the lists inside # the list are of unequal lengths, it fills up the lines with None so that all # lines in the output array are of equal length. # Example input: # a = [[1,3,4], [2,1], [2,3,4,7]] # Output: # array([[1, 3, 4, None], # [2, 1, None, None], # [2, 3, 4, 7]], dtype=object)
Example 17
def csvd(arr): """ Do the complex SVD of a 2D array, returning real valued U, S, VT http://stemblab.github.io/complex-svd/ """ C_r = arr.real C_i = arr.imag block_x = C_r.shape[0] block_y = C_r.shape[1] K = np.zeros((2 * block_x, 2 * block_y)) # Upper left K[:block_x, :block_y] = C_r # Lower left K[:block_x, block_y:] = C_i # Upper right K[block_x:, :block_y] = -C_i # Lower right K[block_x:, block_y:] = C_r return svd(K, full_matrices=False)
Example 18
def csvd(arr): """ Do the complex SVD of a 2D array, returning real valued U, S, VT http://stemblab.github.io/complex-svd/ """ C_r = arr.real C_i = arr.imag block_x = C_r.shape[0] block_y = C_r.shape[1] K = np.zeros((2 * block_x, 2 * block_y)) # Upper left K[:block_x, :block_y] = C_r # Lower left K[:block_x, block_y:] = C_i # Upper right K[block_x:, :block_y] = -C_i # Lower right K[block_x:, block_y:] = C_r return svd(K, full_matrices=False)
Example 19
def fft_test2(self): axis = str(self.axis_combobox.currentText()) if axis.startswith('a'): normal_para = 16384.0 elif axis.startswith('g'): normal_para = 131.0 signal =( self.raw_data[axis] - self.bias_dict[axis])/ normal_para n = signal.size # Number of data points dx = 0.007 # Sampling period (in meters) Fk = np.fft.fft(signal) # Fourier coefficients (divided by n) nu = np.fft.fftfreq(n,dx) # Natural frequencies #Fk = np.fft.fftshift(Fk) # Shift zero freq to center #nu = np.fft.fftshift(nu) # Shift zero freq to center f, ax = plt.subplots(3,1,sharex=True) ax[0].plot(nu, np.real(Fk)) # Plot Cosine terms ax[0].set_ylabel(r'$Re[F_k]$', size = 'x-large') ax[1].plot(nu, np.imag(Fk)) # Plot Sine terms ax[1].set_ylabel(r'$Im[F_k]$', size = 'x-large') ax[2].plot(nu, np.absolute(Fk)**2) # Plot spectral power ax[2].set_ylabel(r'$\vert F_k \vert ^2$', size = 'x-large') ax[2].set_xlabel(r'$\widetilde{\nu}$', size = 'x-large') plt.title(axis) plt.show()
Example 20
def estimate_pair(self, ts1, ts2): """ Returns ------- ts : array-like, shape(1, n_samples) Estimated iPLV time series. avg : float Average iPLV. Notes ----- Called from :mod:`dyfunconn.tvfcgs.tvfcg`. """ n_samples = len(ts1) ts_plv = np.exp(1j * (ts1 - ts2)) avg_plv = np.abs(np.imag(np.sum((ts_plv))) / float(n_samples)) return np.imag(ts_plv), avg_plv
Example 21
def edge_phase(): """calculate edge phase""" se = plane.UniformPlane(L=8, W=8, js=(0, 8 * 7), E=0, t=1, U=0, phase=.2 * 2 * np.pi, parasite=.1) E1, psi1l, psi1r = eigenbasis(se, 1) idx = np.argsort(np.real(E1)) E1 = E1[idx] psi1l = psi1l[:, idx] psi1r = psi1r[:, idx] res = np.zeros((64, )) idxs = se.edge_indices(dw=1, dl=1) print(idxs) s = len(idxs) for i in range(s): res += np.array([np.arctan2(np.real(psi1r[idxs[i], j] / psi1r[idxs[(i + 1) % s], j]), np.imag(psi1r[idxs[i], j] / psi1l[idxs[(i + 1) % s], j])) for j in np.arange(64)]) plt.plot(np.real(E1), res / (2 * np.pi), '-o') Emin = np.min(np.real(E1)) Emax = np.max(np.real(E1)) for i in range(-10, 1, 1): plt.plot([Emin, Emax], [i, i]) plt.plot([Emin, Emax], [-i, -i]) plt.show()
Example 22
def BB(Y,index_PQ, index_P, n_PQ, n_P): case_number, _ = np.shape(Y) Y_p = Y.copy() B_p = np.zeros((n_P,n_P)) B_pp = np.zeros((n_PQ,n_PQ)) #-------------------------------------------------- for i in xrange(case_number): Y_p[i][i] = complex(0,0) for j in xrange(case_number): if i != j: Y_p[i][i] -= Y_p[i][j] B = np.imag(Y_p) for i in xrange(n_P): for j in xrange(0, n_P): B_p[i][j] = B[index_P[i]][index_P[j]] #-------------------------------------------------- for i in xrange(0, n_PQ): for j in xrange(0, n_PQ): B_pp[i][j] = B[index_PQ[i]][index_PQ[j]] return B_p, B_pp # A.M Van Amerongen-----------------------------------------------------------------------------------------------------
Example 23
def vals2coeffs2(vals): """Map function values at Chebyshev points of 2nd kind to first-kind Chebyshev polynomial coefficients""" n = vals.size if n <= 1: coeffs = vals return coeffs tmp = np.append( vals[::-1], vals[1:-1] ) if np.isreal(vals).all(): coeffs = ifft(tmp) coeffs = np.real(coeffs) elif np.isreal( 1j*vals ).all(): coeffs = ifft(np.imag(tmp)) coeffs = 1j * np.real(coeffs) else: coeffs = ifft(tmp) coeffs = coeffs[:n] coeffs[1:n-1] = 2*coeffs[1:n-1] return coeffs
Example 24
def coeffs2vals2(coeffs): """Map first-kind Chebyshev polynomial coefficients to function values at Chebyshev points of 2nd kind""" n = coeffs.size if n <= 1: vals = coeffs return vals coeffs = coeffs.copy() coeffs[1:n-1] = .5 * coeffs[1:n-1] tmp = np.append( coeffs, coeffs[n-2:0:-1] ) if np.isreal(coeffs).all(): vals = fft(tmp) vals = np.real(vals) elif np.isreal(1j*coeffs).all(): vals = fft(np.imag(tmp)) vals = 1j * np.real(vals) else: vals = fft(tmp) vals = vals[n-1::-1] return vals
Example 25
def _plot_samples(self, signal, ax, mag, real, imag, rms, noise=True): if mag: ax.plot(signal.mag, label='Mag') if real: ax.plot(np.real(signal), label='Real') if imag: ax.plot(np.imag(signal), label='Imag') if rms: ax.axhline(signal.rms, label='RMS', linestyle='--') if noise: noise_est = self.result.carrier_info.noise / np.sqrt(len(signal)) ax.axhline(noise_est, label='Noise', linestyle='--', color='g') ax.legend() ax.set_xlabel('Sample') ax.set_ylabel('Value') # ax2 = ax.twiny() # ax2.set_xlim(0, len(signal) / self.sample_rate * 1e3) # ax2.set_xlabel('Time (ms)') ax.grid()
Example 26
def interpolate_slice(f3d, rot, pfac=2, size=None): nhalf = f3d.shape[0] / 2 if size is None: phalf = nhalf else: phalf = size / 2 qot = rot * pfac # Scaling! px, py, pz = np.meshgrid(np.arange(-phalf, phalf), np.arange(-phalf, phalf), 0) pr = np.sqrt(px ** 2 + py ** 2 + pz ** 2) pcoords = np.vstack([px.reshape(-1), py.reshape(-1), pz.reshape(-1)]) mcoords = qot.T.dot(pcoords) mcoords = mcoords[:, pr.reshape(-1) < nhalf] pvals = map_coordinates(np.real(f3d), mcoords, order=1, mode="wrap") + \ 1j * map_coordinates(np.imag(f3d), mcoords, order=1, mode="wrap") pslice = np.zeros(pr.shape, dtype=np.complex) pslice[pr < nhalf] = pvals return pslice
Example 27
def complex_quadrature(func, a, b, **kwargs): """ wraps the scipy qaudpack routines to handle complex valued functions :param func: callable :param a: lower limit :param b: upper limit :param kwargs: kwargs for func :return: """ def real_func(x): return np.real(func(x)) def imag_func(x): return np.imag(func(x)) real_integral = integrate.quad(real_func, a, b, **kwargs) imag_integral = integrate.quad(imag_func, a, b, **kwargs) return real_integral[0] + 1j * imag_integral[0], real_integral[1] + imag_integral[1]
Example 28
def plot(self): """ Plot a realisation of the signal waveform """ Y=self.rvs() Y_processed=linear_transform(Y,self.preprocessing_method) N,L=Y_processed.shape if ((L==3) or (L==1)): n_vect=np.arange(N)/self.Fe for l in range(L): plt.plot(n_vect,Y_processed[:,l],label="signal %d" %l) plt.xlabel("Time") plt.ylabel("Signal") plt.legend() if L==2: z=Y_processed[:,0]+1j*Y_processed[:,1] plt.plot(np.real(z),np.imag(z)) plt.xlabel("Real Part") plt.ylabel("Imag Part")
Example 29
def make_node(self, a, s=None): a = T.as_tensor_variable(a) if a.ndim < 3: raise TypeError('%s: input must have dimension >= 3, with ' % self.__class__.__name__ + 'first dimension batches and last real/imag parts') if s is None: s = a.shape[1:-1] s = T.set_subtensor(s[-1], (s[-1] - 1) * 2) s = T.as_tensor_variable(s) else: s = T.as_tensor_variable(s) if (not s.dtype.startswith('int')) and \ (not s.dtype.startswith('uint')): raise TypeError('%s: length of the transformed axis must be' ' of type integer' % self.__class__.__name__) return gof.Apply(self, [a, s], [self.output_type(a)()])
Example 30
def add_scal_vec(self, val, vec): """ Perform in-place addition of a vector times a scalar. Parameters ---------- val : int or float scalar. vec : <Vector> this vector times val is added to self. """ if self._vector_info._under_complex_step: r_val = np.real(val) i_val = np.imag(val) for set_name, data in iteritems(self._data): data += r_val * vec._data[set_name] + i_val * vec._imag_data[set_name] for set_name, data in iteritems(self._imag_data): data += i_val * vec._data[set_name] + r_val * vec._imag_data[set_name] else: for set_name, data in iteritems(self._data): data += val * vec._data[set_name]
Example 31
def get_batch(batch_size): samples = np.zeros([batch_size, sample_length]) frequencies = [set()] * batch_size ffts = np.zeros([batch_size, fft_size]) for i in range(batch_size): num_sources = np.random.randint(min_sources, max_sources + 1) for source_idx in range(num_sources): frequency, sample = generate_sample() samples[i] += sample frequencies[i].add(frequency) samples[i] /= float(num_sources) fft = np.fft.rfft(samples[i], norm="ortho") fft = np.real(fft)**2 + np.imag(fft)**2 fft *= fft_norm ffts[i] = fft return frequencies, samples, ffts
Example 32
def get_imag_part(self): r = MyImage(np.imag(self.imgfft)) r.limit(1) return r # Correlate functions
Example 33
def get_magnitude(self): sizeimg = np.real(self.imgfft).shape mag = np.zeros(sizeimg) for x in range(sizeimg[0]): for y in range(sizeimg[1]): mag[x][y] = np.sqrt(np.real(self.imgfft[x][y])**2 + np.imag(self.imgfft[x][y])**2) rpic = MyImage(mag) rpic.limit(1) return rpic
Example 34
def draw_fft(self): if len(self.points) < 1: return pts = map(lambda p: p[1] - self.offset, self.points) out = numpy.fft.rfft(pts) c = len(out) norm = 0 for i in range(c/2): norm += numpy.real(out[i])**2 + numpy.imag(out[i])**2 norm = math.sqrt(norm) if norm <= 0: return for i in range(1, SignalKPlot.NUM_X_DIV): x = float(i) / SignalKPlot.NUM_X_DIV glRasterPos2d(x, .95) period = 3/math.exp(x) # incorrect!! SignalKPlot.drawputs(str(period)) glPushMatrix() glBegin(GL_LINE_STRIP) for i in range(c/2): glVertex2d(float(i) * 2 / (c-2), abs(out[i]) / norm) glEnd() glPopMatrix()
Example 35
def slidingFFT( se, T , n = 1 , tStart = None , preSample = False , nHarmo = 5 , kind = abs , phase = None) : """ Harmonic analysis on a sliding windows se : Series to analyse T : Period tStart : start _xAxis n : size of the sliding windows in period. reSample : reSample the signal so that a period correspond to a integer number of time step nHarmo : number of harmonics to return kind : module, real, imaginary part, as a function (abs, np.imag, np.real ...) phase : phase shift (for instance to extract in-phase with cos or sin) """ if (type(se) == pd.DataFrame) : if len(se.columns) == 1 : se = se.iloc[:,0] nWin = int(0.5 + n*T / dx(se) ) #ReSample to get round number of time step per period if preSample : new = reSample( se, dt = n*T / (nWin) ) else : new = se signal = new.values[:] #Allocate results res = np.zeros( (new.shape[0] , nHarmo ) ) for iWin in range(new.shape[0] - nWin) : sig = signal[ iWin : iWin+nWin ] #windows fft = np.fft.fft( sig ) #FTT if phase !=None : #Phase shift fft *= np.exp( 1j* ( 2*pi*(iWin*1./nWin) + phase )) fftp = kind( fft ) #Take module, real or imaginary part spectre = 2*fftp/(nWin) #Scale for ih in range(nHarmo): res[iWin, ih] = spectre[ih*n] if ih == 0 : res[iWin, ih] /= 2.0 #if ih == 0 : res[iWin, ih] = 2.0 return pd.DataFrame( data = res , index = new.index , columns = map( lambda x : "Harmo {:} ({:})".format(x , se.name ) , range(nHarmo) ) )
Example 36
def test_E_real(adjcube): """Tests that the result of the calculation is real. """ from pydft.bases.fourier import E from numpy.matlib import randn cell = adjcube #Single columns of random complex data W = np.array(randn(np.prod(cell.S), 4) + 1j*randn(np.prod(cell.S), 4)) #Setup a harmonic oscillator potential V = QHO(cell) En = E(V, W, cell, forceR=False) assert np.imag(En) < 1e-14
Example 37
def test_IJ(adjcube): """Tests the I and J operators.""" from pydft.bases.fourier import I, J #This also tests accessing the geometry via the global variable. Sprod = np.prod(adjcube.S) for i in range(10): v = np.random.random(size=Sprod) #Our v is real; but due to round-off problems, there will be #tiny imaginary values. Chop them off. it = J(I(v)) if abs(np.max(np.imag(it))) < 1e-14: it = np.real(it) assert np.allclose(it, v)
Example 38
def test_LLinv(adjcube): """Tests L and its inverse. """ from pydft.bases.fourier import L, Linv Sprod = np.prod(adjcube.S) for i in range(10): v = np.random.random(size=Sprod) #Our v is real; but due to round-off problems, there will be #tiny imaginary values. Chop them off. We only keep the last #N-1 components because the 0 component is NaN. it = Linv(L(v))[1:] if abs(np.max(np.imag(it))) < 1e-14: it = np.real(it) assert np.allclose(it, v[1:])
Example 39
def plotResponseFEM(Ax,fi,f,H,Comp): FS = 20 xTicks = (np.logspace(np.log(np.min(f)),np.log(np.max(f)),9)) Ylim = np.array([np.min(np.real(H)),np.max(np.real(H))]) Ax.grid('both', linestyle='-', linewidth=0.8, color=[0.8, 0.8, 0.8]) Ax.semilogx(f,0*f,color='k',linewidth=2) Ax.semilogx(f,np.real(H),color='k',linewidth=4,label="Real") Ax.semilogx(f,np.imag(H),color='k',linewidth=4,ls='--',label="Imaginary") Ax.semilogx(np.array([fi,fi]),1.1*Ylim,linewidth=3,color='r') Ax.set_xbound(np.min(f),np.max(f)) Ax.set_ybound(1.1*Ylim) Ax.set_xlabel('Frequency [Hz]',fontsize=FS+2) Ax.tick_params(labelsize=FS-2) Ax.yaxis.set_major_formatter(FormatStrFormatter('%.1e')) if Comp == 'x': Ax.set_ylabel('$\mathbf{Hx}$ [A/m]',fontsize=FS+4,labelpad=-5) Ax.set_title('$\mathbf{Hx}$ Response at $\mathbf{Rx}$',fontsize=FS+6) elif Comp == 'y': Ax.set_ylabel('$\mathbf{Hy}$ [A/m]',fontsize=FS+4,labelpad=-5) Ax.set_title('$\mathbf{Hy}$ Response at $\mathbf{Rx}$',fontsize=FS+6) elif Comp == 'z': Ax.set_ylabel('$\mathbf{Hz}$ [A/m]',fontsize=FS+4,labelpad=-5) Ax.set_title('$\mathbf{Hz}$ Response at $\mathbf{Rx}$',fontsize=FS+6) elif Comp == 'abs': Ax.set_ylabel('$\mathbf{|H|}$ [A/m]',fontsize=FS+4,labelpad=-5) Ax.set_title('$\mathbf{|H|}$ Response at $\mathbf{Rx}$',fontsize=FS+6) if np.max(np.real(H[-1])) > 0.: handles, labels = Ax.get_legend_handles_labels() Ax.legend(handles, labels, loc='upper left', fontsize=FS) elif np.max(np.real(H[-1])) < 0.: handles, labels = Ax.get_legend_handles_labels() Ax.legend(handles, labels, loc='lower left', fontsize=FS) return Ax
Example 40
def plot_InducedCurrent_FD(self,Ax,Is,fi): FS = 20 R = self.R L = self.L Imax = np.max(-np.real(Is)) f = np.logspace(0,8,101) Ax.grid('both', linestyle='-', linewidth=0.8, color=[0.8, 0.8, 0.8]) Ax.semilogx(f,-np.real(Is),color='k',linewidth=4,label="$I_{Re}$") Ax.semilogx(f,-np.imag(Is),color='k',ls='--',linewidth=4,label="$I_{Im}$") Ax.semilogx(fi*np.array([1.,1.]),np.array([0,1.1*Imax]),color='r',ls='-',linewidth=3) handles, labels = Ax.get_legend_handles_labels() Ax.legend(handles, labels, loc='upper left', fontsize=FS) Ax.set_xlabel('Frequency [Hz]',fontsize=FS+2) Ax.set_ylabel('$\mathbf{- \, I_s (\omega)}$ [A]',fontsize=FS+2,labelpad=-10) Ax.set_title('Frequency Response',fontsize=FS) Ax.set_ybound(0,1.1*Imax) Ax.tick_params(labelsize=FS-2) Ax.yaxis.set_major_formatter(FormatStrFormatter('%.1e')) #R_str = '{:.3e}'.format(R) #L_str = '{:.3e}'.format(L) #f_str = '{:.3e}'.format(fi) #EMF_str = '{:.2e}j'.format(EMFi.imag) #I_str = '{:.2e} - {:.2e}j'.format(float(np.real(Isi)),np.abs(float(np.imag(Isi)))) #Ax.text(1.4,1.01*Imax,'$R$ = '+R_str+' $\Omega$',fontsize=FS) #Ax.text(1.4,0.94*Imax,'$L$ = '+L_str+' H',fontsize=FS) #Ax.text(1.4,0.87*Imax,'$f$ = '+f_str+' Hz',fontsize=FS,color='r') #Ax.text(1.4,0.8*Imax,'$V$ = '+EMF_str+' V',fontsize=FS,color='r') #Ax.text(1.4,0.73*Imax,'$I_s$ = '+I_str+' A',fontsize=FS,color='r') return Ax
Example 41
def test_real(self): y = np.random.rand(10,) assert_array_equal(0, np.imag(y))
Example 42
def test_cmplx(self): y = np.random.rand(10,)+1j*np.random.rand(10,) assert_array_equal(y.imag, np.imag(y))
Example 43
def test_complex_bad2(self): with np.errstate(divide='ignore', invalid='ignore'): v = 1 + 1j v += np.array(-1+1.j)/0. vals = nan_to_num(v) assert_all(np.isfinite(vals)) # Fixme #assert_all(vals.imag > 1e10) and assert_all(np.isfinite(vals)) # !! This is actually (unexpectedly) positive # !! inf. Comment out for now, and see if it # !! changes #assert_all(vals.real < -1e10) and assert_all(np.isfinite(vals))
Example 44
def voltage_plot(data, sfreq, toffset, log_scale, title): """Plot the real and imaginary voltage from IQ data.""" print("voltage") t_axis = numpy.arange(0, len(data)) / sfreq + toffset fig = plt.figure() ax0 = fig.add_subplot(2, 1, 1) ax0.plot(t_axis, data.real) ax0.grid(True) maxr = numpy.max(data.real) minr = numpy.min(data.real) if minr == 0.0 and maxr == 0.0: minr = -1.0 maxr = 1.0 ax0.axis([t_axis[0], t_axis[len(t_axis) - 1], minr, maxr]) ax0.set_ylabel('I sample value (A/D units)') ax1 = fig.add_subplot(2, 1, 2) ax1.plot(t_axis, data.imag) ax1.grid(True) maxi = numpy.max(data.imag) mini = numpy.min(data.imag) if mini == 0.0 and maxi == 0.0: mini = -1.0 maxi = 1.0 ax1.axis([t_axis[0], t_axis[len(t_axis) - 1], mini, maxi]) ax1.set_xlabel('time (seconds)') ax1.set_ylabel('Q sample value (A/D units)') ax1.set_title(title) return fig
Example 45
def iq_plot(data, toffset, log_scale, title): """Plot an IQ circle from the data in linear or log scale.""" print("iq") if log_scale: rx_raster_r = numpy.sign( data.real) * numpy.log10(numpy.abs(data.real) + 1E-30) / numpy.log10(2.) rx_raster_i = numpy.sign( data.imag) * numpy.log10(numpy.abs(data.imag) + 1E-30) / numpy.log10(2.) else: data *= 1.0 / 32768.0 rx_raster_r = data.real rx_raster_i = data.imag fig = plt.figure() ax = fig.add_subplot(1, 1, 1) ax.plot(rx_raster_r, rx_raster_i, '.') axmx = numpy.max([numpy.max(rx_raster_r), numpy.max(rx_raster_i)]) ax.axis([-axmx, axmx, -axmx, axmx]) ax.grid(True) ax.set_xlabel('I') ax.set_ylabel('Q') ax.set_title(title) return fig
Example 46
def show(self,*args,**kwargs): print self.data.shape tiles = [] w,h,n = self.data.shape for i in range(n): mat = self.data[:,:,i] tiles.append(pv.Image(mat.real)) tiles.append(pv.Image(mat.imag)) mont = pv.ImageMontage(tiles,layout=(8,10),tileSize=(w,h)) mont.show(*args,**kwargs)
Example 47
def test_gabor1(self): ilog = None # pv.ImageLog(name="GaborTest1") bank = FilterBank(tile_size=(128,128)) kernels = createGaborKernels() for wavelet in kernels: bank.addFilter(wavelet) for i in range(len(bank.filters)): filter = np.fft.ifft2(bank.filters[i]) if ilog: ilog.log(pv.Image(np.fft.fftshift(filter.real)),label="Filter_RE_%d"%i) ilog.log(pv.Image(np.fft.fftshift(filter.imag)),label="Filter_IM_%d"%i) for im in self.test_images[:1]: if ilog: ilog.log(im,label="ORIG") results = bank.convolve(im) #print "RShape",results.shape[2] if ilog: for i in range(results.shape[2]): ilog.log(pv.Image(results[:,:,i].real),label="CONV_RE_%d"%i) ilog.log(pv.Image(results[:,:,i].imag),label="CONV_IM_%d"%i) if ilog: ilog.show()
Example 48
def generate_fake_data(alpha, phi, sigma, N = 5000, plot=False): N_samples = 256 data_start = 3 data_length = 100 gnd_mean = np.array([alpha*np.cos(phi), alpha*np.sin(phi)]) ex_mean = np.array([alpha*np.cos(phi + np.pi), alpha*np.sin(phi + np.pi)]) gndIQ = np.vectorize(complex)(np.random.normal(gnd_mean[0], sigma, N), np.random.normal(gnd_mean[1], sigma, N)) exIQ = np.vectorize(complex)(np.random.normal(ex_mean[0], sigma, N), np.random.normal(ex_mean[1], sigma, N)) gnd = np.zeros((N_samples, N), dtype=np.complex128) ex = np.zeros((N_samples, N), dtype=np.complex128) for idx, x in enumerate(zip(gndIQ, exIQ)): gnd[data_start:data_start+data_length, idx] = x[0] ex[data_start:data_start+data_length, idx] = x[1] gnd += sigma/50 * (np.random.randn(N_samples, N) + 1j * np.random.randn(N_samples, N)) ex += sigma/50 * (np.random.randn(N_samples, N) + 1j * np.random.randn(N_samples, N)) if plot: plt.figure() plt.plot(np.real(gndIQ), np.imag(gndIQ), 'b.') plt.plot(np.real(exIQ), np.imag(exIQ), 'r.') plt.draw() plt.show() plt.figure() plt.plot(np.real(gnd[:,15]), 'b.') plt.plot(np.real(ex[:,15]), 'r.') plt.draw() plt.show() return gnd, ex
Example 49
def run(self, norm_pts = None): self.exp.run_sweeps() data = {} var = {} for buff in self.exp.buffers: if self.exp.writer_to_qubit[buff.name][0] in self.qubit_names: dataset, descriptor = buff.get_data(), buff.get_descriptor() qubit_name = self.exp.writer_to_qubit[buff.name][0] if norm_pts: buff_data = normalize_data(dataset, zero_id = norm_pts[qubit_name][0], one_id = norm_pts[qubit_name][1]) else: buff_data = dataset['Data'] data[qubit_name] = self.quad_fun(buff_data) if 'Variance' in dataset.dtype.names: if self.quad in ['real', 'imag']: var[qubit_name] = self.quad_fun(dataset['Variance'])/descriptor.metadata["num_averages"] else: raise Exception('Variance of {} not available. Choose real or imag'.format(self.quad)) else: var[qubit_name] = None # Return data and variance of the mean if len(data) == 1: # if single qubit, get rid of dictionary data = list(data.values())[0] var = list(var.values())[0] return data, var
Example 50
def update_references(self, frequency): # store decimated reference for mix down # phase_drift = 2j*np.pi*0.5e-6 * (abs(frequency) - 100e6) ref = np.exp(2j*np.pi * -frequency * self.time_pts[::self.d1] + 1j*self._phase, dtype=np.complex64) self.reference = ref self.reference_r = np.real(ref) self.reference_i = np.imag(ref)