Python numpy.asmatrix() 使用实例

The following are code examples for showing how to use . They are extracted from open source Python projects. You can vote up the examples you like or vote down the exmaples you don’t like. You can also save this page to your account.

Example 1

def test_approximate_range_finder(rows, cols, rank, dtype, piter_normalizer, rgen):
    # only guaranteed to work for low-rank matrices
    if rank is 'fullrank':
        return

    rf_size = rank + 10
    assert min(rows, cols) > rf_size

    A = mptest.random_lowrank(rows, cols, rank, randstate=rgen, dtype=dtype)
    A /= np.linalg.norm(A, ord='fro')
    Q = em.approx_range_finder(A, rf_size, 7, randstate=rgen,
                               piter_normalizer=piter_normalizer)

    Q = np.asmatrix(Q)
    assert Q.shape == (rows, rf_size)
    normdist = np.linalg.norm(A - Q * (Q.H * A), ord='fro')
    assert normdist < 1e-7 

Example 2

def train(self):
        eps = 1e-10
        for i in range(self.epo):
            if i % 1 == 0:
                self.show_error()

            A = np.asarray(self.A.copy())
            Z = np.asarray(self.Z.copy())
            start = time.time()
            Z1 = np.multiply(Z, np.asarray(self.A.transpose() * self.Y))
            Z = np.divide(Z1, eps + np.asarray(self.A.transpose() * self.A * self.Z)) # + eps to avoid divided by 0
            self.Z = np.asmatrix(Z)
            A1 = np.multiply(A, np.asarray( self.Y * self.Z.transpose()))
            A = np.divide(A1, eps + np.asarray( self.A * self.Z * self.Z.transpose()))
            end = time.time()
            self.A = np.asmatrix(A)
            self.time = self.time + end - start 

Example 3

def extractVecs():
## Pandas read_csv breaks while reading text file. Very buggy. Manually read each line.
	t0 = time.clock()
	with open(options.pretrained,'r') as f:
	        content = [item.rstrip().lower().split(' ') for item in f.readlines()]

	globalWordFile = np.asmatrix(content,dtype = str)
	globalWordTokens = globalWordFile[:,0].astype('str')
	globalWordVectors = globalWordFile[:,1:].astype(np.float)
	globalWordFile = None
	
	### Pandas read_csv implementation - Broken
	#globalWordFile = pd.read_csv(options.pretrained,delimiter = ' ', header = None)
	#globalWordVectors = globalWordFile.ix[:,1:]
	#globalWordTokens = globalWordFile.ix[:,0]
	#globalWordFile = None
	print time.clock() - t0, " seconds taken for loading and slicing gLoVe Word Vectors"
	return globalWordTokens,globalWordVectors 

Example 4

def random_portfolio(returns):
    def rand_weights(n):
        # Produces n random weights that sum to 1
        k = np.random.rand(n)
        return k / sum(k)

    '''
    Returns the mean and standard deviation of returns for a random portfolio
    '''
    p = np.asmatrix(np.mean(returns, axis=1))
    w = np.asmatrix(rand_weights(returns.shape[0]))
    C = np.asmatrix(np.cov(returns))

    mu = w * p.T
    sigma = np.sqrt(w * C * w.T)

    # This recursion reduces outliers to keep plots pretty
    if sigma > 2:
        return random_portfolio(returns)
    return mu, sigma 

Example 5

def shared_mnist():
    def shared_dataset(data_xy):
        data_x, data_y = data_xy
        np_y = np.zeros((len(data_y), 10), dtype=theano.config.floatX)
        for i in xrange(len(data_y)):
            np_y[i, data_y[i]] = 1

        shared_x = theano.shared(np.asmatrix(data_x, dtype=theano.config.floatX))
        shared_y = theano.shared(np.asmatrix(np_y, dtype=theano.config.floatX))
        return shared_x, shared_y
    f = gzip.open(curr_path + "/data/mnist.pkl.gz", "rb")
    train_set, valid_set, test_set = cPickle.load(f)
    f.close()
    
    test_set_x, test_set_y = shared_dataset(test_set)
    valid_set_x, valid_set_y = shared_dataset(valid_set)
    train_set_x, train_set_y = shared_dataset(train_set)

    return [train_set_x, train_set_y], [valid_set_x, valid_set_y], [test_set_x, test_set_y] 

Example 6

def testHorzConvWithVaryingImage(self):
    image = np.asmatrix(('1.0 2.0 3.0;'
                         '1.1 2.0 4.0;'
                         '-4.3 0.0 8.9'))

    expected = np.asmatrix(('-1.0 -1.0;'
                            '-0.9 -2.0;'
                            '-4.3 -8.9'))
    expected = np.reshape(np.asarray(expected), (1, 3, 2, 1))

    tf_image = tf.constant(image, shape=(1, 3, 3, 1), dtype=tf.float32)
    horz_gradients = tf.contrib.layers.conv2d_in_plane(
        tf_image,
        weights_initializer=tf.constant_initializer([1, -1]),
        kernel_size=[1, 2],
        padding='VALID',
        activation_fn=None)
    init_op = tf.initialize_all_variables()

    with self.test_session() as sess:
      sess.run(init_op)
      result = sess.run(horz_gradients)

      self.assertAllClose(result, expected, rtol=1e-5, atol=1e-5) 

Example 7

def testVertConvWithVaryingImage(self):
    image = np.asmatrix(('1.0 2.0 3.0;'
                         '1.1 2.0 4.0;'
                         '-4.3 0.0 8.9'))

    expected = np.asmatrix(('-0.1 0.0 -1.0;'
                            ' 5.4 2.0 -4.9'))
    expected = np.reshape(np.asarray(expected), (1, 2, 3, 1))

    tf_image = tf.constant(image, shape=(1, 3, 3, 1), dtype=tf.float32)
    vert_gradients = tf.contrib.layers.conv2d_in_plane(
        tf_image,
        weights_initializer=tf.constant_initializer([1, -1]),
        kernel_size=[2, 1],
        padding='VALID',
        activation_fn=None)
    init_op = tf.initialize_all_variables()

    with self.test_session() as sess:
      sess.run(init_op)
      result = sess.run(vert_gradients)

      self.assertAllClose(result, expected, rtol=1e-5, atol=1e-5) 

Example 8

def testHorzConvWithVaryingImage(self):
    image = np.asmatrix(('1.0 2.0 3.0;'
                         '1.1 2.0 4.0;'
                         '-4.3 0.0 8.9'))

    expected = np.asmatrix(('-1.0 -1.0;'
                            '-0.9 -2.0;'
                            '-4.3 -8.9'))
    expected = np.reshape(np.asarray(expected), (1, 3, 2, 1))

    tf_image = tf.constant(image, shape=(1, 3, 3, 1), dtype=tf.float32)
    horz_gradients = tf.contrib.layers.conv2d_in_plane(
        tf_image,
        weights_initializer=tf.constant_initializer([1, -1]),
        kernel_size=[1, 2],
        padding='VALID',
        activation_fn=None)
    init_op = tf.global_variables_initializer()

    with self.test_session() as sess:
      sess.run(init_op)
      result = sess.run(horz_gradients)

      self.assertAllClose(result, expected, rtol=1e-5, atol=1e-5) 

Example 9

def testVertConvWithVaryingImage(self):
    image = np.asmatrix(('1.0 2.0 3.0;'
                         '1.1 2.0 4.0;'
                         '-4.3 0.0 8.9'))

    expected = np.asmatrix(('-0.1 0.0 -1.0;'
                            ' 5.4 2.0 -4.9'))
    expected = np.reshape(np.asarray(expected), (1, 2, 3, 1))

    tf_image = tf.constant(image, shape=(1, 3, 3, 1), dtype=tf.float32)
    vert_gradients = tf.contrib.layers.conv2d_in_plane(
        tf_image,
        weights_initializer=tf.constant_initializer([1, -1]),
        kernel_size=[2, 1],
        padding='VALID',
        activation_fn=None)
    init_op = tf.global_variables_initializer()

    with self.test_session() as sess:
      sess.run(init_op)
      result = sess.run(vert_gradients)

      self.assertAllClose(result, expected, rtol=1e-5, atol=1e-5) 

Example 10

def fkine(self, stance, unit='rad', apply_stance=False, actor_list=None, timer=None):
        """
        Calculates forward kinematics for a list of joint angles.
        :param stance: stance is list of joint angles.
        :param unit: unit of input angles.
        :param apply_stance: If True, then applied tp actor_list.
        :param actor_list: Passed to apply transformations computed by fkine.
        :param timer: internal use only (for animation).
        :return: homogeneous transformation matrix.
        """
        if type(stance) is np.ndarray:
            stance = np.asmatrix(stance)
        if unit == 'deg':
            stance = stance * pi / 180
        if timer is None:
            timer = 0
        t = self.base
        for i in range(self.length):
            if apply_stance:
                actor_list[i].SetUserMatrix(transforms.np2vtk(t))
            t = t * self.links[i].A(stance[timer, i])
        t = t * self.tool
        if apply_stance:
            actor_list[self.length].SetUserMatrix(transforms.np2vtk(t))
        return t 

Example 11

def rotx(theta, unit="rad"):
    """
    ROTX gives rotation about X axis

    :param theta: angle for rotation matrix
    :param unit: unit of input passed. 'rad' or 'deg'
    :return: rotation matrix

    rotx(THETA) is an SO(3) rotation matrix (3x3) representing a rotation
    of THETA radians about the x-axis
    rotx(THETA, "deg") as above but THETA is in degrees
    """
    check_args.unit_check(unit)
    if unit == "deg":
        theta = theta * math.pi / 180
    ct = math.cos(theta)
    st = math.sin(theta)
    mat = np.matrix([[1, 0, 0], [0, ct, -st], [0, st, ct]])
    mat = np.asmatrix(mat.round(15))
    return mat


# ---------------------------------------------------------------------------------------# 

Example 12

def roty(theta, unit="rad"):
    """
    ROTY Rotation about Y axis

    :param theta: angle for rotation matrix
    :param unit: unit of input passed. 'rad' or 'deg'
    :return: rotation matrix

    roty(THETA) is an SO(3) rotation matrix (3x3) representing a rotation
    of THETA radians about the y-axis
    roty(THETA, "deg") as above but THETA is in degrees
    """
    check_args.unit_check(unit)
    if unit == "deg":
        theta = theta * math.pi / 180
    ct = math.cos(theta)
    st = math.sin(theta)
    mat = np.matrix([[ct, 0, st], [0, 1, 0], [-st, 0, ct]])
    mat = np.asmatrix(mat.round(15))
    return mat


# ---------------------------------------------------------------------------------------# 

Example 13

def trotx(theta, unit="rad", xyz=[0, 0, 0]):
    """
    TROTX Rotation about X axis

    :param theta: rotation in radians or degrees
    :param unit: "rad" or "deg" to indicate unit being used
    :param xyz: the xyz translation, if blank defaults to [0,0,0]
    :return: homogeneous transform matrix

    trotx(THETA) is a homogeneous transformation (4x4) representing a rotation
    of THETA radians about the x-axis.
    trotx(THETA, 'deg') as above but THETA is in degrees
    trotx(THETA, 'rad', [x,y,z]) as above with translation of [x,y,z]
    """
    check_args.unit_check(unit)
    tm = rotx(theta, unit)
    tm = np.r_[tm, np.zeros((1, 3))]
    mat = np.c_[tm, np.array([[xyz[0]], [xyz[1]], [xyz[2]], [1]])]
    mat = np.asmatrix(mat.round(15))
    return mat


# ---------------------------------------------------------------------------------------# 

Example 14

def troty(theta, unit="rad", xyz=[0, 0, 0]):
    """
    TROTY Rotation about Y axis

    :param theta: rotation in radians or degrees
    :param unit: "rad" or "deg" to indicate unit being used
    :param xyz: the xyz translation, if blank defaults to [0,0,0]
    :return: homogeneous transform matrix

    troty(THETA) is a homogeneous transformation (4x4) representing a rotation
    of THETA radians about the y-axis.
    troty(THETA, 'deg') as above but THETA is in degrees
    troty(THETA, 'rad', [x,y,z]) as above with translation of [x,y,z]
    """
    check_args.unit_check(unit)
    tm = roty(theta, unit)
    tm = np.r_[tm, np.zeros((1, 3))]
    mat = np.c_[tm, np.array([[xyz[0]], [xyz[1]], [xyz[2]], [1]])]
    mat = np.asmatrix(mat.round(15))
    return mat


# ---------------------------------------------------------------------------------------# 

Example 15

def trotz(theta, unit="rad", xyz=[0, 0, 0]):
    """
    TROTZ Rotation about Z axis

    :param theta: rotation in radians or degrees
    :param unit: "rad" or "deg" to indicate unit being used
    :param xyz: the xyz translation, if blank defaults to [0,0,0]
    :return: homogeneous transform matrix

    trotz(THETA) is a homogeneous transformation (4x4) representing a rotation
    of THETA radians about the z-axis.
    trotz(THETA, 'deg') as above but THETA is in degrees
    trotz(THETA, 'rad', [x,y,z]) as above with translation of [x,y,z]
    """
    check_args.unit_check(unit)
    tm = rotz(theta, unit)
    tm = np.r_[tm, np.zeros((1, 3))]
    mat = np.c_[tm, np.array([[xyz[0]], [xyz[1]], [xyz[2]], [1]])]
    mat = np.asmatrix(mat.round(15))
    return mat


# ---------------------------------------------------------------------------------------# 

Example 16

def m8_motif(A):
    B, U, G = directional_breakup(A)
    W = np.zeros(G.shape)
    W = np.asmatrix(W)
    N = G.shape[0]
    # print('U\n', U)
    for i in range(N):
        J = np.nonzero(U[i, :])[1]
        # print(J)
        for j1 in range(len(J)):
            for j2 in range(j1 + 1, len(J)):
                k1 = J[j1]
                k2 = J[j2]
                # print(k1, k2)
                if A[k1, k2] == 0 and A[k2, k1] == 0:
                    W[i, k1] = W[i, k1] + 1
                    W[i, k2] = W[i, k2] + 1
                    W[k1, k2] = W[k1, k2] + 1

    W = W + W.T

    # matlab use W = sparse(W + W')
    # I think it is properly use W = W+W'T

    return W 

Example 17

def __init__(self, shape, optimizer='seq', lr=0.01, clip_min=0, clip_max=1081, is_round=True):
        '''
        param shape: phi_x shape
        '''
        self.optimizer = optimizer
        self.lr = lr
        self.shape = shape
        self.learning_rate_decay = 0.99
        
        # w is Mx1 column vector
        self.w = np.asmatrix(self._init_weight(shape + (1,)))
        
        # Setup model
        self._setup_model()

        # Setup optimizer (vary from models)
        self._setup_optimizer() 

Example 18

def back_propagation(self,gradient):

        gradient_activation = self.cal_gradient() # i * i ?
        gradient = np.asmatrix(np.dot(gradient.T,gradient_activation))

        self._gradient_weight = np.asmatrix(self.xdata)
        self._gradient_bias = -1
        self._gradient_x = self.weight

        self.gradient_weight = np.dot(gradient.T,self._gradient_weight.T)
        self.gradient_bias = gradient * self._gradient_bias
        self.gradient = np.dot(gradient,self._gradient_x).T
        # ----------------------upgrade
        # -----------the Negative gradient direction --------
        self.weight = self.weight - self.learn_rate * self.gradient_weight
        self.bias = self.bias - self.learn_rate * self.gradient_bias.T

        return self.gradient 

Example 19

def pooling(self,featuremaps,size_pooling,type='average_pool'):
        #pooling process
        size_map = len(featuremaps[0])
        size_pooled = int(size_map/size_pooling)
        featuremap_pooled = []
        for i_map in range(len(featuremaps)):
            map = featuremaps[i_map]
            map_pooled = []
            for i_focus in range(0,size_map,size_pooling):
                for j_focus in range(0, size_map, size_pooling):
                    focus = map[i_focus:i_focus + size_pooling, j_focus:j_focus + size_pooling]
                    if type == 'average_pool':
                        #average pooling
                        map_pooled.append(np.average(focus))
                    elif type == 'max_pooling':
                        #max pooling
                        map_pooled.append(np.max(focus))
            map_pooled = np.asmatrix(map_pooled).reshape(size_pooled,size_pooled)
            featuremap_pooled.append(map_pooled)
        return featuremap_pooled 

Example 20

def make_symmetric_lower(mat):
    '''
    Copies the matrix entries below the main diagonal to the upper triangle
    half of the matrix. Leaves the diagonal unchanged. Returns a `NumPy` matrix
    object.

    **mat** : `numpy.matrix`
        A lower diagonal matrix.

    returns : `numpy.matrix`
        The lower triangle matrix.
    '''

    # extract lower triangle from matrix (including diagonal)
    tmp_mat = np.tril(mat)

    # if the matrix given wasn't a lower triangle matrix, raise an error
    if (mat != tmp_mat).all():
        raise Exception('Matrix to symmetrize is not a lower diagonal matrix.')

    # add its transpose to itself, zeroing the diagonal to avoid doubling
    tmp_mat += np.triu(tmp_mat.transpose(), 1)

    return np.asmatrix(tmp_mat) 

Example 21

def get_error_matrix(self, correlation=False):  # VIEWED TODO
        '''Retrieves the parameter error matrix from iminuit.

        correlation : boolean (optional, default ``False``)
            If ``True``, return correlation matrix, else return
            covariance matrix.

        return : `numpy.matrix`
        '''

        # get parameter covariance matrix from iminuit

        # FIX_UPSTREAM we need skip_fixed=False, but this is unsupported
        #_mat = self.__iminuit.matrix(correlation, skip_fixed=False)

        # ... so use skip_fixed=False instead and fill in the gaps
        _mat = self.__iminuit.matrix(correlation, skip_fixed=True)
        _mat = np.asmatrix(_mat)  # reshape into numpy matrix
        _mat = self._fill_in_zeroes_for_fixed(_mat)  # fill in fixed par 'gaps'

        return _mat 

Example 22

def _mvee(self, points, tolerance):
        # Taken from: http://stackoverflow.com/questions/14016898/port-matlab-bounding-ellipsoid-code-to-python
        points = np.asmatrix(points)
        n, d = points.shape
        q = np.column_stack((points, np.ones(n))).T
        err = tolerance + 1.0
        u = np.ones(n) / n
        while err > tolerance:
            # assert u.sum() == 1 # invariant
            x = q * np.diag(u) * q.T
            m = np.diag(q.T * la.inv(x) * q)
            jdx = np.argmax(m)
            step_size = (m[jdx] - d - 1.0) / ((d + 1) * (m[jdx] - 1.0))
            new_u = (1 - step_size) * u
            new_u[jdx] += step_size
            err = la.norm(new_u - u)
            u = new_u
        c = u * points
        a = la.inv(points.T * np.diag(u) * points - c.T * c) / d
        return np.asarray(a), np.squeeze(np.asarray(c)) 

Example 23

def word_sequence(f_path, batch_size = 1, i2w, w2i):
    test_seqs = []
    lines = []
    tf = {}
    f = open(curr_path + "/" + f_path, "r")
    for line in f:
        line = line.strip('\n').lower()
        words = ['<soss>']+line_x.split()+["<eoss>"]
        lines.append(words)
    f.close()

    for i in range(0, len(lines)):
        words = lines[i]
        x = np.zeros((len(words), len(w2i)), dtype = theano.config.floatX)
        for j in range(0, len(words)):
            if words[j] in w2i:
                x[j, w2i[words[j]]] = 1
        test_seqs.append(np.asmatrix(x))

    test_data_x = batch_sequences(test_seqs, i2w, w2i, batch_size)

    return test_seqs, i2w, w2i, test_data_x 

Example 24

def sim(A, B, time, x0, controller):
    x = np.asmatrix(x0)
    prev_y = np.dot(H, x)
    x_out = []
    x_hat_out = []
    u_out = []
    time_out = []

    for t in xrange(time):
        x_hat = x + ((np.random.random((2,1)) - 0.5) * 0.05)
        y = np.dot(H, x_hat)
        u = np.clip(controller(y, prev_y), -40, 40)
        x = np.dot(A, x) + np.dot(B, u)

        x_out.append(x)
        x_hat_out.append(x_hat)
        u_out.append(u)
        time_out.append(t*dt)

        prev_y = np.copy(y)

    return (np.asarray(time_out), np.asarray(x_out), np.asarray(x_hat_out), np.asarray(u_out)) 

Example 25

def _beta_cal(self,observations,c_scale):
        # Calculate Beta maxtrix
        num_states = self.em_prob.shape[0]
        total_stages = len(observations)

        # Initialize values
        ob_ind = self.obs_map[ observations[total_stages-1] ]
        beta = np.asmatrix(np.zeros((num_states,total_stages)))

        # Handle beta base case
        beta[:,total_stages-1] = c_scale[total_stages-1]

        # Iteratively calculate beta(t) for all 't'
        for curr_t in range(total_stages-1,0,-1):
            ob_ind = self.obs_map[observations[curr_t]]
            beta[:,curr_t-1] = np.multiply( beta[:,curr_t] , self.em_prob[:,ob_ind] )
            beta[:,curr_t-1] = np.dot( self.trans_prob, beta[:,curr_t-1] )
            beta[:,curr_t-1] = np.multiply( beta[:,curr_t-1] , c_scale[curr_t -1 ] )

        # return the computed beta
        return beta 

Example 26

def _train_emission(self,observations):
        # Initialize matrix
        new_em_prob = np.asmatrix(np.zeros(self.em_prob.shape))

        # Indexing position of unique observations in the observation sequence    
        selectCols=[]
        for i in range(self.em_prob.shape[1]):
            selectCols.append([])
        for i in range(len(observations)):
            selectCols[ self.obs_map[observations[i]] ].append(i)

        # Calculate delta matrix
        delta = self._forward_backward(observations)

        # Sum the rowise of delta matrix, which gives probability of a particular state
        totalProb = np.sum(delta,axis=1)

        # Re-estimate emission matrix
        for i in range(self.em_prob.shape[0]):
            for j in range(self.em_prob.shape[1]):
                new_em_prob[i,j] = np.sum(delta[i,selectCols[j]])/totalProb[i]
        return new_em_prob 

Example 27

def _train_transition(self,observations):
        # Initialize transition matrix
        new_trans_prob = np.asmatrix(np.zeros(self.trans_prob.shape))

        # Find alpha and beta
        alpha,c = self._alpha_cal(observations)
        beta = self._beta_cal(observations,c)

        # calculate transition matrix values
        for t in range(len(observations)-1):
            temp1 = np.multiply(alpha[:,t],beta[:,t+1].transpose())
            temp1 = np.multiply(self.trans_prob,temp1)
            new_trans_prob = new_trans_prob + np.multiply(temp1,self.em_prob[:,self.obs_map[observations[t+1]]].transpose())

        # Normalize values so that sum of probabilities is 1
        for i in range(self.trans_prob.shape[0]):
            new_trans_prob[i,:] = new_trans_prob[i,:]/np.sum(new_trans_prob[i,:])

        return new_trans_prob 

Example 28

def add_pixels(self, uv_px, img1d, weight=None):
        # Lookup row & column for each in-bounds coordinate.
        mask = self.get_mask(uv_px)
        xx = uv_px[0,mask]
        yy = uv_px[1,mask]
        # Update matrix according to assigned weight.
        if weight is None:
            img1d[mask] = self.img[yy,xx]
        elif np.isscalar(weight):
            img1d[mask] += self.img[yy,xx] * weight
        else:
            w1 = np.asmatrix(weight, dtype='float32')
            w3 = w1.transpose() * np.ones((1,3))
            img1d[mask] += np.multiply(self.img[yy,xx], w3[mask])


# A panorama image made from several FisheyeImage sources.
# TODO: Add support for supersampled anti-aliasing filters. 

Example 29

def coherence_of_columns(A):
    """Mutual coherence of columns of A.

    Parameters
    ----------
    A : array_like
        Input matrix.
    p : int, optional
        p-th norm.

    Returns
    -------
    array_like
        Mutual coherence of columns of A.
    """
    A = np.asmatrix(A)
    _, N = A.shape
    A = A * np.asmatrix(np.diag(1/norm_of_columns(A)))
    Gram_A = A.H*A
    for j in range(N):
        Gram_A[j, j] = 0
    return np.max(np.abs(Gram_A)) 

Example 30

def testHorzConvWithVaryingImage(self):
    image = np.asmatrix(('1.0 2.0 3.0;' '1.1 2.0 4.0;' '-4.3 0.0 8.9'))

    expected = np.asmatrix(('-1.0 -1.0;' '-0.9 -2.0;' '-4.3 -8.9'))
    expected = np.reshape(np.asarray(expected), (1, 3, 2, 1))

    tf_image = constant_op.constant(
        image, shape=(1, 3, 3, 1), dtype=dtypes.float32)
    horz_gradients = layers_lib.conv2d_in_plane(
        tf_image,
        weights_initializer=init_ops.constant_initializer([1, -1]),
        kernel_size=[1, 2],
        padding='VALID',
        activation_fn=None)
    init_op = variables_lib.global_variables_initializer()

    with self.test_session() as sess:
      sess.run(init_op)
      result = sess.run(horz_gradients)

      self.assertAllClose(result, expected, rtol=1e-5, atol=1e-5) 

Example 31

def testVertConvWithVaryingImage(self):
    image = np.asmatrix(('1.0 2.0 3.0;' '1.1 2.0 4.0;' '-4.3 0.0 8.9'))

    expected = np.asmatrix(('-0.1 0.0 -1.0;' ' 5.4 2.0 -4.9'))
    expected = np.reshape(np.asarray(expected), (1, 2, 3, 1))

    tf_image = constant_op.constant(
        image, shape=(1, 3, 3, 1), dtype=dtypes.float32)
    vert_gradients = layers_lib.conv2d_in_plane(
        tf_image,
        weights_initializer=init_ops.constant_initializer([1, -1]),
        kernel_size=[2, 1],
        padding='VALID',
        activation_fn=None)
    init_op = variables_lib.global_variables_initializer()

    with self.test_session() as sess:
      sess.run(init_op)
      result = sess.run(vert_gradients)

      self.assertAllClose(result, expected, rtol=1e-5, atol=1e-5) 

Example 32

def improve_admm(x0, prob, *args, **kwargs):
    num_iters = kwargs.get('num_iters', 1000)
    viol_lim = kwargs.get('viol_lim', 1e4)
    tol = kwargs.get('tol', 1e-2)
    rho = kwargs.get('rho', None)
    phase1 = kwargs.get('phase1', True)

    if rho is not None:
        lmb0, P0Q = map(np.asmatrix, LA.eigh(prob.f0.P.todense()))
        lmb_min = np.min(lmb0)
        if lmb_min + prob.m*rho < 0:
            logging.error("rho parameter is too small, z-update not convex.")
            logging.error("Minimum possible value of rho: %.3f\n", -lmb_min/prob.m)
            logging.error("Given value of rho: %.3f\n", rho)
            raise Exception("rho parameter is too small, need at least %.3f." % rho)

    # TODO: find a reasonable auto parameter
    if rho is None:
        lmb0, P0Q = map(np.asmatrix, LA.eigh(prob.f0.P.todense()))
        lmb_min = np.min(lmb0)
        lmb_max = np.max(lmb0)
        if lmb_min < 0: rho = 2.*(1.-lmb_min)/prob.m
        else: rho = 1./prob.m
        rho *= 50.
        logging.warning("Automatically setting rho to %.3f", rho)

    if phase1:
        x1 = prob.better(x0, admm_phase1(x0, prob, tol, num_iters))
    else:
        x1 = x0
    x2 = prob.better(x1, admm_phase2(x1, prob, rho, tol, num_iters, viol_lim))
    return x2 

Example 33

def dot(X, Y):
    if sparse.isspmatrix(X) and sparse.isspmatrix(Y):
        return X * Y
    elif sparse.isspmatrix(X) or sparse.isspmatrix(Y):
        return sparse.csr_matrix(X) * sparse.csr_matrix(Y)

    return np.asmatrix(X) * np.asmatrix(Y) 

Example 34

def transformPoint2D(pt, M):
    """
    Transform point in 2D coordinates
    :param pt: point coordinates
    :param M: transformation matrix
    :return: transformed point
    """
    pt2 = numpy.asmatrix(M.reshape((3, 3))) * numpy.matrix([pt[0], pt[1], 1]).T
    return numpy.array([pt2[0] / pt2[2], pt2[1] / pt2[2]]) 

Example 35

def transformPoint3D(pt, M):
    """
    Transform point in 3D coordinates
    :param pt: point coordinates
    :param M: transformation matrix
    :return: transformed point
    """
    pt3 = numpy.asmatrix(M.reshape((4, 4))) * numpy.matrix([pt[0], pt[1], pt[2], 1]).T
    return numpy.array([pt3[0] / pt3[3], pt3[1] / pt3[3], pt3[2] / pt3[3]]) 

Example 36

def test_matrix_fancy(self):
        # The matrix class messes with the shape. While this is always
        # weird (getitem is not used, it does not have setitem nor knows
        # about fancy indexing), this tests gh-3110
        m = np.matrix([[1, 2], [3, 4]])

        assert_(isinstance(m[[0,1,0], :], np.matrix))

        # gh-3110. Note the transpose currently because matrices do *not*
        # support dimension fixing for fancy indexing correctly.
        x = np.asmatrix(np.arange(50).reshape(5,10))
        assert_equal(x[:2, np.array(-1)], x[:2, -1].T) 

Example 37

def eye(n,M=None, k=0, dtype=float):
    """
    Return a matrix with ones on the diagonal and zeros elsewhere.

    Parameters
    ----------
    n : int
        Number of rows in the output.
    M : int, optional
        Number of columns in the output, defaults to `n`.
    k : int, optional
        Index of the diagonal: 0 refers to the main diagonal,
        a positive value refers to an upper diagonal,
        and a negative value to a lower diagonal.
    dtype : dtype, optional
        Data-type of the returned matrix.

    Returns
    -------
    I : matrix
        A `n` x `M` matrix where all elements are equal to zero,
        except for the `k`-th diagonal, whose values are equal to one.

    See Also
    --------
    numpy.eye : Equivalent array function.
    identity : Square identity matrix.

    Examples
    --------
    >>> import numpy.matlib
    >>> np.matlib.eye(3, k=1, dtype=float)
    matrix([[ 0.,  1.,  0.],
            [ 0.,  0.,  1.],
            [ 0.,  0.,  0.]])

    """
    return asmatrix(np.eye(n, M, k, dtype)) 

Example 38

def test_matrix_std_argmax(self,level=rlevel):
        # Ticket #83
        x = np.asmatrix(np.random.uniform(0, 1, (3, 3)))
        self.assertEqual(x.std().shape, ())
        self.assertEqual(x.argmax().shape, ()) 

Example 39

def test_asmatrix(self):
        A = np.arange(100).reshape(10, 10)
        mA = asmatrix(A)
        A[0, 0] = -10
        assert_(A[0, 0] == mA[0, 0]) 

Example 40

def test_basic(self):
        x = asmatrix(np.zeros((3, 2), float))
        y = np.zeros((3, 1), float)
        y[:, 0] = [0.8, 0.2, 0.3]
        x[:, 1] = y > 0.5
        assert_equal(x, [[0, 1], [0, 0], [0, 0]]) 

Example 41

def test_scalar_indexing(self):
        x = asmatrix(np.zeros((3, 2), float))
        assert_equal(x[0, 0], x[0][0]) 

Example 42

def test_row_column_indexing(self):
        x = asmatrix(np.eye(2))
        assert_array_equal(x[0,:], [[1, 0]])
        assert_array_equal(x[1,:], [[0, 1]])
        assert_array_equal(x[:, 0], [[1], [0]])
        assert_array_equal(x[:, 1], [[0], [1]]) 

Example 43

def test_list_indexing(self):
        A = np.arange(6)
        A.shape = (3, 2)
        x = asmatrix(A)
        assert_array_equal(x[:, [1, 0]], x[:, ::-1])
        assert_array_equal(x[[2, 1, 0],:], x[::-1,:]) 

Example 44

def lms(x1: numpy.array, x2: numpy.array, N: int):
    # Verify argument shape.
    s1, s2 = x1.shape, x2.shape
    if len(s1) != 1 or len(s2) != 1 or s1[0] != s2[0]:
        raise Exception("Argument shape invalid, in 'lms' function")
    l = s1[0]

    # Coefficient matrix
    W = numpy.mat(numpy.zeros([1, 2 * N + 1]))
    # Coefficient (time) matrix
    Wt = numpy.mat(numpy.zeros([l, 2 * N + 1]))
    # Feedback (time) matrix
    y = numpy.mat(numpy.zeros([l, 1]))
    # Error (time) matrix
    e = numpy.mat(numpy.zeros([l, 1]))

    # Traverse channel data
    for i in range(N, l-N):
        x1_vec = numpy.asmatrix(x1[i-N:i+N+1])
        y[i] = x1_vec * numpy.transpose(W)
        e[i] = x2[i] - y[i]
        W += mu * e[i] * x1_vec
        Wt[i] = W

    # Find the coefficient matrix which has max maximum.
    Wt_maxs = numpy.max(Wt, axis=1)
    row_idx = numpy.argmax(Wt_maxs)
    max_W = Wt[row_idx]
    delay_count = numpy.argmax(max_W) - N

    plot(l, x1, x2, y, e)

    return delay_count 

Example 45

def evaluate_portefolio(wei, returns_vec):
    """ Given a repartition, compute expected return and risk from a portefolio

    :param wei: Weights for each currency
    :type wei: ndarray of float
    :return: expected return and risk
    :rtype: (float, float)
    """
    p = np.asmatrix(np.mean(returns_vec, axis=1))
    w = np.asmatrix(wei)
    c = np.asmatrix(np.cov(returns_vec))
    mu = w * p.T
    sigma = np.sqrt(w * c * w.T)
    return mu, sigma 

Example 46

def lpfls2notch(N,wp,ws,wn1,wn2,W):
    M = (N-1)/2
    nq = np.arange(0,2*M+1)
    nb = np.arange(0,M+1)
    q = (wp/np.pi)*np.sinc((wp/np.pi)*nq) - W*(ws/np.pi)*np.sinc((ws/np.pi)*nq)
    b = (wp/np.pi)*np.sinc((wp/np.pi)*nb)
    q[0] = wp/np.pi + W*(1-ws/np.pi) # since sin(pi*n)/pi*n = 1, not 0
    b = np.asmatrix(b)
    b = b.transpose()

    Q1 = ln.toeplitz(q[0:M+1])
    Q2 = ln.hankel(q[0:M+1],q[M:])
    Q = Q1+Q2

    G1 = np.cos(wn1*nb)
    G2 = np.cos(wn2*nb)
    G = np.matrix([G1,G2])

    d = np.array([0,0])
    d = np.asmatrix(d)
    d = d.transpose()

    c = np.asmatrix(ln.solve(Q,b))

    mu = ln.solve(G*ln.inv(Q)*G.transpose(),G*c - d)

    a = c - ln.solve(Q,G.transpose()*mu)
    h = np.zeros(N)
    for i in nb:
        h[i] = 0.5*a[M-i]
        h[N-1-i] = h[i]
    h[M] = 2*h[M]
    hmax = max(np.absolute(h))
    for i in nq:
        h[i] = (8191/hmax)*h[i]
    return h 

Example 47

def lpfls1notch(N,wp,ws,wn1,W):
    M = (N-1)/2
    nq = np.arange(0,2*M+1)
    nb = np.arange(0,M+1)
    q = (wp/np.pi)*np.sinc((wp/np.pi)*nq) - W*(ws/np.pi)*np.sinc((ws/np.pi)*nq)
    b = (wp/np.pi)*np.sinc((wp/np.pi)*nb)
    q[0] = wp/np.pi + W*(1-ws/np.pi) # since sin(pi*n)/pi*n = 1, not 0
    b = np.asmatrix(b)
    b = b.transpose()

    Q1 = ln.toeplitz(q[0:M+1])
    Q2 = ln.hankel(q[0:M+1],q[M:])
    Q = Q1+Q2

    G1 = np.cos(wn1*nb)
    G = np.matrix([G1])

    d = np.array([0])
    d = np.asmatrix(d)

    c = np.asmatrix(ln.solve(Q,b))

    mu = ln.solve(G*ln.inv(Q)*G.transpose(),G*c - d)

    a = c - ln.solve(Q,G.transpose()*mu)
    h = np.zeros(N)
    for i in nb:
        h[i] = 0.5*a[M-i]
        h[N-1-i] = h[i]
    h[M] = 2*h[M]
    hmax = max(np.absolute(h))
    for i in nq:
        h[i] = (8191/hmax)*h[i]
    return h 

Example 48

def decoding(self):
        D = self.A_true.shape[1]
        num_doc = self.Y.shape[1]
        Z = np.asmatrix(np.zeros((D, num_doc)))
        A = np.asarray(self.A.copy())
        Y = np.asarray(self.Y.copy())
        for i in range(num_doc):
            Yi = np.array(Y[:, i]).flatten()
            t, bla = nnls(A, Yi)
            Z[:, i] = np.asmatrix(t).transpose()
        Z = np.asmatrix(Z)
        return Z 

Example 49

def decoding(self):
        D = self.A_true.shape[1]
        num_doc = self.Y.shape[1]
        Z = np.asmatrix(np.zeros((D, num_doc)))
        for i in range(num_doc):
            Yi = np.array(self.Y[:, i].copy()).flatten()
            A = np.asarray(self.A.copy())
            t, bla = nnls(A, Yi)
            Z[:, i] = np.asmatrix(t).transpose()
        Z = np.asmatrix(Z)
        return Z 

Example 50

def train(self):
        D = self.A_true.shape[1]
        for i in range(20):
            self.show_error()

            start = time.time()
            prior = self.sparsity / np.float(self.A_true.shape[1])
            lda = LDA(n_topics=D, random_state=0, doc_topic_prior = prior, max_iter=i)
            lda.fit(self.Y.transpose())
            end = time.time()
            self.time = end - start
            self.A = np.asmatrix(lda.components_.transpose()) 
点赞