Python numpy.number() 使用实例

The following are code examples for showing how to use . They are extracted from open source Python projects. You can vote up the examples you like or vote down the exmaples you don’t like. You can also save this page to your account.

Example 1

def _check_annotations(value):
    """
    Recursively check that value is either of a "simple" type (number, string,
    date/time) or is a (possibly nested) dict, list or numpy array containing
    only simple types.
    """
    if isinstance(value, np.ndarray):
        if not issubclass(value.dtype.type, ALLOWED_ANNOTATION_TYPES):
            raise ValueError("Invalid annotation. NumPy arrays with dtype %s"
                             "are not allowed" % value.dtype.type)
    elif isinstance(value, dict):
        for element in value.values():
            _check_annotations(element)
    elif isinstance(value, (list, tuple)):
        for element in value:
            _check_annotations(element)
    elif not isinstance(value, ALLOWED_ANNOTATION_TYPES):
        raise ValueError("Invalid annotation. Annotations of type %s are not"
                         "allowed" % type(value)) 

Example 2

def _check_annotations(value):
    """
    Recursively check that value is either of a "simple" type (number, string,
    date/time) or is a (possibly nested) dict, list or numpy array containing
    only simple types.
    """
    if isinstance(value, np.ndarray):
        if not issubclass(value.dtype.type, ALLOWED_ANNOTATION_TYPES):
            raise ValueError("Invalid annotation. NumPy arrays with dtype %s"
                             "are not allowed" % value.dtype.type)
    elif isinstance(value, dict):
        for element in value.values():
            _check_annotations(element)
    elif isinstance(value, (list, tuple)):
        for element in value:
            _check_annotations(element)
    elif not isinstance(value, ALLOWED_ANNOTATION_TYPES):
        raise ValueError("Invalid annotation. Annotations of type %s are not"
                         "allowed" % type(value)) 

Example 3

def linear_trajectory_to(self, target_tf, traj_len):
        """Creates a trajectory of poses linearly interpolated from this tf to a target tf.

        Parameters
        ----------
        target_tf : :obj:`RigidTransform`
            The RigidTransform to interpolate to.
        traj_len : int
            The number of RigidTransforms in the returned trajectory.

        Returns
        -------
        :obj:`list` of :obj:`RigidTransform`
            A list of interpolated transforms from this transform to the target.
        """
        if traj_len < 0:
            raise ValueError('Traj len must at least 0')
        delta_t = 1.0 / (traj_len + 1)
        t = 0.0
        traj = []
        while t < 1.0:
            traj.append(self.interpolate_with(target_tf, t))
            t += delta_t
        traj.append(target_tf)
        return traj 

Example 4

def drop_inconsistent_keys(self, columns, obj):
        """Drop inconsistent keys

        Drop inconsistent keys from a ValueCounts or Histogram object.

        :param list columns: columns key to retrieve desired datatypes
        :param object obj: ValueCounts or Histogram object to drop inconsistent keys from
        """

        # has array been converted first? if so, set correct comparison
        # datatype
        comp_dtype = []
        for col in columns:
            dt = np.dtype(self.var_dtype[col]).type()
            is_converted = isinstance(
                dt, np.number) or isinstance(
                dt, np.datetime64)
            if is_converted:
                comp_dtype.append(np.int64)
            else:
                comp_dtype.append(self.var_dtype[col])
        # keep only keys of types in comp_dtype
        obj.remove_keys_of_inconsistent_type(prefered_key_type=comp_dtype)
        return obj 

Example 5

def categorize_columns(self, df):
        """Categorize columns of dataframe by data type

        :param df: input (pandas) data frame
        """

        # check presence and data type of requested columns
        # sort columns into numerical, timestamp and category based
        for c in self.columns:
            for col in c:
                if col not in df.columns:
                    raise KeyError('column "{0:s}" not in dataframe "{1:s}"'.format(col, self.read_key))
                dt = self.get_data_type(df, col)
                if col not in self.var_dtype:
                    self.var_dtype[col] = dt.type
                    if (self.var_dtype[col] is np.string_) or (self.var_dtype[col] is np.object_):
                        self.var_dtype[col] = str
                if not any(dt in types for types in (STRING_SUBSTR, NUMERIC_SUBSTR, TIME_SUBSTR)):
                    raise TypeError('cannot process column "{0:s}" of data type "{1:s}"'.format(col, str(dt)))
                is_number = isinstance(dt.type(), np.number)
                is_timestamp = isinstance(dt.type(), np.datetime64)
                colset = self.num_cols if is_number else self.dt_cols if is_timestamp else self.str_cols
                if col not in colset:
                    colset.append(col)
                self.log().debug('Data type of column "%s" is "%s"', col, self.var_dtype[col]) 

Example 6

def test_ticket_1539(self):
        dtypes = [x for x in np.typeDict.values()
                  if (issubclass(x, np.number)
                      and not issubclass(x, np.timedelta64))]
        a = np.array([], dtypes[0])
        failures = []
        # ignore complex warnings
        with warnings.catch_warnings():
            warnings.simplefilter('ignore', np.ComplexWarning)
            for x in dtypes:
                b = a.astype(x)
                for y in dtypes:
                    c = a.astype(y)
                    try:
                        np.dot(b, c)
                    except TypeError:
                        failures.append((x, y))
        if failures:
            raise AssertionError("Failures: %r" % failures) 

Example 7

def round(self, decimals=0, out=None):
        """
        Return an array rounded a to the given number of decimals.

        Refer to `numpy.around` for full documentation.

        See Also
        --------
        numpy.around : equivalent function

        """
        result = self._data.round(decimals=decimals, out=out).view(type(self))
        if result.ndim > 0:
            result._mask = self._mask
            result._update_from(self)
        elif self._mask:
            # Return masked when the scalar is masked
            result = masked
        # No explicit output: we're done
        if out is None:
            return result
        if isinstance(out, MaskedArray):
            out.__setmask__(self._mask)
        return out 

Example 8

def setup_class(cls):
        # Load a dataframe
        dataframe = pd.read_csv('tests/data/decathlon.csv', index_col=0)

        # Determine the categorical columns
        cls.df_categorical = dataframe.select_dtypes(exclude=[np.number])

        # Determine the numerical columns
        cls.df_numeric = dataframe.drop(cls.df_categorical.columns, axis='columns')

        # Determine the size of the numerical part of the dataframe
        (cls.n, cls.p) = cls.df_numeric.shape

        # Determine the covariance matrix
        X = cls.df_numeric.copy()
        cls.center_reduced = ((X - X.mean()) / X.std()).values
        cls.cov = cls.center_reduced.T @ cls.center_reduced

        # Calculate a full PCA
        cls.n_components = len(cls.df_numeric.columns)
        cls.pca = PCA(dataframe, n_components=cls.n_components, scaled=True) 

Example 9

def _filter(self, dataframe, supplementary_row_names, supplementary_column_names):

        # Extract the categorical columns
        self.categorical_columns = dataframe.select_dtypes(exclude=[np.number])

        # Extract the supplementary rows
        self.supplementary_rows = dataframe.loc[supplementary_row_names].copy()
        self.supplementary_rows.drop(supplementary_column_names, axis=1, inplace=True)

        # Extract the supplementary columns
        self.supplementary_columns = dataframe[supplementary_column_names].copy()
        self.supplementary_columns.drop(supplementary_row_names, axis=0, inplace=True)

        # Remove the the supplementary columns and rows from the dataframe
        dataframe.drop(supplementary_row_names, axis=0, inplace=True)
        dataframe.drop(supplementary_column_names, axis=1, inplace=True) 

Example 10

def _filter(self, dataframe, supplementary_row_names, supplementary_column_names):

        # Extract the categorical columns
        self.categorical_columns = dataframe.select_dtypes(exclude=[np.number])

        # Extract the supplementary rows
        self.supplementary_rows = dataframe.loc[supplementary_row_names].copy()
        self.supplementary_rows.drop(self.categorical_columns.columns, axis='columns', inplace=True)

        # Extract the supplementary columns
        self.supplementary_columns = dataframe[supplementary_column_names].copy()
        self.supplementary_columns.drop(supplementary_row_names, axis='rows', inplace=True)

        # Remove the categorical column and the supplementary columns and rows from the dataframe
        dataframe.drop(supplementary_row_names, axis='rows', inplace=True)
        dataframe.drop(supplementary_column_names, axis='columns', inplace=True)
        dataframe.drop(self.categorical_columns.columns, axis='columns', inplace=True) 

Example 11

def __init__(self, bin_type, *repr_args):
        """
        Constructor for a bin object.
        :param id: identifier (e.g. bin number) of the bin
        :param bin_type: "numerical" or "categorical"
        :param repr_args: arguments to represent this bin. 
                          args for numerical bin includes lower, upper, lower_closed, upper_closed
                          args for categorical bin includes a list of categories for this bin.
        """
        if bin_type == "numerical" and len(repr_args) != 4:
            raise ValueError("args for numerical bin are lower, upper, lower_closed, upper_closed.")
        if bin_type == "categorical" and len(repr_args) != 1 and type(repr_args[0]) is not list:
            raise ValueError("args for categorical bin is a list of categorical values for this bin.")
        self.bin_type = bin_type

        if bin_type == "numerical":
            self.representation = NumericalRepresentation(*repr_args)
        elif bin_type == "categorical":
            self.representation = CategoricalRepresentation(*repr_args) 

Example 12

def _get_power(mean1, std1, n1, mean2, std2, n2, z_1_minus_alpha):
    """
    Compute statistical power.
    This is a helper function for compute_statistical_power(x, y, alpha=0.05)
    Args:
        mean1 (float): mean value of the treatment distribution
        std1 (float): standard deviation of the treatment distribution
        n1 (integer): number of samples of the treatment distribution
        mean2 (float): mean value of the control distribution
        std2 (float): standard deviation of the control distribution
        n2 (integer): number of samples of the control distribution
        z_1_minus_alpha (float): critical value for significance level alpha. That is, z-value for 1-alpha.

    Returns:
        float: statistical power --- that is, the probability of a test to detect an effect,
            if the effect actually exists.
    """
    effect_size = mean1 - mean2
    std = pooled_std(std1, n1, std2, n2)
    tmp = (n1 * n2 * effect_size**2) / ((n1 + n2) * std**2)
    z_beta = z_1_minus_alpha - np.sqrt(tmp)
    beta = stats.norm.cdf(z_beta)
    power = 1 - beta

    return power 

Example 13

def test_import_trajectory_interp_nans(self):
        fields = ['mdy', 'hms', 'lat', 'long', 'ell_ht', 'ortho_ht', 'num_sats', 'pdop']
        df = ti.import_trajectory(os.path.abspath('tests/sample_trajectory.txt'),
                                  columns=fields, skiprows=1, timeformat='hms',
                                  interp=True)

        # Test and verify an arbitrary line of data against the same line in the pandas DataFrame
        line11 = ['3/22/2017', '9:59:00.20', 76.5350241071, -68.7218956324, 65.898, 82.778, 11, 2.00]
        sample_line = dict(zip(fields, line11))

        np.testing.assert_almost_equal(df.lat[10], sample_line['lat'], decimal=10)
        np.testing.assert_almost_equal(df.long[10], sample_line['long'], decimal=10)
        numeric = df.select_dtypes(include=[np.number])

        # check whether NaNs were interpolated for numeric type fields
        self.assertTrue(numeric.iloc[[2]].notnull().values.all()) 

Example 14

def test_import_trajectory_fields(self):
        # test number of fields in data greater than number of fields named
        fields = ['mdy', 'hms', 'lat', 'long', 'ell_ht']
        df = ti.import_trajectory(os.path.abspath('tests/sample_trajectory.txt'),
                                  columns=fields, skiprows=1, timeformat='hms')

        columns = [x for x in fields if x is not None]
        np.testing.assert_array_equal(df.columns, columns[2:])

        # test fields in the middle are dropped
        fields = ['mdy', 'hms', 'lat', 'long', 'ell_ht', None, 'num_sats', 'pdop']
        df = ti.import_trajectory(os.path.abspath('tests/sample_trajectory.txt'),
                                  columns=fields, skiprows=1, timeformat='hms')

        columns = [x for x in fields if x is not None]
        np.testing.assert_array_equal(df.columns, columns[2:]) 

Example 15

def test_ticket_1539(self):
        dtypes = [x for x in np.typeDict.values()
                  if (issubclass(x, np.number)
                      and not issubclass(x, np.timedelta64))]
        a = np.array([], dtypes[0])
        failures = []
        # ignore complex warnings
        with warnings.catch_warnings():
            warnings.simplefilter('ignore', np.ComplexWarning)
            for x in dtypes:
                b = a.astype(x)
                for y in dtypes:
                    c = a.astype(y)
                    try:
                        np.dot(b, c)
                    except TypeError:
                        failures.append((x, y))
        if failures:
            raise AssertionError("Failures: %r" % failures) 

Example 16

def round(self, decimals=0, out=None):
        """
        Return an array rounded a to the given number of decimals.

        Refer to `numpy.around` for full documentation.

        See Also
        --------
        numpy.around : equivalent function

        """
        result = self._data.round(decimals=decimals, out=out).view(type(self))
        if result.ndim > 0:
            result._mask = self._mask
            result._update_from(self)
        elif self._mask:
            # Return masked when the scalar is masked
            result = masked
        # No explicit output: we're done
        if out is None:
            return result
        if isinstance(out, MaskedArray):
            out.__setmask__(self._mask)
        return out 

Example 17

def get_binary_op_return_class(cls1, cls2):
    if cls1 is cls2:
        return cls1
    if cls1 in (np.ndarray, np.matrix, np.ma.masked_array) or issubclass(cls1, (numeric_type, np.number, list, tuple)):
        return cls2
    if cls2 in (np.ndarray, np.matrix, np.ma.masked_array) or issubclass(cls2, (numeric_type, np.number, list, tuple)):
        return cls1
    if issubclass(cls1, YTQuantity):
        return cls2
    if issubclass(cls2, YTQuantity):
        return cls1
    if issubclass(cls1, cls2):
        return cls1
    if issubclass(cls2, cls1):
        return cls2
    else:
        raise RuntimeError("Undefined operation for a YTArray subclass. "
                           "Received operand types (%s) and (%s)" % (cls1, cls2)) 

Example 18

def transform(self, X, y=None):
        """Apply dimensionality reduction to X.
        X is masked.
        Parameters
        ----------
        X : array-like, shape (n_samples, n_features)
            New data, where n_samples is the number of samples
            and n_features is the number of features.
        Returns
        -------
        X_new : array-like, shape (n_samples, n_components)
        """
        from sklearn.utils import check_array
        from sklearn.utils.validation import check_is_fitted
        check_is_fitted(self, ['mask_'], all_or_any=all)
        X = check_array(X)
        return X[:, self.mask_] 

Example 19

def transform(self, X, y=None):
        """Apply dimensionality reduction to X.
        X is masked.
        Parameters
        ----------
        X : array-like, shape (n_samples, n_features)
            New data, where n_samples is the number of samples
            and n_features is the number of features.
        Returns
        -------
        X_new : array-like, shape (n_samples, n_components)
        """
        from sklearn.utils import check_array
        from sklearn.utils.validation import check_is_fitted
        check_is_fitted(self, ['mask_'], all_or_any=all)
        if hasattr(X, 'columns'):
            X = X.values
        X = check_array(X[:, self.mask_])
        return X 

Example 20

def test_ticket_1539(self):
        dtypes = [x for x in np.typeDict.values()
                  if (issubclass(x, np.number)
                      and not issubclass(x, np.timedelta64))]
        a = np.array([], dtypes[0])
        failures = []
        # ignore complex warnings
        with warnings.catch_warnings():
            warnings.simplefilter('ignore', np.ComplexWarning)
            for x in dtypes:
                b = a.astype(x)
                for y in dtypes:
                    c = a.astype(y)
                    try:
                        np.dot(b, c)
                    except TypeError:
                        failures.append((x, y))
        if failures:
            raise AssertionError("Failures: %r" % failures) 

Example 21

def fit(self, X, y=None):
        # Return if not imputing
        if self.impute is False:
            return self

        # Grab list of object column names before doing imputation
        self.object_columns = X.select_dtypes(include=['object']).columns.values

        self.fill = pd.Series([X[c].value_counts().index[0]
                               if X[c].dtype == np.dtype('O')
                                  or pd.core.common.is_categorical_dtype(X[c])
                               else X[c].mean() for c in X], index=X.columns)

        if self.verbose:
            num_nans = sum(X.select_dtypes(include=[np.number]).isnull().sum())
            num_total = sum(X.select_dtypes(include=[np.number]).count())
            percentage_imputed = num_nans / num_total * 100
            print("Percentage Imputed: %.2f%%" % percentage_imputed)
            print("Note: Impute will always happen on prediction dataframe, otherwise rows are dropped, and will lead "
                  "to missing predictions")

        # return self for scikit compatibility
        return self 

Example 22

def test_ticket_1539(self):
        dtypes = [x for x in np.typeDict.values()
                  if (issubclass(x, np.number)
                      and not issubclass(x, np.timedelta64))]
        a = np.array([], dtypes[0])
        failures = []
        # ignore complex warnings
        with warnings.catch_warnings():
            warnings.simplefilter('ignore', np.ComplexWarning)
            for x in dtypes:
                b = a.astype(x)
                for y in dtypes:
                    c = a.astype(y)
                    try:
                        np.dot(b, c)
                    except TypeError:
                        failures.append((x, y))
        if failures:
            raise AssertionError("Failures: %r" % failures) 

Example 23

def round(self, decimals=0, out=None):
        """
        Return an array rounded a to the given number of decimals.

        Refer to `numpy.around` for full documentation.

        See Also
        --------
        numpy.around : equivalent function

        """
        result = self._data.round(decimals=decimals, out=out).view(type(self))
        result._mask = self._mask
        result._update_from(self)
        # No explicit output: we're done
        if out is None:
            return result
        if isinstance(out, MaskedArray):
            out.__setmask__(self._mask)
        return out 

Example 24

def load_MNIST_images(filename):
  """
  returns a 28x28x[number of MNIST images] matrix containing
  the raw MNIST images
  :param filename: input data file
  """
  with open(filename, "r") as f:
    magic = np.fromfile(f, dtype=np.dtype('>i4'), count=1)

    num_images = int(np.fromfile(f, dtype=np.dtype('>i4'), count=1))
    num_rows = int(np.fromfile(f, dtype=np.dtype('>i4'), count=1))
    num_cols = int(np.fromfile(f, dtype=np.dtype('>i4'), count=1))

    images = np.fromfile(f, dtype=np.ubyte)
    images = images.reshape((num_images, num_rows * num_cols)).transpose()
    images = images.astype(np.float64) / 255

    f.close()

    return images 

Example 25

def test_ticket_1539(self):
        dtypes = [x for x in np.typeDict.values()
                  if (issubclass(x, np.number)
                      and not issubclass(x, np.timedelta64))]
        a = np.array([], dtypes[0])
        failures = []
        # ignore complex warnings
        with warnings.catch_warnings():
            warnings.simplefilter('ignore', np.ComplexWarning)
            for x in dtypes:
                b = a.astype(x)
                for y in dtypes:
                    c = a.astype(y)
                    try:
                        np.dot(b, c)
                    except TypeError:
                        failures.append((x, y))
        if failures:
            raise AssertionError("Failures: %r" % failures) 

Example 26

def test_ticket_1539(self):
        dtypes = [x for x in np.typeDict.values()
                  if (issubclass(x, np.number)
                      and not issubclass(x, np.timedelta64))]
        a = np.array([], np.bool_)  # not x[0] because it is unordered
        failures = []

        for x in dtypes:
            b = a.astype(x)
            for y in dtypes:
                c = a.astype(y)
                try:
                    np.dot(b, c)
                except TypeError:
                    failures.append((x, y))
        if failures:
            raise AssertionError("Failures: %r" % failures) 

Example 27

def round(self, decimals=0, out=None):
        """
        Return each element rounded to the given number of decimals.

        Refer to `numpy.around` for full documentation.

        See Also
        --------
        ndarray.around : corresponding function for ndarrays
        numpy.around : equivalent function
        """
        result = self._data.round(decimals=decimals, out=out).view(type(self))
        if result.ndim > 0:
            result._mask = self._mask
            result._update_from(self)
        elif self._mask:
            # Return masked when the scalar is masked
            result = masked
        # No explicit output: we're done
        if out is None:
            return result
        if isinstance(out, MaskedArray):
            out.__setmask__(self._mask)
        return out 

Example 28

def get_numeric_subclasses(cls=numpy.number, ignore=None):
    """
    Return subclasses of `cls` in the numpy scalar hierarchy.

    We only return subclasses that correspond to unique data types.
    The hierarchy can be seen here:
        http://docs.scipy.org/doc/numpy/reference/arrays.scalars.html
    """
    if ignore is None:
        ignore = []
    rval = []
    dtype = numpy.dtype(cls)
    dtype_num = dtype.num
    if dtype_num not in ignore:
        # Safety check: we should be able to represent 0 with this data type.
        numpy.array(0, dtype=dtype)
        rval.append(cls)
        ignore.append(dtype_num)
    for sub in cls.__subclasses__():
        rval += [c for c in get_numeric_subclasses(sub, ignore=ignore)]
    return rval 

Example 29

def largest(*args):
    """
    Return the [elementwise] largest of a variable number of arguments.

    Like python's max.

    """
    if len(args) == 2:
        a, b = args
        return switch(a > b, a, b)
    else:
        return max(stack(args), axis=0)


##########################
# Comparison
########################## 

Example 30

def reshape(x, newshape, ndim=None):
    if ndim is None:
        newshape = as_tensor_variable(newshape)
        if newshape.ndim != 1:
            raise TypeError(
                "New shape in reshape must be a vector or a list/tuple of"
                " scalar. Got %s after conversion to a vector." % newshape)
        try:
            ndim = get_vector_length(newshape)
        except ValueError:
            raise ValueError(
                "The length of the provided shape (%s) cannot "
                "be automatically determined, so Theano is not able "
                "to know what the number of dimensions of the reshaped "
                "variable will be. You can provide the 'ndim' keyword "
                "argument to 'reshape' to avoid this problem." % newshape)
    op = Reshape(ndim)
    rval = op(x, newshape)
    return rval 

Example 31

def infer_shape(self, node, shapes):

        if isinstance(node.inputs[1], TensorVariable):
            # We have padded node.inputs[0] to the right number of
            # dimensions for the output
            l = []
            for sh1, sh2, b1 in zip(shapes[0],
                                    shapes[1][1:],
                                    node.inputs[0].broadcastable):
                if b1:
                    l.append(sh2)
                else:
                    l.append(sh1)
            return [tuple(l)]
        else:
            import theano.typed_list
            assert isinstance(node.inputs[1],
                              theano.typed_list.TypedListVariable)
            raise ShapeError("Case not implemented")
            shape = shapes[0]
            for i in xrange(len(shapes[0]) - 1):
                shape[i] = shapes[1][i]
            return [(shape)] 

Example 32

def check_for_x_over_absX(numerators, denominators):
    """Convert x/abs(x) into sign(x). """
    # TODO: this function should dig/search through dimshuffles
    # This won't catch a dimshuffled absolute value
    for den in list(denominators):
        if (den.owner and den.owner.op == T.abs_ and
                den.owner.inputs[0] in numerators):
            if den.owner.inputs[0].type.dtype.startswith('complex'):
                # TODO: Make an Op that projects a complex number to
                #      have unit length but projects 0 to 0.  That
                #      would be a weird Op, but consistent with the
                #      special case below.  I heard there's some
                #      convention in Matlab that is similar to
                #      this... but not sure.
                pass
            else:
                denominators.remove(den)
                numerators.remove(den.owner.inputs[0])
                numerators.append(T.sgn(den.owner.inputs[0]))
    return numerators, denominators 

Example 33

def test_axis_statistics():
    adel_output_df = pd.read_csv(INPUTS_DIRPATH/ADEL_OUTPUT_FILENAME)
    adel_output_df['species'] = '0'
    axis_statistics_df, intermediate_df = pp.axis_statistics(adel_output_df, domain_area=1)
    axis_statistics_df.drop('species', 1, inplace=True)
    intermediate_df.drop('species', 1, inplace=True)
    axis_statistics_df.to_csv(OUTPUTS_DIRPATH/'actual_axis_statistics.csv', index=False, na_rep='NA')
    intermediate_df.to_csv(OUTPUTS_DIRPATH/'actual_intermediate.csv', index=False, na_rep='NA')
    
    desired_axis_statistics_df = pd.read_csv(OUTPUTS_DIRPATH/'desired_axis_statistics.csv')
    desired_axis_statistics_df.drop('has_ear', 1, inplace=True)
    axis_statistics_df = axis_statistics_df.select_dtypes(include=[np.number])
    desired_axis_statistics_df = desired_axis_statistics_df.select_dtypes(include=[np.number])
    np.testing.assert_allclose(axis_statistics_df.values, desired_axis_statistics_df.values, RELATIVE_TOLERANCE, ABSOLUTE_TOLERANCE)
    
    desired_intermediate_df = pd.read_csv(OUTPUTS_DIRPATH/'desired_intermediate.csv')
    desired_intermediate_df.drop('has_ear', 1, inplace=True)
    intermediate_df = intermediate_df.select_dtypes(include=[np.number])
    desired_intermediate_df = desired_intermediate_df.select_dtypes(include=[np.number])
    np.testing.assert_allclose(intermediate_df.values, desired_intermediate_df.values, RELATIVE_TOLERANCE, ABSOLUTE_TOLERANCE) 

Example 34

def _chart_csv_response(chart, name, data_set_name=None):
    "Respond with the data from a chart."
    if not data_set_name:
        data_set_name = name.split('_')[2]
    if not settings.DEBUG:
        response = HttpResponse(mimetype='text/csv')
        response['Content-Disposition'] = \
                'attachment; filename=%s.csv' % name
    else:
        response = HttpResponse(mimetype='text/html')
    writer = csv.writer(response)
    for row in chart.get_data(data_set_name):
        if isinstance(row, (float, int, numpy.number)):
            writer.writerow([row])
        else:
            writer.writerow(row)
                        
    return response 

Example 35

def test_ticket_1539(self):
        dtypes = [x for x in np.typeDict.values()
                  if (issubclass(x, np.number)
                      and not issubclass(x, np.timedelta64))]
        a = np.array([], dtypes[0])
        failures = []
        # ignore complex warnings
        with warnings.catch_warnings():
            warnings.simplefilter('ignore', np.ComplexWarning)
            for x in dtypes:
                b = a.astype(x)
                for y in dtypes:
                    c = a.astype(y)
                    try:
                        np.dot(b, c)
                    except TypeError:
                        failures.append((x, y))
        if failures:
            raise AssertionError("Failures: %r" % failures) 

Example 36

def round(self, decimals=0, out=None):
        """
        Return an array rounded a to the given number of decimals.

        Refer to `numpy.around` for full documentation.

        See Also
        --------
        numpy.around : equivalent function

        """
        result = self._data.round(decimals=decimals, out=out).view(type(self))
        if result.ndim > 0:
            result._mask = self._mask
            result._update_from(self)
        elif self._mask:
            # Return masked when the scalar is masked
            result = masked
        # No explicit output: we're done
        if out is None:
            return result
        if isinstance(out, MaskedArray):
            out.__setmask__(self._mask)
        return out 

Example 37

def prefer_alignment(value_type):
    if np.issubdtype(value_type, np.number):
        return ALIGN.RIGHT
    else:
        return ALIGN.LEFT 

Example 38

def _check_valid_rotation(self, rotation):
        """Checks that the given rotation matrix is valid.
        """
        if not isinstance(rotation, np.ndarray) or not np.issubdtype(rotation.dtype, np.number):
            raise ValueError('Rotation must be specified as numeric numpy array')

        if len(rotation.shape) != 2 or rotation.shape[0] != 3 or rotation.shape[1] != 3:
            raise ValueError('Rotation must be specified as a 3x3 ndarray')

        if np.abs(np.linalg.det(rotation) - 1.0) > 1e-3:
            raise ValueError('Illegal rotation. Must have determinant == 1.0') 

Example 39

def _check_valid_translation(self, translation):
        """Checks that the translation vector is valid.
        """
        if not isinstance(translation, np.ndarray) or not np.issubdtype(translation.dtype, np.number):
            raise ValueError('Translation must be specified as numeric numpy array')

        t = translation.squeeze()
        if len(t.shape) != 1 or t.shape[0] != 3:
            raise ValueError('Translation must be specified as a 3-vector, 3x1 ndarray, or 1x3 ndarray') 

Example 40

def check(self,df):
        if self.objective == "regression" or self.objective == "classification":
            if self.input_type == "text":
                if not self.text_field:
                    raise Exception("Please specify a text field")
            else:
                if not self.target:
                    raise Exception("Please specify a target field")
                if len(self.fields) == 0:
                    raise Exception("Please specify at least one predictor field")
                numericTarget = False
                if df[self.target].dtype == np.number:
                    numericTarget = True
                if self.objective == "regression" and not numericTarget:
                    raise Exception("Please use a numeric target field for the regression objective")
                if self.objective == "classification" and numericTarget:
                    raise Exception("Please use a string target field for the classification objective")

        elif self.objective == "time_series":
            if not self.target:
                raise Exception("Please specify a target field")
            if not self.order_field:
                raise Exception("Please specify an index field")
            if df[self.target].dtype != np.number:
                raise Exception("Please use a numeric target field for the time series objective")
        else:
            if len(self.fields) == 0:
                raise Exception("Please specify at least one predictor field") 

Example 41

def process_columns(self, df):
        """Process columns before histogram filling

        Specifically, convert timestamp columns to integers
        and numeric variables are converted to indices

        :param df: input (pandas) data frame
        :returns: output (pandas) data frame with converted timestamp columns
        :rtype: pandas DataFrame
        """

        # timestamp variables are converted to ns here
        # make temp df for value counting (used below)

        idf = df[self.str_cols].copy(deep=False)
        for col in self.dt_cols:
            self.log().debug('Converting column "%s" of type "%s" to nanosec', col, self.var_dtype[col])
            idf[col] = df[col].apply(hf.to_ns)

        # numerical variables are converted to indices here
        for col in self.num_cols + self.dt_cols:
            self.log().debug('Converting column "%s" of type "%s" to index', col, self.var_dtype[col])
            # find column specific bin_specs. if not found, use dict of default
            # values.
            dt = df[col].dtype
            is_number = isinstance(dt.type(), np.number)
            is_timestamp = isinstance(dt.type(), np.datetime64)
            sf = idf if is_timestamp else df
            bin_specs = self.bin_specs.get(col, self._unit_bin_specs if is_number else self._unit_timestamp_specs)
            idf[col] = sf[col].apply(hf.value_to_bin_index, **bin_specs)

        return idf 

Example 42

def bioenv(output_dir: str, distance_matrix: skbio.DistanceMatrix,
           metadata: qiime2.Metadata) -> None:
    # convert metadata to numeric values where applicable, drop the non-numeric
    # values, and then drop samples that contain NaNs
    df = metadata.to_dataframe()
    df = df.apply(lambda x: pd.to_numeric(x, errors='ignore'))

    # filter categorical columns
    pre_filtered_cols = set(df.columns)
    df = df.select_dtypes([numpy.number]).dropna()
    filtered_categorical_cols = pre_filtered_cols - set(df.columns)

    # filter 0 variance numerical columns
    pre_filtered_cols = set(df.columns)
    df = df.loc[:, df.var() != 0]
    filtered_zero_variance_cols = pre_filtered_cols - set(df.columns)

    # filter the distance matrix to exclude samples that were dropped from
    # the metadata, and keep track of how many samples survived the filtering
    # so that information can be presented to the user.
    initial_dm_length = distance_matrix.shape[0]
    distance_matrix = distance_matrix.filter(df.index, strict=False)
    filtered_dm_length = distance_matrix.shape[0]

    result = skbio.stats.distance.bioenv(distance_matrix, df)
    result = q2templates.df_to_html(result)

    index = os.path.join(TEMPLATES, 'bioenv_assets', 'index.html')
    q2templates.render(index, output_dir, context={
        'initial_dm_length': initial_dm_length,
        'filtered_dm_length': filtered_dm_length,
        'filtered_categorical_cols': ', '.join(filtered_categorical_cols),
        'filtered_zero_variance_cols': ', '.join(filtered_zero_variance_cols),
        'result': result}) 

Example 43

def sanitize(x: Any) -> Any:  # pylint: disable=invalid-name,too-many-return-statements
    """
    Sanitize turns PyTorch and Numpy types into basic Python types so they
    can be serialized into JSON.
    """
    if isinstance(x, (str, float, int, bool)):
        # x is already serializable
        return x
    elif isinstance(x, torch.autograd.Variable):
        return sanitize(x.data)
    elif isinstance(x, torch._TensorBase):  # pylint: disable=protected-access
        # tensor needs to be converted to a list (and moved to cpu if necessary)
        return x.cpu().tolist()
    elif isinstance(x, numpy.ndarray):
        # array needs to be converted to a list
        return x.tolist()
    elif isinstance(x, numpy.number):
        # NumPy numbers need to be converted to Python numbers
        return x.item()
    elif isinstance(x, dict):
        # Dicts need their values sanitized
        return {key: sanitize(value) for key, value in x.items()}
    elif isinstance(x, (list, tuple)):
        # Lists and Tuples need their values sanitized
        return [sanitize(x_i) for x_i in x]
    else:
        raise ValueError("cannot sanitize {} of type {}".format(x, type(x))) 

Example 44

def test_array_side_effect(self):
        # The second use of itemsize was throwing an exception because in
        # ctors.c, discover_itemsize was calling PyObject_Length without
        # checking the return code.  This failed to get the length of the
        # number 2, and the exception hung around until something checked
        # PyErr_Occurred() and returned an error.
        assert_equal(np.dtype('S10').itemsize, 10)
        np.array([['abc', 2], ['long   ', '0123456789']], dtype=np.string_)
        assert_equal(np.dtype('S10').itemsize, 10) 

Example 45

def test_simple(self):
        a = [[1, 2], [3, 4]]
        a_str = [[b'1', b'2'], [b'3', b'4']]
        modes = ['raise', 'wrap', 'clip']
        indices = [-1, 4]
        index_arrays = [np.empty(0, dtype=np.intp),
                        np.empty(tuple(), dtype=np.intp),
                        np.empty((1, 1), dtype=np.intp)]
        real_indices = {'raise': {-1: 1, 4: IndexError},
                        'wrap': {-1: 1, 4: 0},
                        'clip': {-1: 0, 4: 1}}
        # Currently all types but object, use the same function generation.
        # So it should not be necessary to test all. However test also a non
        # refcounted struct on top of object.
        types = np.int, np.object, np.dtype([('', 'i', 2)])
        for t in types:
            # ta works, even if the array may be odd if buffer interface is used
            ta = np.array(a if np.issubdtype(t, np.number) else a_str, dtype=t)
            tresult = list(ta.T.copy())
            for index_array in index_arrays:
                if index_array.size != 0:
                    tresult[0].shape = (2,) + index_array.shape
                    tresult[1].shape = (2,) + index_array.shape
                for mode in modes:
                    for index in indices:
                        real_index = real_indices[mode][index]
                        if real_index is IndexError and index_array.size != 0:
                            index_array.put(0, index)
                            assert_raises(IndexError, ta.take, index_array,
                                          mode=mode, axis=1)
                        elif index_array.size != 0:
                            index_array.put(0, index)
                            res = ta.take(index_array, mode=mode, axis=1)
                            assert_array_equal(res, tresult[real_index])
                        else:
                            res = ta.take(index_array, mode=mode, axis=1)
                            assert_(res.shape == (2,) + index_array.shape) 

Example 46

def _delegate_binop(self, other):
        # This emulates the logic in
        # multiarray/number.c:PyArray_GenericBinaryFunction
        if (not isinstance(other, np.ndarray)
                and not hasattr(other, "__numpy_ufunc__")):
            other_priority = getattr(other, "__array_priority__", -1000000)
            if self.__array_priority__ < other_priority:
                return True
        return False 

Example 47

def _convert_array(self, array):
        try:
            global np
            import numpy as np
        except ImportError as ex:
            raise ImportError('DataFrameClient requires Numpy, '
                              '"{ex}" problem importing'.format(ex=str(ex)))
        if self.ignore_nan:
            number_types = (int, float, np.number)
            condition = (all(isinstance(el, number_types) for el in array) and
                         np.isnan(array))
            return list(np.where(condition, None, array))
        else:
            return list(array) 

Example 48

def maybe_format(item):
    """Pretty-format a string, integer, float, or percent

    Parameters
    ----------
    item : pandas.Series
        A single-item series containing a .name attribute and a value in the
        first (0th) index
    """
    value = item[0]
    if pd.isnull(value):
        return 'N/A'
    elif isinstance(value, str):
        return value
    elif 'percent' in item.name.lower():
        return '{:.2f}%'.format(value)
    elif isinstance(value, pd.Timestamp):
        return str(np.datetime64(value, 'D'))
    elif (isinstance(value, float)  # this must go before ints!
          or np.issubdtype(value, np.number)):
        if value >= 1e3:
            return locale.format("%d", int(value), grouping=True)
        else:
            return locale.format("%.3g", value, grouping=True)
    elif (isinstance(value, int)
          or np.issubdtype(value, np.integer)):
        return locale.format("%d", value, grouping=True)
    else:
        raise TypeError 

Example 49

def q(self):
        """The number of columns in the initial dataframe

        As opposed to `p` which is the number of columns in the indicator matrix of the initial
        dataframe.
        """
        return self.initial_dataframe.shape[1] 

Example 50

def n_supplementary_rows(self):
        """The number of supplementary rows."""
        return self.supplementary_rows.shape[0] 
点赞