Python numpy.indices() 使用实例

The following are code examples for showing how to use . They are extracted from open source Python projects. You can vote up the examples you like or vote down the exmaples you don’t like. You can also save this page to your account.

Example 1

def _select_edge_sur(self, edges, k):
        """
        Select the five cell indices surrounding each edge cell.
        """
        i, j = edges[k]['k']
        if k == 'n':
            return ([i + 0, i + 1, i + 1, i + 1, i + 0],
                    [j + 1, j + 1, j + 0, j - 1, j - 1])
        elif k == 'e':
            return ([i - 1, i + 1, i + 1, i + 0, i - 1],
                    [j + 0, j + 0, j - 1, j - 1, j - 1])
        elif k == 's':
            return ([i - 1, i - 1, i + 0, i + 0, i - 1],
                    [j + 0, j + 1, j + 1, j - 1, j - 1])
        elif k == 'w':
            return ([i - 1, i - 1, i + 0, i + 1, i + 1],
                    [j + 0, j + 1, j + 1, j + 1, j + 0]) 

Example 2

def take(self, indices, axis=None, out=None, mode='raise'):
        """
        """
        (_data, _mask) = (self._data, self._mask)
        cls = type(self)
        # Make sure the indices are not masked
        maskindices = getattr(indices, '_mask', nomask)
        if maskindices is not nomask:
            indices = indices.filled(0)
        # Get the data
        if out is None:
            out = _data.take(indices, axis=axis, mode=mode).view(cls)
        else:
            np.take(_data, indices, axis=axis, mode=mode, out=out)
        # Get the mask
        if isinstance(out, MaskedArray):
            if _mask is nomask:
                outmask = maskindices
            else:
                outmask = _mask.take(indices, axis=axis, mode=mode)
                outmask |= maskindices
            out.__setmask__(outmask)
        return out

    # Array methods 

Example 3

def put(a, indices, values, mode='raise'):
    """
    Set storage-indexed locations to corresponding values.

    This function is equivalent to `MaskedArray.put`, see that method
    for details.

    See Also
    --------
    MaskedArray.put

    """
    # We can't use 'frommethod', the order of arguments is different
    try:
        return a.put(indices, values, mode=mode)
    except AttributeError:
        return narray(a, copy=False).put(indices, values, mode=mode) 

Example 4

def fixOffset(self, offset, img):
    size = img.shape
    finalImg = np.ndarray(size)
    indices = np.indices((self.videoSize[0],self.videoSize[1])).swapaxes(0,2).swapaxes(0,1)
    indices = np.around(indices, decimals=1)
    indices.shape = (self.videoSize[1] * self.videoSize[0], 2)
    phi = 2 * np.arctan(np.exp(indices[:, 1] / self.videoSize[1])) - 1/2 * np.pi - offset[0]
    lamb = indices[:, 0] - offset[1]
    x = lamb
    y = np.log(np.tan(np.pi / 4 + 1/2 * phi)) * self.videoSize[1]
    finalIdx = np.ndarray((self.videoSize[1] * self.videoSize[0], 2))
    finalIdx = np.around(finalIdx, decimals=1).astype(int)
    finalIdx[:, 1] = y % self.videoSize[1]
    finalIdx[:, 0] = x % self.videoSize[0]
    finalImg[indices[:,1], indices[:,0]] = img[finalIdx[:,1], finalIdx[:,0]]
    return finalImg 

Example 5

def test_encode_data_roundtrip():
    minrand, maxrand = np.sort(np.random.randint(-427, 8848, 2))

    testdata = np.round((np.sum(
        np.dstack(
            np.indices((512, 512),
                dtype=np.float64)),
        axis=2) / (511. + 511.)) * maxrand, 2) + minrand

    baseval = -1000
    interval = 0.1

    rtripped = _decode(data_to_rgb(testdata.copy(), baseval, interval), baseval, interval)

    assert testdata.min() == rtripped.min()
    assert testdata.max() == rtripped.max() 

Example 6

def _parse_mask(mask):
    r"""
    Interprets a string mask to return the number of coefficients to be kept
    and the indices of the first and last ones in the zig-zagged flattened DCT matrix
    Example: '1-44' returns 44, first=1, last=44
    Parameters
    ----------
    mask

    Returns
    -------

    """
    tmp = mask.split('-')
    first = int(tmp[0])
    last = int(tmp[1])
    ncoeffs = last-first+1
    return ncoeffs, first, last 

Example 7

def diff_approx(self, fields, pars, eps=1E-8):
        nvar, N = len(fields.dependent_variables), fields.size
        fpars = {key: pars[key] for key in self.pars}
        fpars['dx'] = (fields['x'][-1] - fields['x'][0]) / fields['x'].size
        J = np.zeros((N * nvar, N * nvar))
        indices = np.indices(fields.uarray.shape)
        for i, (var_index, node_index) in enumerate(zip(*map(np.ravel,
                                                             indices))):
            fields_plus = fields.copy()
            fields_plus.uarray[var_index, node_index] += eps
            fields_moins = fields.copy()
            fields_moins.uarray[var_index, node_index] -= eps
            Fplus = self(fields_plus, pars)
            Fmoins = self(fields_moins, pars)
            J[i] = (Fplus - Fmoins) / (2 * eps)

        return J.T 

Example 8

def continuous_loss(self, y, y_hat):

        if isinstance(y_hat, DocLabel):
            raise ValueError("continuous loss on discrete input")

        if isinstance(y_hat[0], tuple):
            y_hat = y_hat[0]

        prop_marg, link_marg = y_hat
        y_nodes = self.prop_encoder_.transform(y.nodes)
        y_links = self.link_encoder_.transform(y.links)

        prop_ix = np.indices(y.nodes.shape)
        link_ix = np.indices(y.links.shape)

        # relies on prop_marg and link_marg summing to 1 row-wise
        prop_loss = np.sum(self.prop_cw_[y_nodes] *
                           (1 - prop_marg[prop_ix, y_nodes]))

        link_loss = np.sum(self.link_cw_[y_links] *
                           (1 - link_marg[link_ix, y_links]))

        loss = prop_loss + link_loss
        return loss 

Example 9

def find_beam_position_blur(z, sigma=30):
    """Estimate direct beam position by blurring the image with a large
    Gaussian kernel and finding the maximum.

    Parameters
    ----------
    sigma : float
        Sigma value for Gaussian blurring kernel.

    Returns
    -------
    center : np.array
        np.array containing indices of estimated direct beam positon.
    """
    blurred = ndi.gaussian_filter(z, sigma)
    center = np.unravel_index(blurred.argmax(), blurred.shape)

    return np.array(center) 

Example 10

def make_gisaxs_grid( qr_w= 10, qz_w = 12, dim_r =100,dim_z=120):
    '''    Dec 16, 2015, [email protected]
    
    '''
    y, x = np.indices( [dim_z,dim_r] )
    Nr = int(dim_r/qp_w)
    Nz = int(dim_z/qz_w)
    noqs = Nr*Nz
    
    ind = 1
    for i in range(0,Nr):
        for j in range(0,Nz):        
            y[ qr_w*i: qr_w*(i+1), qz_w*j:qz_w*(j+1)]=  ind
            ind += 1 
    return y 


###########################################
#for Q-map, convert pixel to Q
########################################### 

Example 11

def get_reflected_angles(inc_x0, inc_y0, refl_x0, refl_y0, thetai=0.0,
                         pixelsize=[75,75], Lsd=5.0,dimx = 2070.,dimy=2167.):
    
    ''' Dec 16, 2015, [email protected]
        giving: incident beam center: bcenx,bceny
                reflected beam on detector: rcenx, rceny
                sample to detector distance: Lsd, in mm                
                pixelsize: 75 um for Eiger4M detector
                detector image size: dimx = 2070,dimy=2167 for Eiger4M detector
        get  reflected angle alphaf (outplane)
             reflected angle thetaf (inplane )
    '''    
    #if Lsd>=1000:#it should be something wrong and the unit should be meter
    #convert Lsd from mm to m
    if Lsd>=1000:
        Lsd = Lsd/1000.
    alphai, phi =  get_incident_angles( inc_x0, inc_y0, refl_x0, refl_y0, pixelsize, Lsd)
    print ('The incident_angle (alphai) is: %s'%(alphai* 180/np.pi))
    px,py = pixelsize
    y, x = np.indices( [int(dimy),int(dimx)] )    
    #alphaf = np.arctan2( (y-inc_y0)*py*10**(-6), Lsd )/2 - alphai 
    alphaf = np.arctan2( (y-inc_y0)*py*10**(-6), Lsd )  - alphai 
    thetaf = np.arctan2( (x-inc_x0)*px*10**(-6), Lsd )/2 - thetai   
    
    return alphaf,thetaf, alphai, phi 

Example 12

def take(self, indices, axis=None, out=None, mode='raise'):
        """
        """
        (_data, _mask) = (self._data, self._mask)
        cls = type(self)
        # Make sure the indices are not masked
        maskindices = getattr(indices, '_mask', nomask)
        if maskindices is not nomask:
            indices = indices.filled(0)
        # Get the data
        if out is None:
            out = _data.take(indices, axis=axis, mode=mode).view(cls)
        else:
            np.take(_data, indices, axis=axis, mode=mode, out=out)
        # Get the mask
        if isinstance(out, MaskedArray):
            if _mask is nomask:
                outmask = maskindices
            else:
                outmask = _mask.take(indices, axis=axis, mode=mode)
                outmask |= maskindices
            out.__setmask__(outmask)
        return out

    # Array methods 

Example 13

def put(a, indices, values, mode='raise'):
    """
    Set storage-indexed locations to corresponding values.

    This function is equivalent to `MaskedArray.put`, see that method
    for details.

    See Also
    --------
    MaskedArray.put

    """
    # We can't use 'frommethod', the order of arguments is different
    try:
        return a.put(indices, values, mode=mode)
    except AttributeError:
        return narray(a, copy=False).put(indices, values, mode=mode) 

Example 14

def _parse_output(self):
        unique_ids = np.unique(self.tags)
        counts = np.bincount(self.tags + 1)
        sort_indices = np.argsort(self.tags)
        grab_indices = np.indices(self.tags.shape).ravel()[sort_indices]
        dens = self.densities[sort_indices]
        cp = 0
        for i in unique_ids:
            cp_c = cp + counts[i + 1]
            if i == -1:
                cp += counts[i + 1]
                continue
            group_indices = grab_indices[cp:cp_c]
            self._groups.append(self._halo_class(self, i, group_indices,
                                                 ptype=self.ptype))
            md_i = np.argmax(dens[cp:cp_c])
            px, py, pz = \
                [self.particle_fields['particle_position_%s' % ax][group_indices]
                 for ax in 'xyz']
            self._max_dens[i] = (dens[cp:cp_c][md_i], px[md_i],
                py[md_i], pz[md_i])
            cp += counts[i + 1] 

Example 15

def _parse_halolist(self, threshold_adjustment):
        groups = []
        max_dens = {}
        hi = 0
        LE, RE = self.bounds
        for halo in self._groups:
            this_max_dens = halo.maximum_density_location()
            # if the most dense particle is in the box, keep it
            if np.all((this_max_dens >= LE) & (this_max_dens <= RE)):
                # Now we add the halo information to OURSELVES, taken from the
                # self.hop_list
                # We need to mock up the HOPHaloList thingie, so we need to
                #     set self._max_dens
                max_dens_temp = list(self._max_dens[halo.id])[0] / \
                    threshold_adjustment
                max_dens[hi] = [max_dens_temp] + \
                    list(self._max_dens[halo.id])[1:4]
                groups.append(self._halo_class(self, hi, ptype=self.ptype))
                groups[-1].indices = halo.indices
                self.comm.claim_object(groups[-1])
                hi += 1
        del self._groups, self._max_dens  # explicit >> implicit
        self._groups = groups
        self._max_dens = max_dens 

Example 16

def test_fill_region():
    for level in range(2):
        rf = 2**level
        output_fields = [np.zeros((NDIM*rf,NDIM*rf,NDIM*rf), "float64")
                         for i in range(3)]
        input_fields = [np.empty(NDIM**3, "float64")
                         for i in range(3)]
        v = np.mgrid[0.0:1.0:NDIM*1j, 0.0:1.0:NDIM*1j, 0.0:1.0:NDIM*1j]
        input_fields[0][:] = v[0].ravel()
        input_fields[1][:] = v[1].ravel()
        input_fields[2][:] = v[2].ravel()
        left_index = np.zeros(3, "int64")
        ipos = np.empty((NDIM**3, 3), dtype="int64")
        ind = np.indices((NDIM,NDIM,NDIM))
        ipos[:,0] = ind[0].ravel()
        ipos[:,1] = ind[1].ravel()
        ipos[:,2] = ind[2].ravel()
        ires = np.zeros(NDIM*NDIM*NDIM, "int64")
        ddims = np.array([NDIM, NDIM, NDIM], dtype="int64") * rf
        fill_region(input_fields, output_fields, level,
                    left_index, ipos, ires, ddims,
                    np.array([2, 2, 2], dtype="i8"))
        for r in range(level + 1):
            for o, i in zip(output_fields, v):
                assert_equal( o[r::rf,r::rf,r::rf], i) 

Example 17

def weighted_distances( dx=10, dy=10, c=(5,5)):
    '''
    Map with weighted distances to a point
	args: Dimension maps and point
    '''

    a = np.zeros((dx,dy))
    a[c]=1

    indr = np.indices(a.shape)[0,:]
    indc = np.indices(a.shape)[1,:]

    difr = indr-c[0]
    difc = indc-c[1]

    map_diff = np.sqrt((difr**2)+(difc**2))

    map_diff = 1.0 - (map_diff/ map_diff.flatten().max())

    # Return inverse distance map
    return map_diff 

Example 18

def moments(data):

    total = data.sum()
    X, Y = np.indices(data.shape)
    x = (X*data).sum()/total
    y = (Y*data).sum()/total
    col = data[:, int(y)]
    width_x = np.sqrt(abs((np.arange(col.size)-y)**2*col).sum()/col.sum())
    row = data[int(x), :]
    width_y = np.sqrt(abs((np.arange(row.size)-x)**2*row).sum()/row.sum())
    height = data.max()

    # Return the parameters
    return height, x, y, width_x, width_y

# ----------------------------------------------------------------- 

Example 19

def moments(data):

    total = data.sum()
    X, Y = np.indices(data.shape)
    x = (X*data).sum()/total
    y = (Y*data).sum()/total
    col = data[:, int(y)]
    width_x = np.sqrt(abs((np.arange(col.size)-y)**2*col).sum()/col.sum())
    row = data[int(x), :]
    width_y = np.sqrt(abs((np.arange(row.size)-x)**2*row).sum()/row.sum())
    height = data.max()

    # Return the parameters
    return height, x, y, width_x, width_y

# ----------------------------------------------------------------- 

Example 20

def compute_dt_stats(self):
        self.datestack = True
        print("Computing date stats")
        allmask = np.ma.getmaskarray(self.ma_stack).all(axis=0)
        minidx = np.argmin(np.ma.getmaskarray(self.ma_stack), axis=0)
        maxidx = np.argmin(np.ma.getmaskarray(self.ma_stack[::-1]), axis=0)
        dt_stack_min = np.zeros(minidx.shape, dtype=self.dtype)
        dt_stack_max = np.zeros(maxidx.shape, dtype=self.dtype)
        for n, dt_o in enumerate(self.date_list_o):
            dt_stack_min[minidx == n] = dt_o
            dt_stack_max[maxidx == (len(self.date_list_o)-1 - n)] = dt_o
        self.dt_stack_min = np.ma.array(dt_stack_min, mask=allmask)
        self.dt_stack_max = np.ma.array(dt_stack_max, mask=allmask)
        self.dt_stack_ptp = np.ma.masked_equal((self.dt_stack_max - self.dt_stack_min), 0)
        self.dt_stack_center = self.dt_stack_min + self.dt_stack_ptp.filled(0)/2.0
            
        #Should pull out unmasked indices at each pixel along axis 0
        #Take min index along axis 0
        #Then create grids by pulling out corresponding value from date_list_o 

Example 21

def take(self, indices, axis=None, out=None, mode='raise'):
        """
        """
        (_data, _mask) = (self._data, self._mask)
        cls = type(self)
        # Make sure the indices are not masked
        maskindices = getattr(indices, '_mask', nomask)
        if maskindices is not nomask:
            indices = indices.filled(0)
        # Get the data
        if out is None:
            out = _data.take(indices, axis=axis, mode=mode).view(cls)
        else:
            np.take(_data, indices, axis=axis, mode=mode, out=out)
        # Get the mask
        if isinstance(out, MaskedArray):
            if _mask is nomask:
                outmask = maskindices
            else:
                outmask = _mask.take(indices, axis=axis, mode=mode)
                outmask |= maskindices
            out.__setmask__(outmask)
        return out

    # Array methods 

Example 22

def put(a, indices, values, mode='raise'):
    """
    Set storage-indexed locations to corresponding values.

    This function is equivalent to `MaskedArray.put`, see that method
    for details.

    See Also
    --------
    MaskedArray.put

    """
    # We can't use 'frommethod', the order of arguments is different
    try:
        return a.put(indices, values, mode=mode)
    except AttributeError:
        return narray(a, copy=False).put(indices, values, mode=mode) 

Example 23

def take(self, indices, axis=None, out=None, mode='raise'):
        """
        """
        (_data, _mask) = (self._data, self._mask)
        cls = type(self)
        # Make sure the indices are not masked
        maskindices = getattr(indices, '_mask', nomask)
        if maskindices is not nomask:
            indices = indices.filled(0)
        # Get the data
        if out is None:
            out = _data.take(indices, axis=axis, mode=mode).view(cls)
        else:
            np.take(_data, indices, axis=axis, mode=mode, out=out)
        # Get the mask
        if isinstance(out, MaskedArray):
            if _mask is nomask:
                outmask = maskindices
            else:
                outmask = _mask.take(indices, axis=axis, mode=mode)
                outmask |= maskindices
            out.__setmask__(outmask)
        return out

    # Array methods 

Example 24

def put(a, indices, values, mode='raise'):
    """
    Set storage-indexed locations to corresponding values.

    This function is equivalent to `MaskedArray.put`, see that method
    for details.

    See Also
    --------
    MaskedArray.put

    """
    # We can't use 'frommethod', the order of arguments is different
    try:
        return a.put(indices, values, mode=mode)
    except AttributeError:
        return narray(a, copy=False).put(indices, values, mode=mode) 

Example 25

def _parse_halolist(self, threshold_adjustment):
        groups = []
        max_dens = {}
        hi = 0
        LE, RE = self.bounds
        for halo in self._groups:
            this_max_dens = halo.maximum_density_location()
            # if the most dense particle is in the box, keep it
            if np.all((this_max_dens >= LE) & (this_max_dens <= RE)):
                # Now we add the halo information to OURSELVES, taken from the
                # self.hop_list
                # We need to mock up the HOPHaloList thingie, so we need to
                #     set self._max_dens
                max_dens_temp = list(self._max_dens[halo.id])[0] / \
                    threshold_adjustment
                max_dens[hi] = [max_dens_temp] + \
                    list(self._max_dens[halo.id])[1:4]
                groups.append(self._halo_class(self, hi, ptype=self.ptype))
                groups[-1].indices = halo.indices
                self.comm.claim_object(groups[-1])
                hi += 1
        del self._groups, self._max_dens  # explicit >> implicit
        self._groups = groups
        self._max_dens = max_dens 

Example 26

def put(a, indices, values, mode='raise'):
    """
    Set storage-indexed locations to corresponding values.

    This function is equivalent to `MaskedArray.put`, see that method
    for details.

    See Also
    --------
    MaskedArray.put

    """
    # We can't use 'frommethod', the order of arguments is different
    try:
        return a.put(indices, values, mode=mode)
    except AttributeError:
        return narray(a, copy=False).put(indices, values, mode=mode) 

Example 27

def put(a, indices, values, mode='raise'):
    """
    Set storage-indexed locations to corresponding values.

    This function is equivalent to `MaskedArray.put`, see that method
    for details.

    See Also
    --------
    MaskedArray.put

    """
    # We can't use 'frommethod', the order of arguments is different
    try:
        return a.put(indices, values, mode=mode)
    except AttributeError:
        return narray(a, copy=False).put(indices, values, mode=mode) 

Example 28

def transform_to_2d(data, max_axis):
    """
    Projects 3d data cube along one axis using maximum intensity with
    preservation of the signs. Adapted from nilearn.
    """
    import numpy as np
    # get the shape of the array we are projecting to
    new_shape = list(data.shape)
    del new_shape[max_axis]

    # generate a 3D indexing array that points to max abs value in the
    # current projection
    a1, a2 = np.indices(new_shape)
    inds = [a1, a2]
    inds.insert(max_axis, np.abs(data).argmax(axis=max_axis))

    # take the values where the absolute value of the projection
    # is the highest
    maximum_intensity_data = data[inds]

    return np.rot90(maximum_intensity_data) 

Example 29

def gaussian_image(label):
    label = tf.reshape(label, [-1, 2])
    indices = np.indices([368, 368])[:, ::8, ::8].astype(np.float32)
    coords = tf.constant(indices)
    stretch = tf.reshape(tf.to_float(label), [-1, 2, 1, 1])
    stretch = tf.tile(stretch, [1, 1, 46, 46])
    # pdf = 1.0/(np.sqrt(2*(sigma**2)*np.pi)) * tf.exp(-tf.pow(coords-stretch,2)/(2*sigma**2))
    pdf = tf.pow(coords - stretch, 2) / (2 * sigma ** 2)
    pdf = tf.reduce_sum(pdf, [1])
    # pdf = tf.reduce_prod(pdf,[1])
    # print debug
    pdf = tf.expand_dims(pdf, 3)
    debug = tf.exp(-pdf)  # 1.0 / (np.sqrt(2 * (sigma ** 2) * np.pi)) *
    pdf_debug_img('super', debug, sigma)

    return debug 

Example 30

def endmembers_by_query(rast, query, gt, wkt, dd=False):
    '''
    Returns a list of endmember locations based on a provided query, e.g.:
    > query = rast[1,...] < -25 # Band 2 should be less than -25
    > endmembers_by_query(rast, query, gt, wkt)
    Arguments:
        rast    The raster array to find endmembers within
        query   A NumPy boolean array representing a query in the feature space
        gt      The GDAL GeoTransform
        wkt     The GDAL WKT projection
        dd      True for coordinates in decimal degrees
    '''
    assert isinstance(rast, np.ndarray), 'Requires a NumPy array'
    shp = rast.shape
    idx = np.indices((shp[-2], shp[-1]))

    # Execute query on the indices (pixel locations), then return the coordinates
    return list(pixel_to_xy([
        (x, y) for y, x in idx[:,query].T
    ], gt, wkt, dd=dd)) 

Example 31

def mae(reference, predictions, idx=None, n=1):
    '''
    Mean absolute error (MAE) for (p x n) raster arrays, where p is the number
    of bands and n is the number of pixels. Arguments:
        reference   Raster array of reference ("truth" or measured) data
        predictions Raster array of predictions
        idx         Optional array of indices at which to sample the arrays
        n           A normalizing constant for residuals; e.g., the number
                    of endmembers when calculating RMSE for modeled reflectance
    '''
    if idx is None:
        r = reference.shape[1]
        residuals = reference - predictions

    else:
        r = len(idx)
        residuals = reference[:, idx] - predictions[:, idx]

    # Divide the MSE by the number of bands before taking the root
    return np.apply_along_axis(lambda x: np.divide(np.abs(x).sum(), n), 0,
            residuals) 

Example 32

def measure_background(image, Fibers, width=30, niter=3, order=3):
    t = []
    a,b = image.shape
    ygrid,xgrid = np.indices(image.shape)
    ygrid = 1. * ygrid.ravel() / a
    xgrid = 1. * xgrid.ravel() / b
    image = image.ravel()
    s = np.arange(a*b)
    for fiber in Fibers:
        t.append(fiber.D*fiber.yind + fiber.xind)
    t = np.hstack(t)
    t = np.array(t, dtype=int)
    ind = np.setdiff1d(s,t)
    mask = np.zeros((a*b))
    mask[ind] = 1.
    mask[ind] = 1.-is_outlier(image[ind])
    sel = np.where(mask==1.)[0]
    for i in xrange(niter):
        V = polyvander2d(xgrid[sel],ygrid[sel],[order,order])
        sol = np.linalg.lstsq(V, image[sel])[0]
        vals = np.dot(V,sol) - image[sel]
        sel = sel[~is_outlier(vals)]
    V = polyvander2d(xgrid,ygrid,[order,order])
    back = np.dot(V, sol).reshape(a,b)    
    return back 

Example 33

def test_xor():
    # Check on a XOR problem
    y = np.zeros((10, 10))
    y[:5, :5] = 1
    y[5:, 5:] = 1

    gridx, gridy = np.indices(y.shape)

    X = np.vstack([gridx.ravel(), gridy.ravel()]).T
    y = y.ravel()

    for name, Tree in CLF_TREES.items():
        clf = Tree(random_state=0)
        clf.fit(X, y)
        assert_equal(clf.score(X, y), 1.0,
                     "Failed with {0}".format(name))

        clf = Tree(random_state=0, max_features=1)
        clf.fit(X, y)
        assert_equal(clf.score(X, y), 1.0,
                     "Failed with {0}".format(name)) 

Example 34

def apply_SL2C_elt_to_image(M_SL2C, src_image, out_size=None):

    s_im = np.atleast_3d(src_image)
    in_size = s_im.shape[:-1]
    if out_size is None:
        out_size = in_size
    #We are going to find the location in the source image that each pixel in the output image comes from

    #least squares matrix inversion (find X such that M @ X = I ==> X = inv(M) @ I = inv(M))
    Minv = np.linalg.lstsq(M_SL2C, np.eye(2))[0]
    #all of the x,y pairs in o_im:
    pts_out = np.indices(out_size).reshape((2,-1)) #results in a 2 x (num pixels) array of indices
    pts_out_a = angles_from_pixel_coords(pts_out, out_size)
    pts_out_s = sphere_from_angles(pts_out_a)
    pts_out_c = CP1_from_sphere(pts_out_s)
    pts_in_c = np.dot(Minv, pts_out_c) # (2x2) @ (2xn) => (2xn)
    pts_in_s = sphere_from_CP1(pts_in_c)
    pts_in_a = angles_from_sphere(pts_in_s)
    pts_in = pixel_coords_from_angles(pts_in_a, in_size)
    #reshape pts into 2 x image_shape for the interpolation
    o_im = get_interpolated_pixel_color(pts_in.reshape((2,)+out_size), s_im, in_size)

    return o_im 

Example 35

def improve_ipopt(x0, prob, *args, **kwargs):
    try:
        import pyipopt
    except ImportError:
        raise Exception("PyIpopt package is not installed.")

    lb = pyipopt.NLP_LOWER_BOUND_INF
    ub = pyipopt.NLP_UPPER_BOUND_INF
    g_L = np.zeros(prob.m)
    for i in range(prob.m):
        if prob.fs[i].relop == '<=':
            g_L[i] = lb
    g_U = np.zeros(prob.m)

    def eval_grad_f(x, user_data = None):
        return 2*prob.f0.P.dot(x) + prob.f0.qarray
    def eval_g(x, user_data = None):
        return np.array([f.eval(x) for f in prob.fs])

    jac_grid = np.indices((prob.m, prob.n))
    jac_r = jac_grid[0].ravel()
    jac_c = jac_grid[1].ravel()
    def eval_jac_g(x, flag, user_data = None):
        if flag:
            return (jac_r, jac_c)
        else:
            return np.vstack([2*f.P.dot(x)+f.qarray for f in prob.fs])

    nlp = pyipopt.create(
        prob.n, lb*np.ones(prob.n), ub*np.ones(prob.n),
        prob.m, g_L, g_U, prob.m*prob.n, 0,
        prob.f0.eval, eval_grad_f,
        eval_g, eval_jac_g
    )
    try:
        x, zl, zu, constraint_multipliers, obj, status = nlp.solve(x0)
    except:
        pass

    return x 

Example 36

def check(p1, p2, base_array):
    ''' Checks if the values in the base array fall inside of the triangle
        enclosed in the points (p1, p2, (0,0)).

    Args:
        p1 (`iterable`): iterable containing (x,y) coordinates of a point.

        p2 (`iterable`): iterable containing (x,y) coordinates of a point.

        base_array (`numpy.ndarray`): a logical array.

    Returns:
        `numpy.ndarray`: array with True value inside and False value outside bounds

    '''
    # Create 3D array of indices
    idxs = np.indices(base_array.shape)

    # ensure points are floats
    p1 = p1.astype(float)
    p2 = p2.astype(float)

    # Calculate max column idx for each row idx based on interpolated line between two points
    max_col_idx = (idxs[0] - p1[0]) / (p2[0] - p1[0]) * (p2[1] - p1[1]) + p1[1]
    sign = np.sign(p2[0] - p1[0])
    return idxs[1] * sign <= max_col_idx * sign 

Example 37

def _select_surround(self, i, j):
        """
        Select the eight indices surrounding a given index.
        """
        return ([i - 1, i - 1, i + 0, i + 1, i + 1, i + 1, i + 0, i - 1],
                [j + 0, j + 1, j + 1, j + 1, j + 0, j - 1, j - 1, j - 1]) 

Example 38

def _select_surround_ravel(self, i, shape):
        """
        Select the eight indices surrounding a flattened index.
        """
        offset = shape[1]
        return np.array([i + 0 - offset,
                         i + 1 - offset,
                         i + 1 + 0,
                         i + 1 + offset,
                         i + 0 + offset,
                         i - 1 + offset,
                         i - 1 + 0,
                         i - 1 - offset]).T 

Example 39

def rebin(a, newshape):
    """Rebin an array to a new shape."""
    assert len(a.shape) == len(newshape)

    slices = [slice(0, old, float(old) / new)
              for old, new in zip(a.shape, newshape)]
    coordinates = np.mgrid[slices]
    indices = coordinates.astype('i')
    return a[tuple(indices)] 

Example 40

def rotatedCrystal(V, size=(2, 2, 1), a=1.3968418, cType='gr'):
    """
    Generates a triangular crystal lattice of the given size and rotates it so that the new unit vectors
    align with the columns of V. The positions are set so that the center atom is at the
    origin. Size is expected to be even in all directions.
    'a' is the atomic distance between the atoms of the hexagonal lattice daul to this crystal.
    In other words, a*sqrt(3) is the lattice constant of the triangular lattice.
    The returned object is of ase.Atoms type
    """
    if cType == 'gr':
        cr = GB.grapheneCrystal(1, 1, 'armChair').aseCrystal(ccBond=a)

    elif cType == 'tr':
        numbers = [6.0]
        cell = numpy.array([[a * (3.0 ** 0.5), 0, 0], [0.5 * a * (3.0 ** 0.5), 1.5 * a, 0], [0, 0, 10 * a]])
        positions = numpy.array([[0, 0, 0]])
        cr = ase.Atoms(numbers=numbers, positions=positions, cell=cell, pbc=[True, True, True])

    elif cType == 'tr-or':
        numbers = [6.0, 6.0]
        cell = numpy.array([[a * (3.0 ** 0.5), 0, 0], [0, 3.0 * a, 0], [0, 0, 10 * a]])
        positions = numpy.array([[0, 0, 0], [0.5 * a * (3.0 ** 0.5), 1.5 * a, 0]])
        cr = ase.Atoms(numbers=numbers, positions=positions, cell=cell, pbc=[True, True, True])  # Repeating

    ix = numpy.indices(size, dtype=int).reshape(3, -1)
    tvecs = numpy.einsum('ki,kj', ix, cr.cell)
    rPos = numpy.ndarray((len(cr) * len(tvecs), 3))
    for i in range(len(cr)):
        rPos[i * len(tvecs):(i + 1) * len(tvecs)] = tvecs + cr.positions[i]
    # New cell size
    for i in range(3):
        cr.cell[i] *= size[i]

    cr = Atoms(symbols=['C'] * len(rPos), positions=rPos, cell=cr.cell, pbc=[True, True, True])
    center = numpy.sum(cr.cell, axis=0) * 0.5
    cr.positions = cr.positions - center

    cr.cell = numpy.einsum('ik,jk', cr.cell, V)
    cr.positions = numpy.einsum('ik,jk', cr.positions, V)

    return cr 

Example 41

def rotatedCrystal(V,size=(2,2,1),a=1.3968418):
	"""
	Generates a triangular crystal lattice of the given size and rotates it so that the new unit vectors 
	align with the columns of V. The positions are set so that the center atom is at the 
	origin. Size is expected to be even in all directions.
	'a' is the atomic distance between the atoms of the hexagonal lattice daul to this crystal.
	In other words, a*sqrt(3) is the lattice constant of the triangular lattice.
	The returned object is of ase.Atoms type
	"""
	numbers = [6.0]
	cell = numpy.array([[a*(3.0**0.5),0,0],[0.5*a*(3.0**0.5),1.5*a,0],[0,0,10*a]])
	positions = numpy.array([[0,0,0]])
	cr = ase.Atoms(numbers=numbers,positions=positions,cell=cell,pbc=[True,True,True])

	# Repeating
	ix = numpy.indices(size, dtype=int).reshape(3,-1)
	tvecs = numpy.einsum('ki,kj',ix,cr.cell)
	rPos = numpy.ndarray((len(cr)*len(tvecs),3))
	for i in range(len(cr)):
		rPos[i*len(tvecs):(i+1)*len(tvecs)] = tvecs + cr.positions[i]
	# New cell size
	for i in range(3):
		cr.cell[i]*=size[i]

	cr = Atoms(symbols=['C']*len(rPos), positions=rPos, cell = cr.cell, pbc=[True,True,True])
	center = numpy.sum(cr.cell,axis=0)*0.5
	cr.positions = cr.positions - center

	cr.cell = numpy.einsum('ik,jk',cr.cell,V)
	cr.positions = numpy.einsum('ik,jk',cr.positions,V)

	return cr 

Example 42

def test_copy_detection_zero_dim(self, level=rlevel):
        # Ticket #658
        np.indices((0, 3, 4)).T.reshape(-1, 3) 

Example 43

def test_copy_detection_corner_case(self, level=rlevel):
        # Ticket #658
        np.indices((0, 3, 4)).T.reshape(-1, 3)

    # Cannot test if NPY_RELAXED_STRIDES_CHECKING changes the strides.
    # With NPY_RELAXED_STRIDES_CHECKING the test becomes superfluous,
    # 0-sized reshape itself is tested elsewhere. 

Example 44

def test_copy_detection_corner_case2(self, level=rlevel):
        # Ticket #771: strides are not set correctly when reshaping 0-sized
        # arrays
        b = np.indices((0, 3, 4)).T.reshape(-1, 3)
        assert_equal(b.strides, (3 * b.itemsize, b.itemsize)) 

Example 45

def test_take(self):
        tgt = [2, 3, 5]
        indices = [1, 2, 4]
        a = [1, 2, 3, 4, 5]

        out = np.take(a, indices)
        assert_equal(out, tgt) 

Example 46

def test_results(self):
        a = np.arange(1*2*3*4).reshape(1, 2, 3, 4).copy()
        aind = np.indices(a.shape)
        assert_(a.flags['OWNDATA'])
        for (i, j) in self.tgtshape:
            # positive axis, positive start
            res = np.rollaxis(a, axis=i, start=j)
            i0, i1, i2, i3 = aind[np.array(res.shape) - 1]
            assert_(np.all(res[i0, i1, i2, i3] == a))
            assert_(res.shape == self.tgtshape[(i, j)], str((i,j)))
            assert_(not res.flags['OWNDATA'])

            # negative axis, positive start
            ip = i + 1
            res = np.rollaxis(a, axis=-ip, start=j)
            i0, i1, i2, i3 = aind[np.array(res.shape) - 1]
            assert_(np.all(res[i0, i1, i2, i3] == a))
            assert_(res.shape == self.tgtshape[(4 - ip, j)])
            assert_(not res.flags['OWNDATA'])

            # positive axis, negative start
            jp = j + 1 if j < 4 else j
            res = np.rollaxis(a, axis=i, start=-jp)
            i0, i1, i2, i3 = aind[np.array(res.shape) - 1]
            assert_(np.all(res[i0, i1, i2, i3] == a))
            assert_(res.shape == self.tgtshape[(i, 4 - jp)])
            assert_(not res.flags['OWNDATA'])

            # negative axis, negative start
            ip = i + 1
            jp = j + 1 if j < 4 else j
            res = np.rollaxis(a, axis=-ip, start=-jp)
            i0, i1, i2, i3 = aind[np.array(res.shape) - 1]
            assert_(np.all(res[i0, i1, i2, i3] == a))
            assert_(res.shape == self.tgtshape[(4 - ip, 4 - jp)])
            assert_(not res.flags['OWNDATA']) 

Example 47

def test_swapaxes(self):
        a = np.arange(1*2*3*4).reshape(1, 2, 3, 4).copy()
        idx = np.indices(a.shape)
        assert_(a.flags['OWNDATA'])
        b = a.copy()
        # check exceptions
        assert_raises(ValueError, a.swapaxes, -5, 0)
        assert_raises(ValueError, a.swapaxes, 4, 0)
        assert_raises(ValueError, a.swapaxes, 0, -5)
        assert_raises(ValueError, a.swapaxes, 0, 4)

        for i in range(-4, 4):
            for j in range(-4, 4):
                for k, src in enumerate((a, b)):
                    c = src.swapaxes(i, j)
                    # check shape
                    shape = list(src.shape)
                    shape[i] = src.shape[j]
                    shape[j] = src.shape[i]
                    assert_equal(c.shape, shape, str((i, j, k)))
                    # check array contents
                    i0, i1, i2, i3 = [dim-1 for dim in c.shape]
                    j0, j1, j2, j3 = [dim-1 for dim in src.shape]
                    assert_equal(src[idx[j0], idx[j1], idx[j2], idx[j3]],
                                 c[idx[i0], idx[i1], idx[i2], idx[i3]],
                                 str((i, j, k)))
                    # check a view is always returned, gh-5260
                    assert_(not c.flags['OWNDATA'], str((i, j, k)))
                    # check on non-contiguous input array
                    if k == 1:
                        b = c 

Example 48

def __getslice__(self, i, j):
        """
        x.__getslice__(i, j) <==> x[i:j]

        Return the slice described by (i, j).  The use of negative indices
        is not supported.

        """
        return self.__getitem__(slice(i, j)) 

Example 49

def argmax(self, axis=None, fill_value=None, out=None):
        """
        Returns array of indices of the maximum values along the given axis.
        Masked values are treated as if they had the value fill_value.

        Parameters
        ----------
        axis : {None, integer}
            If None, the index is into the flattened array, otherwise along
            the specified axis
        fill_value : {var}, optional
            Value used to fill in the masked values.  If None, the output of
            maximum_fill_value(self._data) is used instead.
        out : {None, array}, optional
            Array into which the result can be placed. Its type is preserved
            and it must be of the right shape to hold the output.

        Returns
        -------
        index_array : {integer_array}

        Examples
        --------
        >>> a = np.arange(6).reshape(2,3)
        >>> a.argmax()
        5
        >>> a.argmax(0)
        array([1, 1, 1])
        >>> a.argmax(1)
        array([2, 2])

        """
        if fill_value is None:
            fill_value = maximum_fill_value(self._data)
        d = self.filled(fill_value).view(ndarray)
        return d.argmax(axis, out=out) 

Example 50

def take(a, indices, axis=None, out=None, mode='raise'):
    """
    """
    a = masked_array(a)
    return a.take(indices, axis=axis, out=out, mode=mode) 
点赞