Python numpy.imag() 使用实例

The following are code examples for showing how to use . They are extracted from open source Python projects. You can vote up the examples you like or vote down the exmaples you don’t like. You can also save this page to your account.

Example 1

def phormants(x, Fs):
    N = len(x)
    w = numpy.hamming(N)

    # Apply window and high pass filter.
    x1 = x * w   
    x1 = lfilter([1], [1., 0.63], x1)
    
    # Get LPC.    
    ncoeff = 2 + Fs / 1000
    A, e, k = lpc(x1, ncoeff)    
    #A, e, k = lpc(x1, 8)

    # Get roots.
    rts = numpy.roots(A)
    rts = [r for r in rts if numpy.imag(r) >= 0]

    # Get angles.
    angz = numpy.arctan2(numpy.imag(rts), numpy.real(rts))

    # Get frequencies.    
    frqs = sorted(angz * (Fs / (2 * math.pi)))

    return frqs 

Example 2

def mdst(x, odd=True):
    """ Calculate modified discrete sine transform of input signal

    Parameters
    ----------
    X : array_like
        The input signal
    odd : boolean, optional
        Switch to oddly stacked transform. Defaults to :code:`True`.

    Returns
    -------
    out : array_like
        The output signal

    """
    return -1 * numpy.imag(cmdct(x, odd=odd)) * numpy.sqrt(2) 

Example 3

def get_phases(self):
        sizeimg = np.real(self.imgfft).shape
        mag = np.zeros(sizeimg)
        for x in range(sizeimg[0]):
            for y in range(sizeimg[1]):
                mag[x][y] = np.arctan2(np.real(self.imgfft[x][y]), np.imag(self.imgfft[x][y]))
        rpic = MyImage(mag)
        rpic.limit(1)
        return rpic    


#      int my = y-output.height/2;
#      int mx = x-output.width/2;
#      float angle = atan2(my, mx) - HALF_PI ;
#      float radius = sqrt(mx*mx+my*my) / factor;
#      float ix = map(angle,-PI,PI,input.width,0);
#      float iy = map(radius,0,height,0,input.height);
#      int inputIndex = int(ix) + int(iy) * input.width;
#      int outputIndex = x + y * output.width;
#      if (inputIndex <= input.pixels.length-1) {
#        output.pixels[outputIndex] = input.pixels[inputIndex]; 

Example 4

def fftDf( df , part = "abs") :
   #Handle series or DataFrame
   if type(df) == pd.Series :
      df = pd.DataFrame(df)
      ise = True
   else :
      ise = False
   res = pd.DataFrame( index = np.fft.rfftfreq( df.index.size, d = dx( df ) ) )
   for col in df.columns :
      if part == "abs" :
         res["FFT_"+col] = np.abs( np.fft.rfft(df[col]) )  / (0.5*df.index.size)
      elif part == "real" :
         res["FFT_"+col] = np.real( np.fft.rfft(df[col]) ) / (0.5*df.index.size)
      elif part == "imag" :
         res["FFT_"+col] = np.imag( np.fft.rfft(df[col]) ) / (0.5*df.index.size)
   if ise :
      return res.iloc[:,0]
   else :
      return res 

Example 5

def test_psi(adjcube):
    """Tests retrieval of the wave functions and eigenvalues.
    """
    from pydft.bases.fourier import psi, O, H
    cell = adjcube
    V = QHO(cell)
    W = W4(cell)
    Ns = W.shape[1]
    Psi, epsilon = psi(V, W, cell, forceR=False)

    #Make sure that the eigenvalues are real.
    assert np.sum(np.imag(epsilon)) < 1e-13
    
    checkI = np.dot(Psi.conjugate().T, O(Psi, cell))
    assert abs(np.sum(np.diag(checkI))-Ns) < 1e-13 # Should be the identity
    assert np.abs(np.sum(checkI)-Ns) < 1e-13
    
    checkD = np.dot(Psi.conjugate().T, H(V, Psi, cell))
    diagsum = np.sum(np.diag(checkD))
    assert np.abs(np.sum(checkD)-diagsum) < 1e-12 # Should be diagonal

    # Should match the diagonal elements of previous matrix
    assert np.allclose(np.diag(checkD), epsilon) 

Example 6

def fcn_ComputeFrequencyResponse(self,f,sig,mur,a,x0,y0,z0,X,Y,Z):
        """Compute Single Frequency Response at (X,Y,Z)"""

        m = self.m
        orient = self.orient
        xtx = self.xtx
        ytx = self.ytx
        ztx = self.ztx

        chi = fcn_ComputeExcitation_FEM(f,sig,mur,a)
        Hpx,Hpy,Hpz = fcn_ComputePrimary(m,orient,xtx,ytx,ztx,x0,y0,z0)

        mx = 4*np.pi*a**3*chi*Hpx/3
        my = 4*np.pi*a**3*chi*Hpy/3
        mz = 4*np.pi*a**3*chi*Hpz/3
        R = np.sqrt((X-x0)**2 + (Y-y0)**2 + (Z-z0)**2)

        Hx = (1/(4*np.pi))*(3*(X-x0)*(mx*(X-x0) + my*(Y-y0) + mz*(Z-z0))/R**5 - mx/R**3)
        Hy = (1/(4*np.pi))*(3*(Y-y0)*(mx*(X-x0) + my*(Y-y0) + mz*(Z-z0))/R**5 - my/R**3)
        Hz = (1/(4*np.pi))*(3*(Z-z0)*(mx*(X-x0) + my*(Y-y0) + mz*(Z-z0))/R**5 - mz/R**3)
        Habs = np.sqrt(np.real(Hx)**2 + np.real(Hy)**2 + np.real(Hz)**2) + 1j*np.sqrt(np.imag(Hx)**2 + np.imag(Hy)**2 + np.imag(Hz)**2)

        return Hx, Hy, Hz, Habs 

Example 7

def genSpectra(time,dipole,signal):

    fw, frequency = pade(time,dipole)
    fw_sig, frequency = pade(time,signal,alternate=True)

    fw_re = np.real(fw)
    fw_im = np.imag(fw)
    fw_abs = fw_re**2 + fw_im**2

    #spectra = (fw_re*17.32)/(np.pi*field*damp_const)
    #spectra = (fw_re*17.32*514.220652)/(np.pi*field*damp_const)
    #numerator = np.imag((fw*np.conjugate(fw_sig)))
    numerator = np.imag(fw_abs*np.conjugate(fw_sig))
    #numerator = np.abs((fw*np.conjugate(fw_sig)))
    #numerator = np.abs(fw)
    denominator = np.real(np.conjugate(fw_sig)*fw_sig)
    #denominator = 1.0 
    spectra = ((4.0*27.21138602*2*frequency*np.pi*(numerator))/(3.0*137.036*denominator))
    spectra *= 1.0/100.0
    #plt.plot(frequency*27.2114,fourier)
    #plt.show()
    return frequency, spectra 

Example 8

def histogram_plot(data, sfreq, toffset, bins, log_scale, title):
    """Plot a histogram of the data for a given bin size."""
    print("histogram")

    fig = plt.figure()
    ax = fig.add_subplot(1, 1, 1)
    ax.hist(numpy.real(data), bins,
            log=log_scale, histtype='bar', color=['green'])
    ax.hold(True)
    ax.hist(numpy.imag(data), bins,
            log=log_scale, histtype='bar', color=['blue'])
    ax.grid(True)
    ax.set_xlabel('adc value')
    ax.set_ylabel('frequency')
    ax.set_title(title)
    ax.hold(False)

    return fig 

Example 9

def __init__(self,jet,kernels,k,x,y,pt,subpixel):
        self.jet = jet
        self.kernels = kernels
        self.k = k
        self.x = x
        self.y = y
        
        re = np.real(jet)
        im = np.imag(jet)
        
        self.mag = np.sqrt(re*re + im*im)
        self.phase = np.arctan2(re,im)
        
        if subpixel:
            d = np.array([[pt.X()-x],[pt.Y()-y]])
            comp = np.dot(self.k,d)
            self.phase -= comp.flatten()
            self.jet = self.mag*np.exp(1.0j*self.phase) 

Example 10

def __init__(self, qubit_names, quad="real"):
        super(PulseCalibration, self).__init__()
        self.qubit_names = qubit_names if isinstance(qubit_names, list) else [qubit_names]
        self.qubit     = [QubitFactory(qubit_name) for qubit_name in qubit_names] if isinstance(qubit_names, list) else QubitFactory(qubit_names)
        self.filename   = 'None'
        self.exp        = None
        self.axis_descriptor = None
        self.cw_mode    = False
        self.saved_settings = config.load_meas_file(config.meas_file)
        self.settings = deepcopy(self.saved_settings) #make a copy for used during calibration
        self.quad = quad
        if quad == "real":
            self.quad_fun = np.real
        elif quad == "imag":
            self.quad_fun = np.imag
        elif quad == "amp":
            self.quad_fun = np.abs
        elif quad == "phase":
            self.quad_fun = np.angle
        else:
            raise ValueError('Quadrature to calibrate must be one of ("real", "imag", "amp", "phase").')
        self.plot       = self.init_plot() 

Example 11

def fit_photon_number(xdata, ydata, params):
    ''' Fit number of measurement photons before a Ramsey. See McClure et al., Phys. Rev. App. 2016
    input params:
	1 - cavity decay rate kappa (MHz)
	2 - detuning Delta (MHz)
	3 - dispersive shift 2Chi (MHz)
	4 - Ramsey decay time T2* (us)
	5 - exp(-t_meas/T1) (us), only if starting from |1> (to include relaxation during the 1st msm't)
	6 - initial qubit state (0/1)
    '''
    params = [2*np.pi*p for p in params[:3]] + params[3:] # convert to angular frequencies
    def model_0(t, pa, pb):
        return (-np.imag(np.exp(-(1/params[3]+params[1]*1j)*t + (pa-pb*params[2]*(1-np.exp(-((params[0] + params[2]*1j)*t)))/(params[0]+params[2]*1j))*1j)))
    def model(t, pa, pb):
        return  params[4]*model_0(t, pa, pb) + (1-params[4])*model_0(t, pa+np.pi, pb) if params[5] == 1  else model_0(t, pa, pb)
    popt, pcov = curve_fit(model, xdata, ydata, p0 = [0, 1])
    perr = np.sqrt(np.diag(pcov))
    finer_delays = np.linspace(np.min(xdata), np.max(xdata), 4*len(xdata))
    fit_curve = model(finer_delays, *popt)
    return popt[1], perr[1], (finer_delays, fit_curve) 

Example 12

def make_layout(self):
        self.lay = QtWidgets.QHBoxLayout()
        self.lay.setContentsMargins(0, 0, 0, 0)
        self.real = FloatSpinBox(label=self.labeltext,
                                 min=self.minimum,
                                 max=self.maximum,
                                 increment=self.singleStep,
                                 log_increment=self.log_increment,
                                 halflife_seconds=self.halflife_seconds,
                                 decimals=self.decimals)
        self.imag = FloatSpinBox(label=self.labeltext,
                                 min=self.minimum,
                                 max=self.maximum,
                                 increment=self.singleStep,
                                 log_increment=self.log_increment,
                                 halflife_seconds=self.halflife_seconds,
                                 decimals=self.decimals)
        self.real.value_changed.connect(self.value_changed)
        self.lay.addWidget(self.real)
        self.label = QtWidgets.QLabel(" + j")
        self.lay.addWidget(self.label)
        self.imag.value_changed.connect(self.value_changed)
        self.lay.addWidget(self.imag)
        self.setLayout(self.lay)
        self.setFocusPolicy(QtCore.Qt.ClickFocus) 

Example 13

def set_value(self, obj, value):
        """
        the master's setter writes its value to the slave lists
        """
        real, complex = [], []
        for v in value:
            # separate real from complex values
            if np.imag(v) == 0:
                real.append(v.real)
            else:
                complex.append(v)
        # avoid calling setup twice
        with obj.do_setup:
            setattr(obj, 'complex_' + self.name, complex)
            setattr(obj, 'real_' + self.name, real)
        # this property should have call_setup=True, such that obj._setup()
        # is called automatically after this function 

Example 14

def plot_waveforms(waveforms, figTitle=''):
    channels = waveforms.keys()
    # plot
    plots = []
    for (ct, chan) in enumerate(channels):
        fig = bk.figure(title=figTitle + repr(chan),
                        plot_width=800,
                        plot_height=350,
                        y_range=[-1.05, 1.05],
                        x_axis_label=u'Time (?s)')
        fig.background_fill_color = config.plotBackground
        if config.gridColor:
            fig.xgrid.grid_line_color = config.gridColor
            fig.ygrid.grid_line_color = config.gridColor
        waveformToPlot = waveforms[chan]
        xpts = np.linspace(0, len(waveformToPlot) / chan.phys_chan.sampling_rate
                           / 1e-6, len(waveformToPlot))
        fig.line(xpts, np.real(waveformToPlot), color='red')
        fig.line(xpts, np.imag(waveformToPlot), color='blue')
        plots.append(fig)
    bk.show(column(*plots)) 

Example 15

def merge_waveform(n, chAB, chAm1, chAm2, chBm1, chBm2):
    '''
    Builds packed I and Q waveforms from the nth mini LL, merging in marker data.
    '''
    wfAB = np.array([], dtype=np.complex)
    for entry in chAB['linkList'][n % len(chAB['linkList'])]:
        if not entry.isTimeAmp:
            wfAB = np.append(wfAB, chAB['wfLib'][entry.key])
        else:
            wfAB = np.append(wfAB, chAB['wfLib'][entry.key][0] *
                             np.ones(entry.length * entry.repeat))

    wfAm1 = marker_waveform(chAm1['linkList'][n % len(chAm1['linkList'])],
                            chAm1['wfLib'])
    wfAm2 = marker_waveform(chAm2['linkList'][n % len(chAm2['linkList'])],
                            chAm2['wfLib'])
    wfBm1 = marker_waveform(chBm1['linkList'][n % len(chBm1['linkList'])],
                            chBm1['wfLib'])
    wfBm2 = marker_waveform(chBm2['linkList'][n % len(chBm2['linkList'])],
                            chBm2['wfLib'])

    wfA = pack_waveform(np.real(wfAB), wfAm1, wfAm2)
    wfB = pack_waveform(np.imag(wfAB), wfBm1, wfBm2)

    return wfA, wfB 

Example 16

def check(value, value_list, difference):
    n = True
    if len(value_list) == 0:
        value_list.append(value)
    else:
        for x in value_list:
            if np.abs(np.real(x) - np.real(value)) < difference and \
               np.abs(np.imag(x) - np.imag(value)) < difference:
                   n = False
            else:
                pass
        if n == True:
            value_list.append(value)
    return value_list

# This function converts a list of lists into a numpy array. It only takes the
# list of lists as input, and returns the array as output. If the lists inside 
# the list are of unequal lengths, it fills up the lines with None so that all 
# lines in the output array are of equal length.
# Example input:
# a = [[1,3,4], [2,1], [2,3,4,7]]
# Output:
# array([[1, 3, 4, None],
#        [2, 1, None, None],
#        [2, 3, 4, 7]], dtype=object) 

Example 17

def csvd(arr):
    """
    Do the complex SVD of a 2D array, returning real valued U, S, VT

    http://stemblab.github.io/complex-svd/
    """
    C_r = arr.real
    C_i = arr.imag
    block_x = C_r.shape[0]
    block_y = C_r.shape[1]
    K = np.zeros((2 * block_x, 2 * block_y))
    # Upper left
    K[:block_x, :block_y] = C_r
    # Lower left
    K[:block_x, block_y:] = C_i
    # Upper right
    K[block_x:, :block_y] = -C_i
    # Lower right
    K[block_x:, block_y:] = C_r
    return svd(K, full_matrices=False) 

Example 18

def csvd(arr):
    """
    Do the complex SVD of a 2D array, returning real valued U, S, VT

    http://stemblab.github.io/complex-svd/
    """
    C_r = arr.real
    C_i = arr.imag
    block_x = C_r.shape[0]
    block_y = C_r.shape[1]
    K = np.zeros((2 * block_x, 2 * block_y))
    # Upper left
    K[:block_x, :block_y] = C_r
    # Lower left
    K[:block_x, block_y:] = C_i
    # Upper right
    K[block_x:, :block_y] = -C_i
    # Lower right
    K[block_x:, block_y:] = C_r
    return svd(K, full_matrices=False) 

Example 19

def fft_test2(self):
        axis = str(self.axis_combobox.currentText())

        if axis.startswith('a'):
            normal_para = 16384.0
        elif axis.startswith('g'):
            normal_para = 131.0
        signal =( self.raw_data[axis] - self.bias_dict[axis])/ normal_para

        n = signal.size # Number of data points
        dx = 0.007 # Sampling period (in meters)
        Fk = np.fft.fft(signal) # Fourier coefficients (divided by n)
        nu = np.fft.fftfreq(n,dx) # Natural frequencies
        #Fk = np.fft.fftshift(Fk) # Shift zero freq to center
        #nu = np.fft.fftshift(nu) # Shift zero freq to center
        f, ax = plt.subplots(3,1,sharex=True)
        ax[0].plot(nu, np.real(Fk)) # Plot Cosine terms
        ax[0].set_ylabel(r'$Re[F_k]$', size = 'x-large')
        ax[1].plot(nu, np.imag(Fk)) # Plot Sine terms
        ax[1].set_ylabel(r'$Im[F_k]$', size = 'x-large')
        ax[2].plot(nu, np.absolute(Fk)**2) # Plot spectral power
        ax[2].set_ylabel(r'$\vert F_k \vert ^2$', size = 'x-large')
        ax[2].set_xlabel(r'$\widetilde{\nu}$', size = 'x-large')
        plt.title(axis)
        plt.show() 

Example 20

def estimate_pair(self, ts1, ts2):
        """

        Returns
        -------
        ts : array-like, shape(1, n_samples)
            Estimated iPLV time series.

        avg : float
            Average iPLV.


        Notes
        -----
        Called from :mod:`dyfunconn.tvfcgs.tvfcg`.
        """
        n_samples = len(ts1)

        ts_plv = np.exp(1j * (ts1 - ts2))
        avg_plv = np.abs(np.imag(np.sum((ts_plv))) / float(n_samples))

        return np.imag(ts_plv), avg_plv 

Example 21

def edge_phase():
    """calculate edge phase"""
    se = plane.UniformPlane(L=8, W=8, js=(0, 8 * 7), E=0, t=1, U=0, phase=.2 * 2 * np.pi, parasite=.1)

    E1, psi1l, psi1r = eigenbasis(se, 1)
    idx = np.argsort(np.real(E1))
    E1 = E1[idx]
    psi1l = psi1l[:, idx]
    psi1r = psi1r[:, idx]

    res = np.zeros((64, ))
    idxs = se.edge_indices(dw=1, dl=1)
    print(idxs)
    s = len(idxs)

    for i in range(s):
        res += np.array([np.arctan2(np.real(psi1r[idxs[i], j] / psi1r[idxs[(i + 1) % s], j]), np.imag(psi1r[idxs[i], j] / psi1l[idxs[(i + 1) % s], j])) for j in np.arange(64)])

    plt.plot(np.real(E1), res / (2 * np.pi), '-o')
    Emin = np.min(np.real(E1))
    Emax = np.max(np.real(E1))
    for i in range(-10, 1, 1):
        plt.plot([Emin, Emax], [i, i])
        plt.plot([Emin, Emax], [-i, -i])
    plt.show() 

Example 22

def BB(Y,index_PQ, index_P, n_PQ, n_P):
    case_number, _ = np.shape(Y)
    Y_p = Y.copy()
    B_p = np.zeros((n_P,n_P))
    B_pp = np.zeros((n_PQ,n_PQ))
    #--------------------------------------------------
    for i in xrange(case_number):
        Y_p[i][i] = complex(0,0)
        for j in xrange(case_number):
            if i != j:
                Y_p[i][i] -= Y_p[i][j]

    B = np.imag(Y_p)
    for i in xrange(n_P):
        for j in xrange(0, n_P):
            B_p[i][j] = B[index_P[i]][index_P[j]]
    #--------------------------------------------------
    for i in xrange(0, n_PQ):
        for j in xrange(0, n_PQ):
            B_pp[i][j] = B[index_PQ[i]][index_PQ[j]]

    return B_p, B_pp

# A.M Van Amerongen----------------------------------------------------------------------------------------------------- 

Example 23

def vals2coeffs2(vals):
    """Map function values at Chebyshev points of 2nd kind to
    first-kind Chebyshev polynomial coefficients"""
    n = vals.size
    if n <= 1:
        coeffs = vals
        return coeffs
    tmp = np.append( vals[::-1], vals[1:-1] )
    if np.isreal(vals).all():
        coeffs = ifft(tmp)
        coeffs = np.real(coeffs)
    elif np.isreal( 1j*vals ).all():
        coeffs = ifft(np.imag(tmp))
        coeffs = 1j * np.real(coeffs)
    else:
        coeffs = ifft(tmp)
    coeffs = coeffs[:n]
    coeffs[1:n-1] = 2*coeffs[1:n-1]
    return coeffs 

Example 24

def coeffs2vals2(coeffs):
    """Map first-kind Chebyshev polynomial coefficients to
    function values at Chebyshev points of 2nd kind"""
    n = coeffs.size
    if n <= 1:
        vals = coeffs
        return vals
    coeffs = coeffs.copy()
    coeffs[1:n-1] = .5 * coeffs[1:n-1]
    tmp = np.append( coeffs, coeffs[n-2:0:-1] )
    if np.isreal(coeffs).all():
        vals = fft(tmp)
        vals = np.real(vals)
    elif np.isreal(1j*coeffs).all():
        vals = fft(np.imag(tmp))
        vals = 1j * np.real(vals)
    else:
        vals = fft(tmp)
    vals = vals[n-1::-1]
    return vals 

Example 25

def _plot_samples(self, signal, ax, mag, real, imag, rms, noise=True):
        if mag:
            ax.plot(signal.mag, label='Mag')
        if real:
            ax.plot(np.real(signal), label='Real')
        if imag:
            ax.plot(np.imag(signal), label='Imag')
        if rms:
            ax.axhline(signal.rms, label='RMS', linestyle='--')
        if noise:
            noise_est = self.result.carrier_info.noise / np.sqrt(len(signal))
            ax.axhline(noise_est, label='Noise', linestyle='--', color='g')
        ax.legend()
        ax.set_xlabel('Sample')
        ax.set_ylabel('Value')
        # ax2 = ax.twiny()
        # ax2.set_xlim(0, len(signal) / self.sample_rate * 1e3)
        # ax2.set_xlabel('Time (ms)')
        ax.grid() 

Example 26

def interpolate_slice(f3d, rot, pfac=2, size=None):
    nhalf = f3d.shape[0] / 2
    if size is None:
        phalf = nhalf
    else:
        phalf = size / 2
    qot = rot * pfac  # Scaling!
    px, py, pz = np.meshgrid(np.arange(-phalf, phalf), np.arange(-phalf, phalf), 0)
    pr = np.sqrt(px ** 2 + py ** 2 + pz ** 2)
    pcoords = np.vstack([px.reshape(-1), py.reshape(-1), pz.reshape(-1)])
    mcoords = qot.T.dot(pcoords)
    mcoords = mcoords[:, pr.reshape(-1) < nhalf]
    pvals = map_coordinates(np.real(f3d), mcoords, order=1, mode="wrap") + \
             1j * map_coordinates(np.imag(f3d), mcoords, order=1, mode="wrap")
    pslice = np.zeros(pr.shape, dtype=np.complex)
    pslice[pr < nhalf] = pvals
    return pslice 

Example 27

def complex_quadrature(func, a, b, **kwargs):
    """
    wraps the scipy qaudpack routines to handle complex valued functions

    :param func: callable
    :param a: lower limit
    :param b: upper limit
    :param kwargs: kwargs for func
    :return:
    """

    def real_func(x):
        return np.real(func(x))

    def imag_func(x):
        return np.imag(func(x))

    real_integral = integrate.quad(real_func, a, b, **kwargs)
    imag_integral = integrate.quad(imag_func, a, b, **kwargs)

    return real_integral[0] + 1j * imag_integral[0], real_integral[1] + imag_integral[1] 

Example 28

def plot(self):
        """ Plot a realisation of the signal waveform """
        Y=self.rvs()
        Y_processed=linear_transform(Y,self.preprocessing_method)
        N,L=Y_processed.shape

        if ((L==3) or (L==1)):
            n_vect=np.arange(N)/self.Fe
            for l in range(L):
                plt.plot(n_vect,Y_processed[:,l],label="signal %d" %l)
            plt.xlabel("Time")
            plt.ylabel("Signal")
            plt.legend()
    
        if L==2:
            z=Y_processed[:,0]+1j*Y_processed[:,1]
            plt.plot(np.real(z),np.imag(z))
            plt.xlabel("Real Part")
            plt.ylabel("Imag Part") 

Example 29

def make_node(self, a, s=None):
        a = T.as_tensor_variable(a)
        if a.ndim < 3:
            raise TypeError('%s: input must have dimension >= 3,  with ' %
                            self.__class__.__name__ +
                            'first dimension batches and last real/imag parts')

        if s is None:
            s = a.shape[1:-1]
            s = T.set_subtensor(s[-1], (s[-1] - 1) * 2)
            s = T.as_tensor_variable(s)
        else:
            s = T.as_tensor_variable(s)
            if (not s.dtype.startswith('int')) and \
               (not s.dtype.startswith('uint')):
                raise TypeError('%s: length of the transformed axis must be'
                                ' of type integer' % self.__class__.__name__)
        return gof.Apply(self, [a, s], [self.output_type(a)()]) 

Example 30

def add_scal_vec(self, val, vec):
        """
        Perform in-place addition of a vector times a scalar.

        Parameters
        ----------
        val : int or float
            scalar.
        vec : <Vector>
            this vector times val is added to self.
        """
        if self._vector_info._under_complex_step:
            r_val = np.real(val)
            i_val = np.imag(val)
            for set_name, data in iteritems(self._data):
                data += r_val * vec._data[set_name] + i_val * vec._imag_data[set_name]
            for set_name, data in iteritems(self._imag_data):
                data += i_val * vec._data[set_name] + r_val * vec._imag_data[set_name]
        else:
            for set_name, data in iteritems(self._data):
                data += val * vec._data[set_name] 

Example 31

def get_batch(batch_size):
    samples = np.zeros([batch_size, sample_length])
    frequencies = [set()] * batch_size
    ffts = np.zeros([batch_size, fft_size])

    for i in range(batch_size):
        num_sources = np.random.randint(min_sources, max_sources + 1)
        for source_idx in range(num_sources):
            frequency, sample = generate_sample()
            samples[i] += sample
            frequencies[i].add(frequency)

        samples[i] /= float(num_sources)

        fft = np.fft.rfft(samples[i], norm="ortho")
        fft = np.real(fft)**2 + np.imag(fft)**2

        fft *= fft_norm

        ffts[i] = fft

    return frequencies, samples, ffts 

Example 32

def get_imag_part(self):
        r = MyImage(np.imag(self.imgfft))  
        r.limit(1)
        return r
    # Correlate functions 

Example 33

def get_magnitude(self):
        sizeimg = np.real(self.imgfft).shape
        mag = np.zeros(sizeimg)
        for x in range(sizeimg[0]):
            for y in range(sizeimg[1]):
                mag[x][y] = np.sqrt(np.real(self.imgfft[x][y])**2 + np.imag(self.imgfft[x][y])**2)
        rpic = MyImage(mag)
        rpic.limit(1)
        return rpic 

Example 34

def draw_fft(self):
        if len(self.points) < 1:
            return
        pts = map(lambda p: p[1] - self.offset, self.points)

        out = numpy.fft.rfft(pts)
        c = len(out)

        norm = 0
        for i in range(c/2):
            norm += numpy.real(out[i])**2 + numpy.imag(out[i])**2

        norm = math.sqrt(norm)
        if norm <= 0:
            return

        for i in range(1, SignalKPlot.NUM_X_DIV):
            x = float(i) / SignalKPlot.NUM_X_DIV
            glRasterPos2d(x, .95)
            period = 3/math.exp(x) # incorrect!!
            SignalKPlot.drawputs(str(period))

        glPushMatrix()
        glBegin(GL_LINE_STRIP)
        for i in range(c/2):
            glVertex2d(float(i) * 2 / (c-2), abs(out[i]) / norm)
        glEnd()
        glPopMatrix() 

Example 35

def slidingFFT( se, T  ,  n = 1 , tStart = None , preSample = False , nHarmo = 5 , kind = abs , phase = None) :
   """
   Harmonic analysis on a sliding windows
   se : Series to analyse
   T : Period
   tStart : start _xAxis
   n : size of the sliding windows in period.
   reSample : reSample the signal so that a period correspond to a integer number of time step
   nHarmo : number of harmonics to return
   kind : module, real,  imaginary part, as a function (abs, np.imag, np.real ...)
   phase : phase shift (for instance to extract in-phase with cos or sin)
   """

   if (type(se) == pd.DataFrame) :
      if len(se.columns) == 1 : se = se.iloc[:,0]

   nWin = int(0.5 + n*T / dx(se) )
   #ReSample to get round number of time step per period
   if preSample :
      new = reSample( se, dt = n*T / (nWin) )
   else :
      new = se
   signal = new.values[:]
   #Allocate results
   res = np.zeros( (new.shape[0] , nHarmo ) )
   for iWin in range(new.shape[0] - nWin) :
      sig = signal[ iWin : iWin+nWin  ]  #windows
      fft = np.fft.fft( sig )            #FTT
      if phase !=None  :                 #Phase shift
         fft *= np.exp( 1j* ( 2*pi*(iWin*1./nWin) + phase ))
      fftp = kind( fft )       #Take module, real or imaginary part
      spectre = 2*fftp/(nWin)  #Scale
      for ih in range(nHarmo):
         res[iWin, ih] = spectre[ih*n]
         if ih == 0 : res[iWin, ih] /= 2.0
         #if ih == 0 : res[iWin, ih] = 2.0
   return pd.DataFrame( data = res , index = new.index , columns = map( lambda x : "Harmo {:} ({:})".format(x , se.name  ) , range(nHarmo)  ) ) 

Example 36

def test_E_real(adjcube):
    """Tests that the result of the calculation is real.
    """
    from pydft.bases.fourier import E
    from numpy.matlib import randn
    cell = adjcube
    
    #Single columns of random complex data
    W = np.array(randn(np.prod(cell.S), 4) + 1j*randn(np.prod(cell.S), 4))
    #Setup a harmonic oscillator potential
    V = QHO(cell)
    En = E(V, W, cell, forceR=False)
    
    assert np.imag(En) < 1e-14 

Example 37

def test_IJ(adjcube):
    """Tests the I and J operators."""
    from pydft.bases.fourier import I, J
    #This also tests accessing the geometry via the global variable.
    Sprod = np.prod(adjcube.S)
    for i in range(10):
        v = np.random.random(size=Sprod)
        #Our v is real; but due to round-off problems, there will be
        #tiny imaginary values. Chop them off.
        it = J(I(v))
        if abs(np.max(np.imag(it))) < 1e-14:
            it = np.real(it)
        assert np.allclose(it, v) 

Example 38

def test_LLinv(adjcube):
    """Tests L and its inverse.
    """
    from pydft.bases.fourier import L, Linv
    Sprod = np.prod(adjcube.S)
    for i in range(10):
        v = np.random.random(size=Sprod)
        #Our v is real; but due to round-off problems, there will be
        #tiny imaginary values. Chop them off. We only keep the last
        #N-1 components because the 0 component is NaN.
        it = Linv(L(v))[1:]
        if abs(np.max(np.imag(it))) < 1e-14:
            it = np.real(it)
        assert np.allclose(it, v[1:]) 

Example 39

def plotResponseFEM(Ax,fi,f,H,Comp):

    FS = 20

    xTicks = (np.logspace(np.log(np.min(f)),np.log(np.max(f)),9))
    Ylim = np.array([np.min(np.real(H)),np.max(np.real(H))])

    Ax.grid('both', linestyle='-', linewidth=0.8, color=[0.8, 0.8, 0.8])
    Ax.semilogx(f,0*f,color='k',linewidth=2)
    Ax.semilogx(f,np.real(H),color='k',linewidth=4,label="Real")
    Ax.semilogx(f,np.imag(H),color='k',linewidth=4,ls='--',label="Imaginary")
    Ax.semilogx(np.array([fi,fi]),1.1*Ylim,linewidth=3,color='r')
    Ax.set_xbound(np.min(f),np.max(f))
    Ax.set_ybound(1.1*Ylim)
    Ax.set_xlabel('Frequency [Hz]',fontsize=FS+2)
    Ax.tick_params(labelsize=FS-2)
    Ax.yaxis.set_major_formatter(FormatStrFormatter('%.1e'))

    if Comp == 'x':
        Ax.set_ylabel('$\mathbf{Hx}$ [A/m]',fontsize=FS+4,labelpad=-5)
        Ax.set_title('$\mathbf{Hx}$ Response at $\mathbf{Rx}$',fontsize=FS+6)
    elif Comp == 'y':
        Ax.set_ylabel('$\mathbf{Hy}$ [A/m]',fontsize=FS+4,labelpad=-5)
        Ax.set_title('$\mathbf{Hy}$ Response at $\mathbf{Rx}$',fontsize=FS+6)
    elif Comp == 'z':
        Ax.set_ylabel('$\mathbf{Hz}$ [A/m]',fontsize=FS+4,labelpad=-5)
        Ax.set_title('$\mathbf{Hz}$ Response at $\mathbf{Rx}$',fontsize=FS+6)
    elif Comp == 'abs':
        Ax.set_ylabel('$\mathbf{|H|}$ [A/m]',fontsize=FS+4,labelpad=-5)
        Ax.set_title('$\mathbf{|H|}$ Response at $\mathbf{Rx}$',fontsize=FS+6)


    if np.max(np.real(H[-1])) > 0.:
        handles, labels = Ax.get_legend_handles_labels()
        Ax.legend(handles, labels, loc='upper left', fontsize=FS)
    elif np.max(np.real(H[-1])) < 0.:
        handles, labels = Ax.get_legend_handles_labels()
        Ax.legend(handles, labels, loc='lower left', fontsize=FS)

    return Ax 

Example 40

def plot_InducedCurrent_FD(self,Ax,Is,fi):

        FS = 20

        R = self.R
        L = self.L

        Imax = np.max(-np.real(Is))

        f = np.logspace(0,8,101)


        Ax.grid('both', linestyle='-', linewidth=0.8, color=[0.8, 0.8, 0.8])
        Ax.semilogx(f,-np.real(Is),color='k',linewidth=4,label="$I_{Re}$")
        Ax.semilogx(f,-np.imag(Is),color='k',ls='--',linewidth=4,label="$I_{Im}$")
        Ax.semilogx(fi*np.array([1.,1.]),np.array([0,1.1*Imax]),color='r',ls='-',linewidth=3)
        handles, labels = Ax.get_legend_handles_labels()
        Ax.legend(handles, labels, loc='upper left', fontsize=FS)

        Ax.set_xlabel('Frequency [Hz]',fontsize=FS+2)
        Ax.set_ylabel('$\mathbf{- \, I_s (\omega)}$ [A]',fontsize=FS+2,labelpad=-10)
        Ax.set_title('Frequency Response',fontsize=FS)
        Ax.set_ybound(0,1.1*Imax)
        Ax.tick_params(labelsize=FS-2)
        Ax.yaxis.set_major_formatter(FormatStrFormatter('%.1e'))

        #R_str    = '{:.3e}'.format(R)
        #L_str    = '{:.3e}'.format(L)
        #f_str    = '{:.3e}'.format(fi)
        #EMF_str  = '{:.2e}j'.format(EMFi.imag)
        #I_str    = '{:.2e} - {:.2e}j'.format(float(np.real(Isi)),np.abs(float(np.imag(Isi))))

        #Ax.text(1.4,1.01*Imax,'$R$ = '+R_str+' $\Omega$',fontsize=FS)
        #Ax.text(1.4,0.94*Imax,'$L$ = '+L_str+' H',fontsize=FS)
        #Ax.text(1.4,0.87*Imax,'$f$ = '+f_str+' Hz',fontsize=FS,color='r')
        #Ax.text(1.4,0.8*Imax,'$V$ = '+EMF_str+' V',fontsize=FS,color='r')
        #Ax.text(1.4,0.73*Imax,'$I_s$ = '+I_str+' A',fontsize=FS,color='r')

        return Ax 

Example 41

def test_real(self):
        y = np.random.rand(10,)
        assert_array_equal(0, np.imag(y)) 

Example 42

def test_cmplx(self):
        y = np.random.rand(10,)+1j*np.random.rand(10,)
        assert_array_equal(y.imag, np.imag(y)) 

Example 43

def test_complex_bad2(self):
        with np.errstate(divide='ignore', invalid='ignore'):
            v = 1 + 1j
            v += np.array(-1+1.j)/0.
        vals = nan_to_num(v)
        assert_all(np.isfinite(vals))
        # Fixme
        #assert_all(vals.imag > 1e10)  and assert_all(np.isfinite(vals))
        # !! This is actually (unexpectedly) positive
        # !! inf.  Comment out for now, and see if it
        # !! changes
        #assert_all(vals.real < -1e10) and assert_all(np.isfinite(vals)) 

Example 44

def voltage_plot(data, sfreq, toffset, log_scale, title):
    """Plot the real and imaginary voltage from IQ data."""

    print("voltage")

    t_axis = numpy.arange(0, len(data)) / sfreq + toffset

    fig = plt.figure()
    ax0 = fig.add_subplot(2, 1, 1)
    ax0.plot(t_axis, data.real)
    ax0.grid(True)
    maxr = numpy.max(data.real)
    minr = numpy.min(data.real)

    if minr == 0.0 and maxr == 0.0:
        minr = -1.0
        maxr = 1.0

    ax0.axis([t_axis[0], t_axis[len(t_axis) - 1], minr, maxr])
    ax0.set_ylabel('I sample value (A/D units)')

    ax1 = fig.add_subplot(2, 1, 2)
    ax1.plot(t_axis, data.imag)
    ax1.grid(True)
    maxi = numpy.max(data.imag)
    mini = numpy.min(data.imag)

    if mini == 0.0 and maxi == 0.0:
        mini = -1.0
        maxi = 1.0

    ax1.axis([t_axis[0], t_axis[len(t_axis) - 1], mini, maxi])

    ax1.set_xlabel('time (seconds)')

    ax1.set_ylabel('Q sample value (A/D units)')
    ax1.set_title(title)

    return fig 

Example 45

def iq_plot(data, toffset, log_scale, title):
    """Plot an IQ circle from the data in linear or log scale."""
    print("iq")

    if log_scale:
        rx_raster_r = numpy.sign(
            data.real) * numpy.log10(numpy.abs(data.real) + 1E-30) / numpy.log10(2.)
        rx_raster_i = numpy.sign(
            data.imag) * numpy.log10(numpy.abs(data.imag) + 1E-30) / numpy.log10(2.)
    else:
        data *= 1.0 / 32768.0
        rx_raster_r = data.real
        rx_raster_i = data.imag

    fig = plt.figure()
    ax = fig.add_subplot(1, 1, 1)
    ax.plot(rx_raster_r, rx_raster_i, '.')

    axmx = numpy.max([numpy.max(rx_raster_r), numpy.max(rx_raster_i)])

    ax.axis([-axmx, axmx, -axmx, axmx])
    ax.grid(True)
    ax.set_xlabel('I')
    ax.set_ylabel('Q')
    ax.set_title(title)

    return fig 

Example 46

def show(self,*args,**kwargs):
        print self.data.shape
        tiles = []
        w,h,n = self.data.shape
        for i in range(n):
            mat = self.data[:,:,i]
            tiles.append(pv.Image(mat.real))
            tiles.append(pv.Image(mat.imag))
        mont = pv.ImageMontage(tiles,layout=(8,10),tileSize=(w,h))
        mont.show(*args,**kwargs) 

Example 47

def test_gabor1(self):
        ilog = None # pv.ImageLog(name="GaborTest1")
        
        bank = FilterBank(tile_size=(128,128))
        kernels = createGaborKernels()
        for wavelet in kernels:
            bank.addFilter(wavelet)
            
        for i in range(len(bank.filters)):
            filter = np.fft.ifft2(bank.filters[i])
            if ilog:
                ilog.log(pv.Image(np.fft.fftshift(filter.real)),label="Filter_RE_%d"%i)
                ilog.log(pv.Image(np.fft.fftshift(filter.imag)),label="Filter_IM_%d"%i)
            
        
        for im in self.test_images[:1]:
            if ilog:
                ilog.log(im,label="ORIG")
            results = bank.convolve(im)
            #print "RShape",results.shape[2]
            if ilog:
                for i in range(results.shape[2]):
                    ilog.log(pv.Image(results[:,:,i].real),label="CONV_RE_%d"%i)
                    ilog.log(pv.Image(results[:,:,i].imag),label="CONV_IM_%d"%i)
        if ilog:
            ilog.show() 

Example 48

def generate_fake_data(alpha, phi, sigma, N = 5000, plot=False):

    N_samples = 256
    data_start = 3
    data_length = 100
    gnd_mean = np.array([alpha*np.cos(phi), alpha*np.sin(phi)])
    ex_mean = np.array([alpha*np.cos(phi + np.pi), alpha*np.sin(phi + np.pi)])
    gndIQ = np.vectorize(complex)(np.random.normal(gnd_mean[0], sigma, N),
                                 np.random.normal(gnd_mean[1], sigma, N))
    exIQ = np.vectorize(complex)(np.random.normal(ex_mean[0], sigma, N),
                                 np.random.normal(ex_mean[1], sigma, N))
    gnd = np.zeros((N_samples, N), dtype=np.complex128)
    ex = np.zeros((N_samples, N), dtype=np.complex128)
    for idx, x in enumerate(zip(gndIQ, exIQ)):
        gnd[data_start:data_start+data_length, idx] = x[0]
        ex[data_start:data_start+data_length, idx] = x[1]

    gnd += sigma/50 * (np.random.randn(N_samples, N) + 1j * np.random.randn(N_samples, N))
    ex += sigma/50 * (np.random.randn(N_samples, N) + 1j * np.random.randn(N_samples, N))

    if plot:
        plt.figure()
        plt.plot(np.real(gndIQ), np.imag(gndIQ), 'b.')
        plt.plot(np.real(exIQ), np.imag(exIQ), 'r.')
        plt.draw()
        plt.show()

        plt.figure()
        plt.plot(np.real(gnd[:,15]), 'b.')
        plt.plot(np.real(ex[:,15]), 'r.')
        plt.draw()
        plt.show()
    return gnd, ex 

Example 49

def run(self, norm_pts = None):
        self.exp.run_sweeps()
        data = {}
        var = {}
        for buff in self.exp.buffers:
            if self.exp.writer_to_qubit[buff.name][0] in self.qubit_names:
                dataset, descriptor = buff.get_data(), buff.get_descriptor()
                qubit_name = self.exp.writer_to_qubit[buff.name][0]
                if norm_pts:
                    buff_data = normalize_data(dataset, zero_id = norm_pts[qubit_name][0], one_id = norm_pts[qubit_name][1])
                else:
                    buff_data = dataset['Data']
                data[qubit_name] = self.quad_fun(buff_data)
                if 'Variance' in dataset.dtype.names:
                    if self.quad in ['real', 'imag']:
                        var[qubit_name] = self.quad_fun(dataset['Variance'])/descriptor.metadata["num_averages"]
                    else:
                        raise Exception('Variance of {} not available. Choose real or imag'.format(self.quad))
                else:
                    var[qubit_name] = None

        # Return data and variance of the mean
        if len(data) == 1:
            # if single qubit, get rid of dictionary
            data = list(data.values())[0]
            var = list(var.values())[0]
        return data, var 

Example 50

def update_references(self, frequency):
        # store decimated reference for mix down
        # phase_drift = 2j*np.pi*0.5e-6 * (abs(frequency) - 100e6)
        ref = np.exp(2j*np.pi * -frequency * self.time_pts[::self.d1] + 1j*self._phase, dtype=np.complex64)

        self.reference   = ref
        self.reference_r = np.real(ref)
        self.reference_i = np.imag(ref) 
点赞