The following are code examples for showing how to use . They are extracted from open source Python projects. You can vote up the examples you like or vote down the exmaples you don’t like. You can also save this page to your account.
Example 1
def df_type_to_str(i): ''' Convert into simple datatypes from pandas/numpy types ''' if isinstance(i, np.bool_): return bool(i) if isinstance(i, np.int_): return int(i) if isinstance(i, np.float): if np.isnan(i): return 'NaN' elif np.isinf(i): return str(i) return float(i) if isinstance(i, np.uint): return int(i) if type(i) == bytes: return i.decode('UTF-8') if isinstance(i, (tuple, list)): return str(i) if i is pd.NaT: # not identified as a float null return 'NaN' return str(i)
Example 2
def savetxt(filename, ndarray): dir = os.path.dirname(filename) if not os.path.exists(dir): os.makedirs(dir) if not os.path.isfile(filename): with open(filename, 'w') as f: labels = list(map(' '.join, np.eye(10, dtype=np.uint).astype(str))) for row in ndarray: row_str = row.astype(str) label_str = labels[row[-1]] feature_str = ' '.join(row_str[:-1]) f.write('|labels {} |features {}\n'.format(label_str, feature_str)) else: print("File already exists", filename)
Example 3
def save_as_txt(filename, ndarray): dir = os.path.dirname(filename) if not os.path.exists(dir): os.makedirs(dir) if not os.path.isfile(filename): print("Saving to ", filename, end=" ") with open(filename, 'w') as f: labels = list(map(' '.join, np.eye(10, dtype=np.uint).astype(str))) for row in ndarray: row_str = row.astype(str) label_str = labels[row[-1]] feature_str = ' '.join(row_str[:-1]) f.write('|labels {} |features {}\n'.format(label_str, feature_str)) else: print("File already exists", filename)
Example 4
def union_elements(elements): """elements = [(chr, s, e, id), ...], this is to join elements that have a deletion in the 'to' species """ if len(elements) < 2: return elements assert set( [e[3] for e in elements] ) == set( [elements[0][3]] ), "more than one id" el_id = elements[0][3] unioned_elements = [] for ch, chgrp in groupby(elements, key=itemgetter(0)): for (s, e) in elem_u( np.array([itemgetter(1, 2)(_) for _ in chgrp], dtype=np.uint) ): if (s < e): unioned_elements.append( (ch, s, e, el_id) ) assert len(unioned_elements) <= len(elements) return unioned_elements
Example 5
def __init__(self, mean, cov, df, seed=None): """Defines the mean, co-variance and degrees of freedom a p-dimensional multivariate Student T distribution. Parameters ---------- mean: numpy.ndarray Vector containing p means, one for every dimension cov: numpy.ndarray pxp matrix containing the co-variance matrix df: np.uint Degrees of freedom """ MultiStudentT._check_parameters(mean, cov, df) self.mean = mean self.cov = cov self.df = df self.rng = np.random.RandomState(seed)
Example 6
def test_predict_wrong_X_dimensions(self): rs = np.random.RandomState(1) model = RandomForestWithInstances(np.zeros((10,), dtype=np.uint), bounds=np.array( list(map(lambda x: (0, 10), range(10))), dtype=object)) X = rs.rand(10) self.assertRaisesRegexp(ValueError, "Expected 2d array, got 1d array!", model.predict, X) X = rs.rand(10, 10, 10) self.assertRaisesRegexp(ValueError, "Expected 2d array, got 3d array!", model.predict, X) X = rs.rand(10, 5) self.assertRaisesRegexp(ValueError, "Rows in X should have 10 entries " "but have 5!", model.predict, X)
Example 7
def test_predict_marginalized_over_instances_mocked(self, rf_mock): """Use mock to count the number of calls to predict()""" class SideEffect(object): def __call__(self, X): # Numpy array of number 0 to X.shape[0] rval = np.array(list(range(X.shape[0]))).reshape((-1, 1)) # Return mean and variance return rval, rval rf_mock.side_effect = SideEffect() rs = np.random.RandomState(1) F = rs.rand(10, 5) model = RandomForestWithInstances(np.zeros((15,), dtype=np.uint), instance_features=F, bounds=np.array(list(map(lambda x: (0, 10), range(10))), dtype=object)) means, vars = model.predict_marginalized_over_instances(rs.rand(11, 10)) self.assertEqual(rf_mock.call_count, 11) self.assertEqual(means.shape, (11, 1)) self.assertEqual(vars.shape, (11, 1)) for i in range(11): self.assertEqual(means[i], 4.5) self.assertEqual(vars[i], 4.5)
Example 8
def test_train_and_predict_with_rf(self): rs = np.random.RandomState(1) X = rs.rand(20, 10) Y = rs.rand(10, 2) model = UncorrelatedMultiObjectiveRandomForestWithInstances( ['cost', 'ln(runtime)'], types=np.zeros((10, ), dtype=np.uint), bounds=np.array([ (0, np.nan), (0, np.nan), (0, np.nan), (0, np.nan), (0, np.nan), (0, np.nan), (0, np.nan), (0, np.nan), (0, np.nan), (0, np.nan) ], dtype=object), rf_kwargs={'seed': 1}, pca_components=5 ) self.assertEqual(model.estimators[0].seed, 1) self.assertEqual(model.estimators[1].seed, 1) self.assertEqual(model.pca_components, 5) model.train(X[:10], Y) m, v = model.predict(X[10:]) self.assertEqual(m.shape, (10, 2)) self.assertEqual(v.shape, (10, 2))
Example 9
def _L(x): # initialize with zeros batch_size = x.shape[0] a = T.zeros((batch_size, num_actuators, num_actuators)) # set diagonal elements batch_idx = T.extra_ops.repeat(T.arange(batch_size), num_actuators) diag_idx = T.tile(T.arange(num_actuators), batch_size) b = T.set_subtensor(a[batch_idx, diag_idx, diag_idx], T.flatten(T.exp(x[:, :num_actuators]))) # set lower triangle cols = np.concatenate([np.array(range(i), dtype=np.uint) for i in xrange(num_actuators)]) rows = np.concatenate([np.array([i]*i, dtype=np.uint) for i in xrange(num_actuators)]) cols_idx = T.tile(T.as_tensor_variable(cols), batch_size) rows_idx = T.tile(T.as_tensor_variable(rows), batch_size) batch_idx = T.extra_ops.repeat(T.arange(batch_size), len(cols)) c = T.set_subtensor(b[batch_idx, rows_idx, cols_idx], T.flatten(x[:, num_actuators:])) return c
Example 10
def _L(x): # initialize with zeros batch_size = x.shape[0] a = T.zeros((batch_size, num_actuators, num_actuators)) # set diagonal elements batch_idx = T.extra_ops.repeat(T.arange(batch_size), num_actuators) diag_idx = T.tile(T.arange(num_actuators), batch_size) b = T.set_subtensor(a[batch_idx, diag_idx, diag_idx], T.flatten(T.exp(x[:, :num_actuators]))) # set lower triangle cols = np.concatenate([np.array(range(i), dtype=np.uint) for i in xrange(num_actuators)]) rows = np.concatenate([np.array([i]*i, dtype=np.uint) for i in xrange(num_actuators)]) cols_idx = T.tile(T.as_tensor_variable(cols), batch_size) rows_idx = T.tile(T.as_tensor_variable(rows), batch_size) batch_idx = T.extra_ops.repeat(T.arange(batch_size), len(cols)) c = T.set_subtensor(b[batch_idx, rows_idx, cols_idx], T.flatten(x[:, num_actuators:])) return c
Example 11
def __init__(self, max_timesteps, max_episodes, observation_shape, action_shape): self.max_timesteps = max_timesteps self.max_episodes = max_episodes self.observation_shape = observation_shape self.action_shape = action_shape self.preobs = np.empty((self.max_timesteps, self.max_episodes) + observation_shape) self.actions = np.empty((self.max_timesteps, self.max_episodes) + action_shape) self.rewards = np.empty((self.max_timesteps, self.max_episodes)) self.postobs = np.empty((self.max_timesteps, self.max_episodes) + observation_shape) self.terminals = np.empty((self.max_timesteps, self.max_episodes), dtype = np.bool) self.lengths = np.zeros(self.max_episodes, np.uint) self.num_episodes = 0 self.episode = 0 self.timestep = 0
Example 12
def test_make_vector(self): mv = opt.make_vector(1, 2, 3) self.assertRaises( tensor.NotScalarConstantError, get_scalar_constant_value, mv) assert get_scalar_constant_value(mv[0]) == 1 assert get_scalar_constant_value(mv[1]) == 2 assert get_scalar_constant_value(mv[2]) == 3 assert get_scalar_constant_value(mv[numpy.int32(0)]) == 1 assert get_scalar_constant_value(mv[numpy.int64(1)]) == 2 assert get_scalar_constant_value(mv[numpy.uint(2)]) == 3 t = theano.scalar.Scalar('int64') self.assertRaises( tensor.NotScalarConstantError, get_scalar_constant_value, mv[t()])
Example 13
def data_style_func(df): ''' Default value that can be used as callback for data_style_func Args: df: the dataframe that will be used to build the presentation model Returns: a function table takes idx, col as arguments and returns a dictionary of html style attributes ''' def _style_func(r, c): if isinstance(df.at[r,c], (np.int_, np.float, np.uint)): return td_style_to_str(default_numeric_td_style) return td_style_to_str(default_td_style) return _style_func
Example 14
def matrix_size(udat, vdat, **kwargs): maxuv_factor = kwargs.get('maxuv_factor', 4.8) minuv_factor = kwargs.get('minuv_factor', 4.) uvdist = np.sqrt(udat**2 + vdat**2) maxuv = max(uvdist)*maxuv_factor minuv = min(uvdist)/minuv_factor minpix = np.uint(maxuv/minuv) Nuv = kwargs.get('force_nx', int(2**np.ceil(np.log2(minpix)))) return Nuv, minuv, maxuv
Example 15
def _computeUnindexedVertexes(self): ## Given (Nv, 3, 3) array of vertexes-indexed-by-face, convert backward to unindexed vertexes ## This is done by collapsing into a list of 'unique' vertexes (difference < 1e-14) ## I think generally this should be discouraged.. faces = self._vertexesIndexedByFaces verts = {} ## used to remember the index of each vertex position self._faces = np.empty(faces.shape[:2], dtype=np.uint) self._vertexes = [] self._vertexFaces = [] self._faceNormals = None self._vertexNormals = None for i in xrange(faces.shape[0]): face = faces[i] inds = [] for j in range(face.shape[0]): pt = face[j] pt2 = tuple([round(x*1e14) for x in pt]) ## quantize to be sure that nearly-identical points will be merged index = verts.get(pt2, None) if index is None: #self._vertexes.append(QtGui.QVector3D(*pt)) self._vertexes.append(pt) self._vertexFaces.append([]) index = len(self._vertexes)-1 verts[pt2] = index self._vertexFaces[index].append(i) # keep track of which vertexes belong to which faces self._faces[i,j] = index self._vertexes = np.array(self._vertexes, dtype=float) #def _setUnindexedFaces(self, faces, vertexes, vertexColors=None, faceColors=None): #self._vertexes = vertexes #[QtGui.QVector3D(*v) for v in vertexes] #self._faces = faces.astype(np.uint) #self._edges = None #self._vertexFaces = None #self._faceNormals = None #self._vertexNormals = None #self._vertexColors = vertexColors #self._faceColors = faceColors
Example 16
def _computeEdges(self): if not self.hasFaceIndexedData: ## generate self._edges from self._faces nf = len(self._faces) edges = np.empty(nf*3, dtype=[('i', np.uint, 2)]) edges['i'][0:nf] = self._faces[:,:2] edges['i'][nf:2*nf] = self._faces[:,1:3] edges['i'][-nf:,0] = self._faces[:,2] edges['i'][-nf:,1] = self._faces[:,0] # sort per-edge mask = edges['i'][:,0] > edges['i'][:,1] edges['i'][mask] = edges['i'][mask][:,::-1] # remove duplicate entries self._edges = np.unique(edges)['i'] #print self._edges elif self._vertexesIndexedByFaces is not None: verts = self._vertexesIndexedByFaces edges = np.empty((verts.shape[0], 3, 2), dtype=np.uint) nf = verts.shape[0] edges[:,0,0] = np.arange(nf) * 3 edges[:,0,1] = edges[:,0,0] + 1 edges[:,1,0] = edges[:,0,1] edges[:,1,1] = edges[:,1,0] + 1 edges[:,2,0] = edges[:,1,1] edges[:,2,1] = edges[:,0,0] self._edges = edges else: raise Exception("MeshData cannot generate edges--no faces in this data.")
Example 17
def sphere(rows, cols, radius=1.0, offset=True): """ Return a MeshData instance with vertexes and faces computed for a spherical surface. """ verts = np.empty((rows+1, cols, 3), dtype=float) ## compute vertexes phi = (np.arange(rows+1) * np.pi / rows).reshape(rows+1, 1) s = radius * np.sin(phi) verts[...,2] = radius * np.cos(phi) th = ((np.arange(cols) * 2 * np.pi / cols).reshape(1, cols)) if offset: th = th + ((np.pi / cols) * np.arange(rows+1).reshape(rows+1,1)) ## rotate each row by 1/2 column verts[...,0] = s * np.cos(th) verts[...,1] = s * np.sin(th) verts = verts.reshape((rows+1)*cols, 3)[cols-1:-(cols-1)] ## remove redundant vertexes from top and bottom ## compute faces faces = np.empty((rows*cols*2, 3), dtype=np.uint) rowtemplate1 = ((np.arange(cols).reshape(cols, 1) + np.array([[0, 1, 0]])) % cols) + np.array([[0, 0, cols]]) rowtemplate2 = ((np.arange(cols).reshape(cols, 1) + np.array([[0, 1, 1]])) % cols) + np.array([[cols, 0, cols]]) for row in range(rows): start = row * cols * 2 faces[start:start+cols] = rowtemplate1 + row * cols faces[start+cols:start+(cols*2)] = rowtemplate2 + row * cols faces = faces[cols:-cols] ## cut off zero-area triangles at top and bottom ## adjust for redundant vertexes that were removed from top and bottom vmin = cols-1 faces[faces<vmin] = vmin faces -= vmin vmax = verts.shape[0]-1 faces[faces>vmax] = vmax return MeshData(vertexes=verts, faces=faces)
Example 18
def cylinder(rows, cols, radius=[1.0, 1.0], length=1.0, offset=False): """ Return a MeshData instance with vertexes and faces computed for a cylindrical surface. The cylinder may be tapered with different radii at each end (truncated cone) """ verts = np.empty((rows+1, cols, 3), dtype=float) if isinstance(radius, int): radius = [radius, radius] # convert to list ## compute vertexes th = np.linspace(2 * np.pi, 0, cols).reshape(1, cols) r = np.linspace(radius[0],radius[1],num=rows+1, endpoint=True).reshape(rows+1, 1) # radius as a function of z verts[...,2] = np.linspace(0, length, num=rows+1, endpoint=True).reshape(rows+1, 1) # z if offset: th = th + ((np.pi / cols) * np.arange(rows+1).reshape(rows+1,1)) ## rotate each row by 1/2 column verts[...,0] = r * np.cos(th) # x = r cos(th) verts[...,1] = r * np.sin(th) # y = r sin(th) verts = verts.reshape((rows+1)*cols, 3) # just reshape: no redundant vertices... ## compute faces faces = np.empty((rows*cols*2, 3), dtype=np.uint) rowtemplate1 = ((np.arange(cols).reshape(cols, 1) + np.array([[0, 1, 0]])) % cols) + np.array([[0, 0, cols]]) rowtemplate2 = ((np.arange(cols).reshape(cols, 1) + np.array([[0, 1, 1]])) % cols) + np.array([[cols, 0, cols]]) for row in range(rows): start = row * cols * 2 faces[start:start+cols] = rowtemplate1 + row * cols faces[start+cols:start+(cols*2)] = rowtemplate2 + row * cols return MeshData(vertexes=verts, faces=faces)
Example 19
def generateFaces(self): cols = self._z.shape[1]-1 rows = self._z.shape[0]-1 faces = np.empty((cols*rows*2, 3), dtype=np.uint) rowtemplate1 = np.arange(cols).reshape(cols, 1) + np.array([[0, 1, cols+1]]) rowtemplate2 = np.arange(cols).reshape(cols, 1) + np.array([[cols+1, 1, cols+2]]) for row in range(rows): start = row * cols * 2 faces[start:start+cols] = rowtemplate1 + row * (cols+1) faces[start+cols:start+(cols*2)] = rowtemplate2 + row * (cols+1) self._faces = faces
Example 20
def _computeUnindexedVertexes(self): ## Given (Nv, 3, 3) array of vertexes-indexed-by-face, convert backward to unindexed vertexes ## This is done by collapsing into a list of 'unique' vertexes (difference < 1e-14) ## I think generally this should be discouraged.. faces = self._vertexesIndexedByFaces verts = {} ## used to remember the index of each vertex position self._faces = np.empty(faces.shape[:2], dtype=np.uint) self._vertexes = [] self._vertexFaces = [] self._faceNormals = None self._vertexNormals = None for i in xrange(faces.shape[0]): face = faces[i] inds = [] for j in range(face.shape[0]): pt = face[j] pt2 = tuple([round(x*1e14) for x in pt]) ## quantize to be sure that nearly-identical points will be merged index = verts.get(pt2, None) if index is None: #self._vertexes.append(QtGui.QVector3D(*pt)) self._vertexes.append(pt) self._vertexFaces.append([]) index = len(self._vertexes)-1 verts[pt2] = index self._vertexFaces[index].append(i) # keep track of which vertexes belong to which faces self._faces[i,j] = index self._vertexes = np.array(self._vertexes, dtype=float) #def _setUnindexedFaces(self, faces, vertexes, vertexColors=None, faceColors=None): #self._vertexes = vertexes #[QtGui.QVector3D(*v) for v in vertexes] #self._faces = faces.astype(np.uint) #self._edges = None #self._vertexFaces = None #self._faceNormals = None #self._vertexNormals = None #self._vertexColors = vertexColors #self._faceColors = faceColors
Example 21
def _computeEdges(self): if not self.hasFaceIndexedData: ## generate self._edges from self._faces nf = len(self._faces) edges = np.empty(nf*3, dtype=[('i', np.uint, 2)]) edges['i'][0:nf] = self._faces[:,:2] edges['i'][nf:2*nf] = self._faces[:,1:3] edges['i'][-nf:,0] = self._faces[:,2] edges['i'][-nf:,1] = self._faces[:,0] # sort per-edge mask = edges['i'][:,0] > edges['i'][:,1] edges['i'][mask] = edges['i'][mask][:,::-1] # remove duplicate entries self._edges = np.unique(edges)['i'] #print self._edges elif self._vertexesIndexedByFaces is not None: verts = self._vertexesIndexedByFaces edges = np.empty((verts.shape[0], 3, 2), dtype=np.uint) nf = verts.shape[0] edges[:,0,0] = np.arange(nf) * 3 edges[:,0,1] = edges[:,0,0] + 1 edges[:,1,0] = edges[:,0,1] edges[:,1,1] = edges[:,1,0] + 1 edges[:,2,0] = edges[:,1,1] edges[:,2,1] = edges[:,0,0] self._edges = edges else: raise Exception("MeshData cannot generate edges--no faces in this data.")
Example 22
def sphere(rows, cols, radius=1.0, offset=True): """ Return a MeshData instance with vertexes and faces computed for a spherical surface. """ verts = np.empty((rows+1, cols, 3), dtype=float) ## compute vertexes phi = (np.arange(rows+1) * np.pi / rows).reshape(rows+1, 1) s = radius * np.sin(phi) verts[...,2] = radius * np.cos(phi) th = ((np.arange(cols) * 2 * np.pi / cols).reshape(1, cols)) if offset: th = th + ((np.pi / cols) * np.arange(rows+1).reshape(rows+1,1)) ## rotate each row by 1/2 column verts[...,0] = s * np.cos(th) verts[...,1] = s * np.sin(th) verts = verts.reshape((rows+1)*cols, 3)[cols-1:-(cols-1)] ## remove redundant vertexes from top and bottom ## compute faces faces = np.empty((rows*cols*2, 3), dtype=np.uint) rowtemplate1 = ((np.arange(cols).reshape(cols, 1) + np.array([[0, 1, 0]])) % cols) + np.array([[0, 0, cols]]) rowtemplate2 = ((np.arange(cols).reshape(cols, 1) + np.array([[0, 1, 1]])) % cols) + np.array([[cols, 0, cols]]) for row in range(rows): start = row * cols * 2 faces[start:start+cols] = rowtemplate1 + row * cols faces[start+cols:start+(cols*2)] = rowtemplate2 + row * cols faces = faces[cols:-cols] ## cut off zero-area triangles at top and bottom ## adjust for redundant vertexes that were removed from top and bottom vmin = cols-1 faces[faces<vmin] = vmin faces -= vmin vmax = verts.shape[0]-1 faces[faces>vmax] = vmax return MeshData(vertexes=verts, faces=faces)
Example 23
def cylinder(rows, cols, radius=[1.0, 1.0], length=1.0, offset=False): """ Return a MeshData instance with vertexes and faces computed for a cylindrical surface. The cylinder may be tapered with different radii at each end (truncated cone) """ verts = np.empty((rows+1, cols, 3), dtype=float) if isinstance(radius, int): radius = [radius, radius] # convert to list ## compute vertexes th = np.linspace(2 * np.pi, 0, cols).reshape(1, cols) r = np.linspace(radius[0],radius[1],num=rows+1, endpoint=True).reshape(rows+1, 1) # radius as a function of z verts[...,2] = np.linspace(0, length, num=rows+1, endpoint=True).reshape(rows+1, 1) # z if offset: th = th + ((np.pi / cols) * np.arange(rows+1).reshape(rows+1,1)) ## rotate each row by 1/2 column verts[...,0] = r * np.cos(th) # x = r cos(th) verts[...,1] = r * np.sin(th) # y = r sin(th) verts = verts.reshape((rows+1)*cols, 3) # just reshape: no redundant vertices... ## compute faces faces = np.empty((rows*cols*2, 3), dtype=np.uint) rowtemplate1 = ((np.arange(cols).reshape(cols, 1) + np.array([[0, 1, 0]])) % cols) + np.array([[0, 0, cols]]) rowtemplate2 = ((np.arange(cols).reshape(cols, 1) + np.array([[0, 1, 1]])) % cols) + np.array([[cols, 0, cols]]) for row in range(rows): start = row * cols * 2 faces[start:start+cols] = rowtemplate1 + row * cols faces[start+cols:start+(cols*2)] = rowtemplate2 + row * cols return MeshData(vertexes=verts, faces=faces)
Example 24
def generateFaces(self): cols = self._z.shape[1]-1 rows = self._z.shape[0]-1 faces = np.empty((cols*rows*2, 3), dtype=np.uint) rowtemplate1 = np.arange(cols).reshape(cols, 1) + np.array([[0, 1, cols+1]]) rowtemplate2 = np.arange(cols).reshape(cols, 1) + np.array([[cols+1, 1, cols+2]]) for row in range(rows): start = row * cols * 2 faces[start:start+cols] = rowtemplate1 + row * (cols+1) faces[start+cols:start+(cols*2)] = rowtemplate2 + row * (cols+1) self._faces = faces
Example 25
def test_dtype_keyerrors_(self): # Ticket #1106. dt = np.dtype([('f1', np.uint)]) assert_raises(KeyError, dt.__getitem__, "f2") assert_raises(IndexError, dt.__getitem__, 1) assert_raises(ValueError, dt.__getitem__, 0.0)
Example 26
def get_val_indices_uniform(m_total, m_val): all_idxs = np.arange(m_total) samps_per_class = m_val / NUM_CLASSES val_idxs = np.array([]) for i in range(NUM_CLASSES): all_class_idxs = all_idxs[( all_idxs % NUM_CLASSES == i)] sel_class_idxs = np.random.choice(all_class_idxs, samps_per_class, replace=False) val_idxs = np.concatenate((val_idxs,sel_class_idxs)) np.random.shuffle(val_idxs) return val_idxs.astype(np.uint)
Example 27
def get_val_indices(m_total, m_val, info_mat): all_idxs = np.arange(m_total) val_idxs = np.array([]) for i in range(NUM_CLASSES): cat_for_val = np.random.choice(TR_CATS,1)[0] all_class_idxs = all_idxs[( all_idxs % NUM_CLASSES == i)] class_info = info_mat[all_class_idxs] sel_class_idxs = np.where(class_info[:,0] == cat_for_val)[0] val_idxs = np.concatenate((val_idxs,all_class_idxs[sel_class_idxs])) np.random.shuffle(val_idxs) return val_idxs.astype(np.uint)
Example 28
def __init__(self, img): self.img = np.asarray(img, np.float32) # The image to be handled; self.img2 = img # The real image; self.rows, self.cols = get_size(img) self.mask = np.zeros((self.rows, self.cols), dtype = np.uint) # In this class, we use just one mask to contain the Ms and Ml in the paper; In the mask, the places where the value = self._SHADOW belongs to Ms, and other pixels belongs to Ml; self.trimap = np.zeros((self.rows, self.cols), dtype = np.uint) # The trimap containing info that whether a pixel is inside the shadow, outside the shadow, or unknown; self.mask_shadow = np.zeros((self.rows, self.cols), dtype = np.uint) # The area where shadow removal is required; self._SHADOW = 1 # The flag of shadow; self._LIT = 0 # The flag of lit; self._UNKNOWN = -1 # The flag of unknown; self._threshold = 0.1; self._drawing = True # The flag of drawing; self._drawn = False # The status of whether seed initialise is finished;
Example 29
def saveTxt(filename, ndarray): with open(filename, 'w') as f: labels = list(map(' '.join, np.eye(10, dtype=np.uint).astype(str))) for row in ndarray: row_str = row.astype(str) label_str = labels[row[-1]] feature_str = ' '.join(row_str[:-1]) f.write('|labels {} |features {}\n'.format(label_str, feature_str))
Example 30
def saveTxt(filename, ndarray): with open(filename, 'w') as f: labels = list(map(' '.join, np.eye(10, dtype=np.uint).astype(str))) for row in ndarray: row_str = row.astype(str) label_str = labels[row[-1]] feature_str = ' '.join(row_str[:-1]) f.write('|labels {} |features {}\n'.format(label_str, feature_str))
Example 31
def saveTxt(filename, ndarray): with open(filename, 'w') as f: labels = list(map(' '.join, np.eye(10, dtype=np.uint).astype(str))) for row in ndarray: row_str = row.astype(str) label_str = labels[row[-1]] feature_str = ' '.join(row_str[:-1]) f.write('|labels {} |features {}\n'.format(label_str, feature_str))
Example 32
def saveTxt(filename, ndarray): with open(filename, 'w') as f: labels = list(map(' '.join, np.eye(10, dtype=np.uint).astype(str))) for row in ndarray: row_str = row.astype(str) label_str = labels[row[-1]] feature_str = ' '.join(row_str[:-1]) f.write('|labels {} |features {}\n'.format(label_str, feature_str))
Example 33
def test_dtype_keyerrors_(self): # Ticket #1106. dt = np.dtype([('f1', np.uint)]) assert_raises(KeyError, dt.__getitem__, "f2") assert_raises(IndexError, dt.__getitem__, 1) assert_raises(ValueError, dt.__getitem__, 0.0)
Example 34
def make_stack(series): stack_size = compute_stack_size(series) new = np.empty(stack_size, dtype=[('doc_index', np.uint), ('word', "S30"), ('value', np.float)]) counter = 0 for row in series.iteritems(): for word in row[1]: new[counter] = (row[0], word, row[1][word]) counter +=1 return new
Example 35
def get_articles_by_distance(article, corpus): #article is the row from the articles df article = corpus[article['index'],:] iterable = ((x, cosine_distance(article, corpus[x,:])) for x in range(corpus.shape[0])) articles_by_distance = np.fromiter(iterable, dtype='uint,float', count=corpus.shape[0]) articles_by_distance = pd.DataFrame(articles_by_distance).rename(columns={'f1':'cosine_distance', 'f0':'index'}).sort_values(by='cosine_distance') return articles_by_distance[0:25]
Example 36
def saveTxt(filename, ndarray): with open(filename, 'w') as f: labels = list(map(' '.join, np.eye(10, dtype=np.uint).astype(str))) for row in ndarray: row_str = row.astype(str) label_str = labels[row[-1]] feature_str = ' '.join(row_str[:-1]) f.write('|labels {} |features {}\n'.format(label_str, feature_str))
Example 37
def backproject_depth(self, depth): constant_x = 1.0 / self.focal_x constant_y = 1.0 / self.focal_y row, col = depth.shape coords = np.zeros((row, col, 2), dtype=np.uint) coords[..., 0] = np.arange(row)[:, None] coords[..., 1] = np.arange(col) coords = coords.reshape((-1, 2)) output = np.zeros((len(coords), 3)) values = depth[coords[:, 0], coords[:, 1]] output[:, 0] = (coords[:, 1] - self.center_x) * values * constant_x output[:, 1] = (coords[:, 0] - self.center_y) * values * constant_y output[:, 2] = values return output
Example 38
def testIntArray(self): arr = np.arange(100, dtype=np.int) dtypes = (np.int, np.int8, np.int16, np.int32, np.int64, np.uint, np.uint8, np.uint16, np.uint32, np.uint64) for dtype in dtypes: inpt = arr.astype(dtype) outp = np.array(ujson.decode(ujson.encode(inpt)), dtype=dtype) tm.assert_numpy_array_equal(inpt, outp)
Example 39
def test_dtype_keyerrors_(self): # Ticket #1106. dt = np.dtype([('f1', np.uint)]) assert_raises(KeyError, dt.__getitem__, "f2") assert_raises(IndexError, dt.__getitem__, 1) assert_raises(ValueError, dt.__getitem__, 0.0)
Example 40
def transNK(self, d, N, problem_arg=0): # return np.arange(0, N), np.arange(0, N) # Each ind has 2*|ind|_0 samples indSet = setutil.GenTDSet(d, N, base=0) N_per_ind = 2**np.sum(indSet!=0, axis=1) if problem_arg == 1: N_per_ind[1:] /= 2 _, k_ind = np.unique(np.sum(indSet, axis=1), return_inverse=True) k_of_N = np.repeat(k_ind, N_per_ind.astype(np.int))[:N] # N_of_k = [j+np.arange(0, i, dtype=np.uint) for i, j in # zip(N_per_ind, np.hstack((np.array([0], # dtype=np.uint), # np.cumsum(N_per_ind)[:np.max(k_of_N)])))] return k_of_N
Example 41
def test_json_numpy_encoder_int(self): assert (json.dumps(np.uint(10), cls=utils.JSONNumpyEncoder) == json.dumps(10))
Example 42
def test_json_numpy_encoder_int_array(self): array = np.arange(10, dtype=np.uint).reshape(2, 5) assert (json.dumps(array, cls=utils.JSONNumpyEncoder) == json.dumps(array.tolist()))
Example 43
def test_serialize_json(self): array = np.arange(10, dtype=np.uint).reshape(2, 5) assert (utils.serialize_json(array) == json.dumps(array.tolist()))
Example 44
def test_dtype_keyerrors_(self): # Ticket #1106. dt = np.dtype([('f1', np.uint)]) assert_raises(KeyError, dt.__getitem__, "f2") assert_raises(IndexError, dt.__getitem__, 1) assert_raises(ValueError, dt.__getitem__, 0.0)
Example 45
def is_integer(test_value): """ Check all available integer representations. @return: bool, True if the passed value is a integer, otherwise false. """ return type(test_value) in [np.int, np.int8, np.int16, np.int32, np.int64, np.uint, np.uint8, np.uint16, np.uint32, np.uint64]
Example 46
def mask_od_vessels(skel, od_center): # Create optic disk mask od_mask = np.zeros_like(skel, dtype=np.uint8) cv2.circle(od_mask, od_center, 30, (1, 1, 1), -1) od_mask_inv = np.invert(od_mask) / 255. skel = skel.astype(np.float) masked_skel = skel * od_mask_inv return masked_skel.astype(np.uint8) # def line_diameters(edt, lines): # # diameters = [] # # for line in lines: # # p0, p1 = [np.asarray(pt) for pt in line] # vec = p1 - p0 # vector between segment end points # vec_len = np.linalg.norm(vec) # # pts_along_line = np.uint(np.asarray([p0 + (i * vec) for i in np.arange(0., 1., 1. / vec_len)])) # # for pt in pts_along_line: # # try: # diameters.append(edt[pt[0], pt[1]]) # except IndexError: # pass # # return diameters
Example 47
def test_dtype_keyerrors_(self): # Ticket #1106. dt = np.dtype([('f1', np.uint)]) assert_raises(KeyError, dt.__getitem__, "f2") assert_raises(IndexError, dt.__getitem__, 1) assert_raises(ValueError, dt.__getitem__, 0.0)
Example 48
def train(self, X: np.ndarray, Y: np.ndarray, **kwargs): """Trains the EPM on X and Y. Parameters ---------- X : np.ndarray [n_samples, n_features (config + instance features)] Input data points. Y : np.ndarray [n_samples, n_objectives] The corresponding target values. n_objectives must match the number of target names specified in the constructor. Returns ------- self : AbstractEPM """ self.n_params = X.shape[1] - self.n_feats # reduce dimensionality of features of larger than PCA_DIM if self.pca and X.shape[0] > 1: X_feats = X[:, -self.n_feats:] # scale features X_feats = self.scaler.fit_transform(X_feats) X_feats = np.nan_to_num(X_feats) # if features with max == min # PCA X_feats = self.pca.fit_transform(X_feats) X = np.hstack((X[:, :self.n_params], X_feats)) if hasattr(self, "types"): # for RF, adapt types list # if X_feats.shape[0] < self.pca, X_feats.shape[1] == # X_feats.shape[0] self.types = np.array(np.hstack((self.types[:self.n_params], np.zeros((X_feats.shape[1])))), dtype=np.uint) return self._train(X, Y)
Example 49
def test_predict(self): rs = np.random.RandomState(1) X = rs.rand(20, 10) Y = rs.rand(10, 1) model = RandomForestWithInstances(np.zeros((10,), dtype=np.uint), bounds=np.array( list(map(lambda x: (0, 10), range(10))), dtype=object)) model.train(X[:10], Y[:10]) m_hat, v_hat = model.predict(X[10:]) self.assertEqual(m_hat.shape, (10, 1)) self.assertEqual(v_hat.shape, (10, 1))
Example 50
def test_train_with_pca(self): rs = np.random.RandomState(1) X = rs.rand(20, 20) F = rs.rand(10, 10) Y = rs.rand(20, 1) model = RandomForestWithInstances(np.zeros((20,), dtype=np.uint), np.array(list(map(lambda x: (0, 10), range(10))), dtype=object), pca_components=2, instance_features=F) model.train(X, Y) self.assertEqual(model.n_params, 10) self.assertEqual(model.n_feats, 10) self.assertIsNotNone(model.pca) self.assertIsNotNone(model.scaler)