The following are code examples for showing how to use . They are extracted from open source Python projects. You can vote up the examples you like or vote down the exmaples you don’t like. You can also save this page to your account.
Example 1
def test_endian(self): msg = "big endian" a = np.arange(6, dtype='>i4').reshape((2, 3)) assert_array_equal(umt.inner1d(a, a), np.sum(a*a, axis=-1), err_msg=msg) msg = "little endian" a = np.arange(6, dtype='<i4').reshape((2, 3)) assert_array_equal(umt.inner1d(a, a), np.sum(a*a, axis=-1), err_msg=msg) # Output should always be native-endian Ba = np.arange(1, dtype='>f8') La = np.arange(1, dtype='<f8') assert_equal((Ba+Ba).dtype, np.dtype('f8')) assert_equal((Ba+La).dtype, np.dtype('f8')) assert_equal((La+Ba).dtype, np.dtype('f8')) assert_equal((La+La).dtype, np.dtype('f8')) assert_equal(np.absolute(La).dtype, np.dtype('f8')) assert_equal(np.absolute(Ba).dtype, np.dtype('f8')) assert_equal(np.negative(La).dtype, np.dtype('f8')) assert_equal(np.negative(Ba).dtype, np.dtype('f8'))
Example 2
def test_spacing_nextafter(self): """Test np.spacing and np.nextafter""" # All non-negative finite #'s a = np.arange(0x7c00, dtype=uint16) hinf = np.array((np.inf,), dtype=float16) a_f16 = a.view(dtype=float16) assert_equal(np.spacing(a_f16[:-1]), a_f16[1:]-a_f16[:-1]) assert_equal(np.nextafter(a_f16[:-1], hinf), a_f16[1:]) assert_equal(np.nextafter(a_f16[0], -hinf), -a_f16[1]) assert_equal(np.nextafter(a_f16[1:], -hinf), a_f16[:-1]) # switch to negatives a |= 0x8000 assert_equal(np.spacing(a_f16[0]), np.spacing(a_f16[1])) assert_equal(np.spacing(a_f16[1:]), a_f16[:-1]-a_f16[1:]) assert_equal(np.nextafter(a_f16[0], hinf), -a_f16[1]) assert_equal(np.nextafter(a_f16[1:], hinf), a_f16[:-1]) assert_equal(np.nextafter(a_f16[:-1], -hinf), a_f16[1:])
Example 3
def test_endian(self): msg = "big endian" a = np.arange(6, dtype='>i4').reshape((2, 3)) assert_array_equal(umt.inner1d(a, a), np.sum(a*a, axis=-1), err_msg=msg) msg = "little endian" a = np.arange(6, dtype='<i4').reshape((2, 3)) assert_array_equal(umt.inner1d(a, a), np.sum(a*a, axis=-1), err_msg=msg) # Output should always be native-endian Ba = np.arange(1, dtype='>f8') La = np.arange(1, dtype='<f8') assert_equal((Ba+Ba).dtype, np.dtype('f8')) assert_equal((Ba+La).dtype, np.dtype('f8')) assert_equal((La+Ba).dtype, np.dtype('f8')) assert_equal((La+La).dtype, np.dtype('f8')) assert_equal(np.absolute(La).dtype, np.dtype('f8')) assert_equal(np.absolute(Ba).dtype, np.dtype('f8')) assert_equal(np.negative(La).dtype, np.dtype('f8')) assert_equal(np.negative(Ba).dtype, np.dtype('f8'))
Example 4
def test_spacing_nextafter(self): """Test np.spacing and np.nextafter""" # All non-negative finite #'s a = np.arange(0x7c00, dtype=uint16) hinf = np.array((np.inf,), dtype=float16) a_f16 = a.view(dtype=float16) assert_equal(np.spacing(a_f16[:-1]), a_f16[1:]-a_f16[:-1]) assert_equal(np.nextafter(a_f16[:-1], hinf), a_f16[1:]) assert_equal(np.nextafter(a_f16[0], -hinf), -a_f16[1]) assert_equal(np.nextafter(a_f16[1:], -hinf), a_f16[:-1]) # switch to negatives a |= 0x8000 assert_equal(np.spacing(a_f16[0]), np.spacing(a_f16[1])) assert_equal(np.spacing(a_f16[1:]), a_f16[:-1]-a_f16[1:]) assert_equal(np.nextafter(a_f16[0], hinf), -a_f16[1]) assert_equal(np.nextafter(a_f16[1:], hinf), a_f16[:-1]) assert_equal(np.nextafter(a_f16[:-1], -hinf), a_f16[1:])
Example 5
def decimate2(x,dec=2): Nout = int(math.floor(len(x)/dec)) idx = numpy.arange(Nout,dtype=numpy.int)*int(dec) res = x[idx]*0.0 count = numpy.copy(x[idx]) count[:]=1.0 count_vector = numpy.negative(numpy.isnan(x))*1.0 x[numpy.where(numpy.isnan(x))] = 0.0 for i in numpy.arange(dec): res = res + x[idx+i] count += count_vector[idx+i] count[numpy.where(count == 0.0)] = 1.0 return(res/count)
Example 6
def test_endian(self): msg = "big endian" a = np.arange(6, dtype='>i4').reshape((2, 3)) assert_array_equal(umt.inner1d(a, a), np.sum(a*a, axis=-1), err_msg=msg) msg = "little endian" a = np.arange(6, dtype='<i4').reshape((2, 3)) assert_array_equal(umt.inner1d(a, a), np.sum(a*a, axis=-1), err_msg=msg) # Output should always be native-endian Ba = np.arange(1, dtype='>f8') La = np.arange(1, dtype='<f8') assert_equal((Ba+Ba).dtype, np.dtype('f8')) assert_equal((Ba+La).dtype, np.dtype('f8')) assert_equal((La+Ba).dtype, np.dtype('f8')) assert_equal((La+La).dtype, np.dtype('f8')) assert_equal(np.absolute(La).dtype, np.dtype('f8')) assert_equal(np.absolute(Ba).dtype, np.dtype('f8')) assert_equal(np.negative(La).dtype, np.dtype('f8')) assert_equal(np.negative(Ba).dtype, np.dtype('f8'))
Example 7
def test_string_parser_variants(self): # Allow space instead of 'T' between date and time assert_equal(np.array(['1980-02-29T01:02:03'], np.dtype('M8[s]')), np.array(['1980-02-29 01:02:03'], np.dtype('M8[s]'))) # Allow negative years assert_equal(np.array(['-1980-02-29T01:02:03'], np.dtype('M8[s]')), np.array(['-1980-02-29 01:02:03'], np.dtype('M8[s]'))) # UTC specifier assert_equal(np.array(['-1980-02-29T01:02:03Z'], np.dtype('M8[s]')), np.array(['-1980-02-29 01:02:03Z'], np.dtype('M8[s]'))) # Time zone offset assert_equal(np.array(['1980-02-29T02:02:03Z'], np.dtype('M8[s]')), np.array(['1980-02-29 00:32:03-0130'], np.dtype('M8[s]'))) assert_equal(np.array(['1980-02-28T22:32:03Z'], np.dtype('M8[s]')), np.array(['1980-02-29 00:02:03+01:30'], np.dtype('M8[s]'))) assert_equal(np.array(['1980-02-29T02:32:03.506Z'], np.dtype('M8[s]')), np.array(['1980-02-29 00:32:03.506-02'], np.dtype('M8[s]'))) assert_equal(np.datetime64('1977-03-02T12:30-0230'), np.datetime64('1977-03-02T15:00Z'))
Example 8
def rand_sphere_xyz(count=1, hemi=0, seed=None): """ Generates random points on unit sphere. Returns array of random spherical positions, array dimensions is (count, 3), it is count * (x, y, z). @param count: number of returned point, major dimension of returned array @param hemi: if 0 then both hemispheres are filled, if positive then only nothern hemisphere is filled, if negative then only southern hemisphere is filled. """ rs = numpy.random.RandomState(seed=seed) r = rs.normal(size=(count, 3)) r /= numpy.linalg.norm(r, axis=1)[:, numpy.newaxis] if hemi != 0: numpy.absolute(r[:, 2], out=r[:, 2]) if hemi < 0: numpy.negative(r[:, 2], out=r[:, 2]) return r
Example 9
def df_obs(x, *args): """ Derivative of function which optimises obs. """ sslm, word_counts, totals, mean_deriv_mtx, word, deriv = args sslm.obs[word] = x sslm.mean[word], sslm.fwd_mean[word] = sslm.compute_post_mean(word, sslm.chain_variance) model = "DTM" if model == "DTM": deriv = sslm.compute_obs_deriv(word, word_counts, totals, mean_deriv_mtx, deriv) elif model == "DIM": deriv = sslm.compute_obs_deriv_fixed(p.word, p.word_counts, p.totals, p.sslm, p.mean_deriv_mtx, deriv) return np.negative(deriv)
Example 10
def test_endian(self): msg = "big endian" a = np.arange(6, dtype='>i4').reshape((2, 3)) assert_array_equal(umt.inner1d(a, a), np.sum(a*a, axis=-1), err_msg=msg) msg = "little endian" a = np.arange(6, dtype='<i4').reshape((2, 3)) assert_array_equal(umt.inner1d(a, a), np.sum(a*a, axis=-1), err_msg=msg) # Output should always be native-endian Ba = np.arange(1, dtype='>f8') La = np.arange(1, dtype='<f8') assert_equal((Ba+Ba).dtype, np.dtype('f8')) assert_equal((Ba+La).dtype, np.dtype('f8')) assert_equal((La+Ba).dtype, np.dtype('f8')) assert_equal((La+La).dtype, np.dtype('f8')) assert_equal(np.absolute(La).dtype, np.dtype('f8')) assert_equal(np.absolute(Ba).dtype, np.dtype('f8')) assert_equal(np.negative(La).dtype, np.dtype('f8')) assert_equal(np.negative(Ba).dtype, np.dtype('f8'))
Example 11
def test_spacing_nextafter(self): """Test np.spacing and np.nextafter""" # All non-negative finite #'s a = np.arange(0x7c00, dtype=uint16) hinf = np.array((np.inf,), dtype=float16) a_f16 = a.view(dtype=float16) assert_equal(np.spacing(a_f16[:-1]), a_f16[1:]-a_f16[:-1]) assert_equal(np.nextafter(a_f16[:-1], hinf), a_f16[1:]) assert_equal(np.nextafter(a_f16[0], -hinf), -a_f16[1]) assert_equal(np.nextafter(a_f16[1:], -hinf), a_f16[:-1]) # switch to negatives a |= 0x8000 assert_equal(np.spacing(a_f16[0]), np.spacing(a_f16[1])) assert_equal(np.spacing(a_f16[1:]), a_f16[:-1]-a_f16[1:]) assert_equal(np.nextafter(a_f16[0], hinf), -a_f16[1]) assert_equal(np.nextafter(a_f16[1:], hinf), a_f16[:-1]) assert_equal(np.nextafter(a_f16[:-1], -hinf), a_f16[1:])
Example 12
def test_string_parser_variants(self): # Allow space instead of 'T' between date and time assert_equal(np.array(['1980-02-29T01:02:03'], np.dtype('M8[s]')), np.array(['1980-02-29 01:02:03'], np.dtype('M8[s]'))) # Allow negative years assert_equal(np.array(['-1980-02-29T01:02:03'], np.dtype('M8[s]')), np.array(['-1980-02-29 01:02:03'], np.dtype('M8[s]'))) # UTC specifier assert_equal(np.array(['-1980-02-29T01:02:03Z'], np.dtype('M8[s]')), np.array(['-1980-02-29 01:02:03Z'], np.dtype('M8[s]'))) # Time zone offset assert_equal(np.array(['1980-02-29T02:02:03Z'], np.dtype('M8[s]')), np.array(['1980-02-29 00:32:03-0130'], np.dtype('M8[s]'))) assert_equal(np.array(['1980-02-28T22:32:03Z'], np.dtype('M8[s]')), np.array(['1980-02-29 00:02:03+01:30'], np.dtype('M8[s]'))) assert_equal(np.array(['1980-02-29T02:32:03.506Z'], np.dtype('M8[s]')), np.array(['1980-02-29 00:32:03.506-02'], np.dtype('M8[s]'))) assert_equal(np.datetime64('1977-03-02T12:30-0230'), np.datetime64('1977-03-02T15:00Z'))
Example 13
def test_endian(self): msg = "big endian" a = np.arange(6, dtype='>i4').reshape((2, 3)) assert_array_equal(umt.inner1d(a, a), np.sum(a*a, axis=-1), err_msg=msg) msg = "little endian" a = np.arange(6, dtype='<i4').reshape((2, 3)) assert_array_equal(umt.inner1d(a, a), np.sum(a*a, axis=-1), err_msg=msg) # Output should always be native-endian Ba = np.arange(1, dtype='>f8') La = np.arange(1, dtype='<f8') assert_equal((Ba+Ba).dtype, np.dtype('f8')) assert_equal((Ba+La).dtype, np.dtype('f8')) assert_equal((La+Ba).dtype, np.dtype('f8')) assert_equal((La+La).dtype, np.dtype('f8')) assert_equal(np.absolute(La).dtype, np.dtype('f8')) assert_equal(np.absolute(Ba).dtype, np.dtype('f8')) assert_equal(np.negative(La).dtype, np.dtype('f8')) assert_equal(np.negative(Ba).dtype, np.dtype('f8'))
Example 14
def test_spacing_nextafter(self): """Test np.spacing and np.nextafter""" # All non-negative finite #'s a = np.arange(0x7c00, dtype=uint16) hinf = np.array((np.inf,), dtype=float16) a_f16 = a.view(dtype=float16) assert_equal(np.spacing(a_f16[:-1]), a_f16[1:]-a_f16[:-1]) assert_equal(np.nextafter(a_f16[:-1], hinf), a_f16[1:]) assert_equal(np.nextafter(a_f16[0], -hinf), -a_f16[1]) assert_equal(np.nextafter(a_f16[1:], -hinf), a_f16[:-1]) # switch to negatives a |= 0x8000 assert_equal(np.spacing(a_f16[0]), np.spacing(a_f16[1])) assert_equal(np.spacing(a_f16[1:]), a_f16[:-1]-a_f16[1:]) assert_equal(np.nextafter(a_f16[0], hinf), -a_f16[1]) assert_equal(np.nextafter(a_f16[1:], hinf), a_f16[:-1]) assert_equal(np.nextafter(a_f16[:-1], -hinf), a_f16[1:])
Example 15
def test_endian(self): msg = "big endian" a = np.arange(6, dtype='>i4').reshape((2, 3)) assert_array_equal(umt.inner1d(a, a), np.sum(a*a, axis=-1), err_msg=msg) msg = "little endian" a = np.arange(6, dtype='<i4').reshape((2, 3)) assert_array_equal(umt.inner1d(a, a), np.sum(a*a, axis=-1), err_msg=msg) # Output should always be native-endian Ba = np.arange(1, dtype='>f8') La = np.arange(1, dtype='<f8') assert_equal((Ba+Ba).dtype, np.dtype('f8')) assert_equal((Ba+La).dtype, np.dtype('f8')) assert_equal((La+Ba).dtype, np.dtype('f8')) assert_equal((La+La).dtype, np.dtype('f8')) assert_equal(np.absolute(La).dtype, np.dtype('f8')) assert_equal(np.absolute(Ba).dtype, np.dtype('f8')) assert_equal(np.negative(La).dtype, np.dtype('f8')) assert_equal(np.negative(Ba).dtype, np.dtype('f8'))
Example 16
def test_spacing_nextafter(self): """Test np.spacing and np.nextafter""" # All non-negative finite #'s a = np.arange(0x7c00, dtype=uint16) hinf = np.array((np.inf,), dtype=float16) a_f16 = a.view(dtype=float16) assert_equal(np.spacing(a_f16[:-1]), a_f16[1:]-a_f16[:-1]) assert_equal(np.nextafter(a_f16[:-1], hinf), a_f16[1:]) assert_equal(np.nextafter(a_f16[0], -hinf), -a_f16[1]) assert_equal(np.nextafter(a_f16[1:], -hinf), a_f16[:-1]) # switch to negatives a |= 0x8000 assert_equal(np.spacing(a_f16[0]), np.spacing(a_f16[1])) assert_equal(np.spacing(a_f16[1:]), a_f16[:-1]-a_f16[1:]) assert_equal(np.nextafter(a_f16[0], hinf), -a_f16[1]) assert_equal(np.nextafter(a_f16[1:], hinf), a_f16[:-1]) assert_equal(np.nextafter(a_f16[:-1], -hinf), a_f16[1:])
Example 17
def update(self): t1,timeTook=time.time(),0 if len(self.ear.data) and not self.btnPause.isChecked(): freqHighCutoff=0 if self.spinLowpass.value()>0: freqHighCutoff=self.spinLowpass.value() data=self.ear.getFiltered(freqHighCutoff) if self.chkInvert.isChecked(): data=np.negative(data) if self.chkAutoscale.isChecked(): self.Yscale=np.max(np.abs(data))*1.1 self.grECG.plotItem.setRange(xRange=[0,self.ear.maxMemorySec], yRange=[-self.Yscale,self.Yscale],padding=0) self.grECG.plot(np.arange(len(data))/float(self.ear.rate),data,clear=True, pen=pyqtgraph.mkPen(color='r'),antialias=True) self.grECG.plotItem.setTitle(self.lineTitle.text(),color=(0,0,0)) self.stamp.setPos(0,-self.Yscale) self.grECG.plotItem.addItem(self.stamp) timeTook=(time.time()-t1)*1000 print("plotting took %.02f ms"%(timeTook)) msTillUpdate=int(self.ear.chunk/self.ear.rate*1000)-timeTook QtCore.QTimer.singleShot(max(0,msTillUpdate), self.update)
Example 18
def test_endian(self): msg = "big endian" a = np.arange(6, dtype='>i4').reshape((2, 3)) assert_array_equal(umt.inner1d(a, a), np.sum(a*a, axis=-1), err_msg=msg) msg = "little endian" a = np.arange(6, dtype='<i4').reshape((2, 3)) assert_array_equal(umt.inner1d(a, a), np.sum(a*a, axis=-1), err_msg=msg) # Output should always be native-endian Ba = np.arange(1, dtype='>f8') La = np.arange(1, dtype='<f8') assert_equal((Ba+Ba).dtype, np.dtype('f8')) assert_equal((Ba+La).dtype, np.dtype('f8')) assert_equal((La+Ba).dtype, np.dtype('f8')) assert_equal((La+La).dtype, np.dtype('f8')) assert_equal(np.absolute(La).dtype, np.dtype('f8')) assert_equal(np.absolute(Ba).dtype, np.dtype('f8')) assert_equal(np.negative(La).dtype, np.dtype('f8')) assert_equal(np.negative(Ba).dtype, np.dtype('f8'))
Example 19
def test_spacing_nextafter(self): """Test np.spacing and np.nextafter""" # All non-negative finite #'s a = np.arange(0x7c00, dtype=uint16) hinf = np.array((np.inf,), dtype=float16) a_f16 = a.view(dtype=float16) assert_equal(np.spacing(a_f16[:-1]), a_f16[1:]-a_f16[:-1]) assert_equal(np.nextafter(a_f16[:-1], hinf), a_f16[1:]) assert_equal(np.nextafter(a_f16[0], -hinf), -a_f16[1]) assert_equal(np.nextafter(a_f16[1:], -hinf), a_f16[:-1]) # switch to negatives a |= 0x8000 assert_equal(np.spacing(a_f16[0]), np.spacing(a_f16[1])) assert_equal(np.spacing(a_f16[1:]), a_f16[:-1]-a_f16[1:]) assert_equal(np.nextafter(a_f16[0], hinf), -a_f16[1]) assert_equal(np.nextafter(a_f16[1:], hinf), a_f16[:-1]) assert_equal(np.nextafter(a_f16[:-1], -hinf), a_f16[1:])
Example 20
def quaternion_conjugate(quaternion): """Return conjugate of quaternion. >>> q0 = random_quaternion() >>> q1 = quaternion_conjugate(q0) >>> q1[0] == q0[0] and all(q1[1:] == -q0[1:]) True """ q = numpy.array(quaternion, dtype=numpy.float64, copy=True) numpy.negative(q[1:], q[1:]) return q
Example 21
def quaternion_inverse(quaternion): """Return inverse of quaternion. >>> q0 = random_quaternion() >>> q1 = quaternion_inverse(q0) >>> numpy.allclose(quaternion_multiply(q0, q1), [1, 0, 0, 0]) True """ q = numpy.array(quaternion, dtype=numpy.float64, copy=True) numpy.negative(q[1:], q[1:]) return q / numpy.dot(q, q)
Example 22
def quaternion_slerp(quat0, quat1, fraction, spin=0, shortestpath=True): """Return spherical linear interpolation between two quaternions. >>> q0 = random_quaternion() >>> q1 = random_quaternion() >>> q = quaternion_slerp(q0, q1, 0) >>> numpy.allclose(q, q0) True >>> q = quaternion_slerp(q0, q1, 1, 1) >>> numpy.allclose(q, q1) True >>> q = quaternion_slerp(q0, q1, 0.5) >>> angle = math.acos(numpy.dot(q0, q)) >>> numpy.allclose(2, math.acos(numpy.dot(q0, q1)) / angle) or \ numpy.allclose(2, math.acos(-numpy.dot(q0, q1)) / angle) True """ q0 = unit_vector(quat0[:4]) q1 = unit_vector(quat1[:4]) if fraction == 0.0: return q0 elif fraction == 1.0: return q1 d = numpy.dot(q0, q1) if abs(abs(d) - 1.0) < _EPS: return q0 if shortestpath and d < 0.0: # invert rotation d = -d numpy.negative(q1, q1) angle = math.acos(d) + spin * math.pi if abs(angle) < _EPS: return q0 isin = 1.0 / math.sin(angle) q0 *= math.sin((1.0 - fraction) * angle) * isin q1 *= math.sin(fraction * angle) * isin q0 += q1 return q0
Example 23
def arcball_constrain_to_axis(point, axis): """Return sphere point perpendicular to axis.""" v = numpy.array(point, dtype=numpy.float64, copy=True) a = numpy.array(axis, dtype=numpy.float64, copy=True) v -= a * numpy.dot(a, v) # on plane n = vector_norm(v) if n > _EPS: if v[2] < 0.0: numpy.negative(v, v) v /= n return v if a[2] == 1.0: return numpy.array([1.0, 0.0, 0.0]) return unit_vector([-a[1], a[0], 0.0])
Example 24
def quaternion_conjugate(quaternion): """Return conjugate of quaternion. >>> q0 = random_quaternion() >>> q1 = quaternion_conjugate(q0) >>> q1[0] == q0[0] and all(q1[1:] == -q0[1:]) True """ q = numpy.array(quaternion, dtype=numpy.float64, copy=True) numpy.negative(q[1:], q[1:]) return q
Example 25
def quaternion_inverse(quaternion): """Return inverse of quaternion. >>> q0 = random_quaternion() >>> q1 = quaternion_inverse(q0) >>> numpy.allclose(quaternion_multiply(q0, q1), [1, 0, 0, 0]) True """ q = numpy.array(quaternion, dtype=numpy.float64, copy=True) numpy.negative(q[1:], q[1:]) return q / numpy.dot(q, q)
Example 26
def quaternion_slerp(quat0, quat1, fraction, spin=0, shortestpath=True): """Return spherical linear interpolation between two quaternions. >>> q0 = random_quaternion() >>> q1 = random_quaternion() >>> q = quaternion_slerp(q0, q1, 0) >>> numpy.allclose(q, q0) True >>> q = quaternion_slerp(q0, q1, 1, 1) >>> numpy.allclose(q, q1) True >>> q = quaternion_slerp(q0, q1, 0.5) >>> angle = math.acos(numpy.dot(q0, q)) >>> numpy.allclose(2, math.acos(numpy.dot(q0, q1)) / angle) or \ numpy.allclose(2, math.acos(-numpy.dot(q0, q1)) / angle) True """ q0 = unit_vector(quat0[:4]) q1 = unit_vector(quat1[:4]) if fraction == 0.0: return q0 elif fraction == 1.0: return q1 d = numpy.dot(q0, q1) if abs(abs(d) - 1.0) < _EPS: return q0 if shortestpath and d < 0.0: # invert rotation d = -d numpy.negative(q1, q1) angle = math.acos(d) + spin * math.pi if abs(angle) < _EPS: return q0 isin = 1.0 / math.sin(angle) q0 *= math.sin((1.0 - fraction) * angle) * isin q1 *= math.sin(fraction * angle) * isin q0 += q1 return q0
Example 27
def arcball_constrain_to_axis(point, axis): """Return sphere point perpendicular to axis.""" v = numpy.array(point, dtype=numpy.float64, copy=True) a = numpy.array(axis, dtype=numpy.float64, copy=True) v -= a * numpy.dot(a, v) # on plane n = vector_norm(v) if n > _EPS: if v[2] < 0.0: numpy.negative(v, v) v /= n return v if a[2] == 1.0: return numpy.array([1.0, 0.0, 0.0]) return unit_vector([-a[1], a[0], 0.0])
Example 28
def test_power_zero(self): # ticket #1271 zero = np.array([0j]) one = np.array([1+0j]) cnan = np.array([complex(np.nan, np.nan)]) # FIXME cinf not tested. #cinf = np.array([complex(np.inf, 0)]) def assert_complex_equal(x, y): x, y = np.asarray(x), np.asarray(y) assert_array_equal(x.real, y.real) assert_array_equal(x.imag, y.imag) # positive powers for p in [0.33, 0.5, 1, 1.5, 2, 3, 4, 5, 6.6]: assert_complex_equal(np.power(zero, p), zero) # zero power assert_complex_equal(np.power(zero, 0), one) with np.errstate(invalid="ignore"): assert_complex_equal(np.power(zero, 0+1j), cnan) # negative power for p in [0.33, 0.5, 1, 1.5, 2, 3, 4, 5, 6.6]: assert_complex_equal(np.power(zero, -p), cnan) assert_complex_equal(np.power(zero, -1+0.2j), cnan)
Example 29
def test_abs_neg_blocked(self): # simd tests on abs, test all alignments for vz + 2 * (vs - 1) + 1 for dt, sz in [(np.float32, 11), (np.float64, 5)]: for out, inp, msg in _gen_alignment_data(dtype=dt, type='unary', max_size=sz): tgt = [ncu.absolute(i) for i in inp] np.absolute(inp, out=out) assert_equal(out, tgt, err_msg=msg) self.assertTrue((out >= 0).all()) tgt = [-1*(i) for i in inp] np.negative(inp, out=out) assert_equal(out, tgt, err_msg=msg) # will throw invalid flag depending on compiler optimizations with np.errstate(invalid='ignore'): for v in [np.nan, -np.inf, np.inf]: for i in range(inp.size): d = np.arange(inp.size, dtype=dt) inp[:] = -d inp[i] = v d[i] = -v if v == -np.inf else v assert_array_equal(np.abs(inp), d, err_msg=msg) np.abs(inp, out=out) assert_array_equal(out, d, err_msg=msg) assert_array_equal(-inp, -1*inp, err_msg=msg) np.negative(inp, out=out) assert_array_equal(out, -1*inp, err_msg=msg)
Example 30
def test_lower_align(self): # check data that is not aligned to element size # i.e doubles are aligned to 4 bytes on i386 d = np.zeros(23 * 8, dtype=np.int8)[4:-4].view(np.float64) assert_equal(np.abs(d), d) assert_equal(np.negative(d), -d) np.negative(d, out=d) np.negative(np.ones_like(d), out=d) np.abs(d, out=d) np.abs(np.ones_like(d), out=d)
Example 31
def test_datetime_unary(self): for tda, tdb, tdzero, tdone, tdmone in \ [ # One-dimensional arrays (np.array([3], dtype='m8[D]'), np.array([-3], dtype='m8[D]'), np.array([0], dtype='m8[D]'), np.array([1], dtype='m8[D]'), np.array([-1], dtype='m8[D]')), # NumPy scalars (np.timedelta64(3, '[D]'), np.timedelta64(-3, '[D]'), np.timedelta64(0, '[D]'), np.timedelta64(1, '[D]'), np.timedelta64(-1, '[D]'))]: # negative ufunc assert_equal(-tdb, tda) assert_equal((-tdb).dtype, tda.dtype) assert_equal(np.negative(tdb), tda) assert_equal(np.negative(tdb).dtype, tda.dtype) # absolute ufunc assert_equal(np.absolute(tdb), tda) assert_equal(np.absolute(tdb).dtype, tda.dtype) # sign ufunc assert_equal(np.sign(tda), tdone) assert_equal(np.sign(tdb), tdmone) assert_equal(np.sign(tdzero), tdzero) assert_equal(np.sign(tda).dtype, tda.dtype) # The ufuncs always produce native-endian results assert_
Example 32
def test_string_parser_variants(self): # Allow space instead of 'T' between date and time assert_equal(np.array(['1980-02-29T01:02:03'], np.dtype('M8[s]')), np.array(['1980-02-29 01:02:03'], np.dtype('M8[s]'))) # Allow negative years assert_equal(np.array(['-1980-02-29T01:02:03'], np.dtype('M8[s]')), np.array(['-1980-02-29 01:02:03'], np.dtype('M8[s]'))) # UTC specifier with assert_warns(DeprecationWarning): assert_equal( np.array(['-1980-02-29T01:02:03'], np.dtype('M8[s]')), np.array(['-1980-02-29 01:02:03Z'], np.dtype('M8[s]'))) # Time zone offset with assert_warns(DeprecationWarning): assert_equal( np.array(['1980-02-29T02:02:03'], np.dtype('M8[s]')), np.array(['1980-02-29 00:32:03-0130'], np.dtype('M8[s]'))) with assert_warns(DeprecationWarning): assert_equal( np.array(['1980-02-28T22:32:03'], np.dtype('M8[s]')), np.array(['1980-02-29 00:02:03+01:30'], np.dtype('M8[s]'))) with assert_warns(DeprecationWarning): assert_equal( np.array(['1980-02-29T02:32:03.506'], np.dtype('M8[s]')), np.array(['1980-02-29 00:32:03.506-02'], np.dtype('M8[s]'))) with assert_warns(DeprecationWarning): assert_equal(np.datetime64('1977-03-02T12:30-0230'), np.datetime64('1977-03-02T15:00'))
Example 33
def test_datetime_busday_holidays_count(self): holidays = ['2011-01-01', '2011-10-10', '2011-11-11', '2011-11-24', '2011-12-25', '2011-05-30', '2011-02-21', '2011-01-17', '2011-12-26', '2012-01-02', '2011-02-21', '2011-05-30', '2011-07-01', '2011-07-04', '2011-09-05', '2011-10-10'] bdd = np.busdaycalendar(weekmask='1111100', holidays=holidays) # Validate against busday_offset broadcast against # a range of offsets dates = np.busday_offset('2011-01-01', np.arange(366), roll='forward', busdaycal=bdd) assert_equal(np.busday_count('2011-01-01', dates, busdaycal=bdd), np.arange(366)) # Returns negative value when reversed assert_equal(np.busday_count(dates, '2011-01-01', busdaycal=bdd), -np.arange(366)) dates = np.busday_offset('2011-12-31', -np.arange(366), roll='forward', busdaycal=bdd) assert_equal(np.busday_count(dates, '2011-12-31', busdaycal=bdd), np.arange(366)) # Returns negative value when reversed assert_equal(np.busday_count('2011-12-31', dates, busdaycal=bdd), -np.arange(366)) # Can't supply both a weekmask/holidays and busdaycal assert_raises(ValueError, np.busday_offset, '2012-01-03', '2012-02-03', weekmask='1111100', busdaycal=bdd) assert_raises(ValueError, np.busday_offset, '2012-01-03', '2012-02-03', holidays=holidays, busdaycal=bdd) # Number of Mondays in March 2011 assert_equal(np.busday_count('2011-03', '2011-04', weekmask='Mon'), 4) # Returns negative value when reversed assert_equal(np.busday_count('2011-04', '2011-03', weekmask='Mon'), -4)
Example 34
def quaternion_conjugate(quaternion): """Return conjugate of quaternion. >>> q0 = random_quaternion() >>> q1 = quaternion_conjugate(q0) >>> q1[0] == q0[0] and all(q1[1:] == -q0[1:]) True """ q = numpy.array(quaternion, dtype=numpy.float64, copy=True) numpy.negative(q[1:], q[1:]) return q
Example 35
def quaternion_inverse(quaternion): """Return inverse of quaternion. >>> q0 = random_quaternion() >>> q1 = quaternion_inverse(q0) >>> numpy.allclose(quaternion_multiply(q0, q1), [1, 0, 0, 0]) True """ q = numpy.array(quaternion, dtype=numpy.float64, copy=True) numpy.negative(q[1:], q[1:]) return q / numpy.dot(q, q)
Example 36
def quaternion_slerp(quat0, quat1, fraction, spin=0, shortestpath=True): """Return spherical linear interpolation between two quaternions. >>> q0 = random_quaternion() >>> q1 = random_quaternion() >>> q = quaternion_slerp(q0, q1, 0) >>> numpy.allclose(q, q0) True >>> q = quaternion_slerp(q0, q1, 1, 1) >>> numpy.allclose(q, q1) True >>> q = quaternion_slerp(q0, q1, 0.5) >>> angle = math.acos(numpy.dot(q0, q)) >>> numpy.allclose(2, math.acos(numpy.dot(q0, q1)) / angle) or \ numpy.allclose(2, math.acos(-numpy.dot(q0, q1)) / angle) True """ q0 = unit_vector(quat0[:4]) q1 = unit_vector(quat1[:4]) if fraction == 0.0: return q0 elif fraction == 1.0: return q1 d = numpy.dot(q0, q1) if abs(abs(d) - 1.0) < _EPS: return q0 if shortestpath and d < 0.0: # invert rotation d = -d numpy.negative(q1, q1) angle = math.acos(d) + spin * math.pi if abs(angle) < _EPS: return q0 isin = 1.0 / math.sin(angle) q0 *= math.sin((1.0 - fraction) * angle) * isin q1 *= math.sin(fraction * angle) * isin q0 += q1 return q0
Example 37
def arcball_constrain_to_axis(point, axis): """Return sphere point perpendicular to axis.""" v = numpy.array(point, dtype=numpy.float64, copy=True) a = numpy.array(axis, dtype=numpy.float64, copy=True) v -= a * numpy.dot(a, v) # on plane n = vector_norm(v) if n > _EPS: if v[2] < 0.0: numpy.negative(v, v) v /= n return v if a[2] == 1.0: return numpy.array([1.0, 0.0, 0.0]) return unit_vector([-a[1], a[0], 0.0])
Example 38
def __neg__(self): return negative(self)
Example 39
def test_neg(input_data): expected_output = np.negative(input_data) node = onnx.helper.make_node('Neg', inputs=['x'], outputs=['y']) ng_results = convert_and_calculate(node, [input_data], [expected_output]) assert np.array_equal(ng_results, [expected_output])
Example 40
def generate_op(self, op, out, x): self.append("np.negative({}, out={})", x, out)
Example 41
def quaternion_conjugate(quaternion): """Return conjugate of quaternion. >>> q0 = random_quaternion() >>> q1 = quaternion_conjugate(q0) >>> q1[0] == q0[0] and all(q1[1:] == -q0[1:]) True """ q = numpy.array(quaternion, dtype=numpy.float64, copy=True) numpy.negative(q[1:], q[1:]) return q
Example 42
def quaternion_inverse(quaternion): """Return inverse of quaternion. >>> q0 = random_quaternion() >>> q1 = quaternion_inverse(q0) >>> numpy.allclose(quaternion_multiply(q0, q1), [1, 0, 0, 0]) True """ q = numpy.array(quaternion, dtype=numpy.float64, copy=True) numpy.negative(q[1:], q[1:]) return q / numpy.dot(q, q)
Example 43
def quaternion_slerp(quat0, quat1, fraction, spin=0, shortestpath=True): """Return spherical linear interpolation between two quaternions. >>> q0 = random_quaternion() >>> q1 = random_quaternion() >>> q = quaternion_slerp(q0, q1, 0) >>> numpy.allclose(q, q0) True >>> q = quaternion_slerp(q0, q1, 1, 1) >>> numpy.allclose(q, q1) True >>> q = quaternion_slerp(q0, q1, 0.5) >>> angle = math.acos(numpy.dot(q0, q)) >>> numpy.allclose(2, math.acos(numpy.dot(q0, q1)) / angle) or \ numpy.allclose(2, math.acos(-numpy.dot(q0, q1)) / angle) True """ q0 = unit_vector(quat0[:4]) q1 = unit_vector(quat1[:4]) if fraction == 0.0: return q0 elif fraction == 1.0: return q1 d = numpy.dot(q0, q1) if abs(abs(d) - 1.0) < _EPS: return q0 if shortestpath and d < 0.0: # invert rotation d = -d numpy.negative(q1, q1) angle = math.acos(d) + spin * math.pi if abs(angle) < _EPS: return q0 isin = 1.0 / math.sin(angle) q0 *= math.sin((1.0 - fraction) * angle) * isin q1 *= math.sin(fraction * angle) * isin q0 += q1 return q0
Example 44
def arcball_constrain_to_axis(point, axis): """Return sphere point perpendicular to axis.""" v = numpy.array(point, dtype=numpy.float64, copy=True) a = numpy.array(axis, dtype=numpy.float64, copy=True) v -= a * numpy.dot(a, v) # on plane n = vector_norm(v) if n > _EPS: if v[2] < 0.0: numpy.negative(v, v) v /= n return v if a[2] == 1.0: return numpy.array([1.0, 0.0, 0.0]) return unit_vector([-a[1], a[0], 0.0])
Example 45
def testCplxNegGPU(self): shapes = [(5,4,3), (5,4), (5,), (1,)] for sh in shapes: x = ((np.random.randn(*sh) + 1j*np.random.randn(*sh)).astype(np.complex64)) self._compareGpu(x, np.negative, tf.negative)
Example 46
def testCplxNegGradGPU(self): shapes = [(5,4,3), (5,4), (5,), (1,)] for sh in shapes: x = ((np.random.randn(*sh) + 1j*np.random.randn(*sh)).astype(np.complex64)) self._compareGpuGrad(x, np.negative, tf.negative)
Example 47
def test_power_zero(self): # ticket #1271 zero = np.array([0j]) one = np.array([1+0j]) cnan = np.array([complex(np.nan, np.nan)]) # FIXME cinf not tested. #cinf = np.array([complex(np.inf, 0)]) def assert_complex_equal(x, y): x, y = np.asarray(x), np.asarray(y) assert_array_equal(x.real, y.real) assert_array_equal(x.imag, y.imag) # positive powers for p in [0.33, 0.5, 1, 1.5, 2, 3, 4, 5, 6.6]: assert_complex_equal(np.power(zero, p), zero) # zero power assert_complex_equal(np.power(zero, 0), one) with np.errstate(invalid="ignore"): assert_complex_equal(np.power(zero, 0+1j), cnan) # negative power for p in [0.33, 0.5, 1, 1.5, 2, 3, 4, 5, 6.6]: assert_complex_equal(np.power(zero, -p), cnan) assert_complex_equal(np.power(zero, -1+0.2j), cnan)
Example 48
def test_abs_neg_blocked(self): # simd tests on abs, test all alignments for vz + 2 * (vs - 1) + 1 for dt, sz in [(np.float32, 11), (np.float64, 5)]: for out, inp, msg in _gen_alignment_data(dtype=dt, type='unary', max_size=sz): tgt = [ncu.absolute(i) for i in inp] np.absolute(inp, out=out) assert_equal(out, tgt, err_msg=msg) self.assertTrue((out >= 0).all()) tgt = [-1*(i) for i in inp] np.negative(inp, out=out) assert_equal(out, tgt, err_msg=msg) # will throw invalid flag depending on compiler optimizations with np.errstate(invalid='ignore'): for v in [np.nan, -np.inf, np.inf]: for i in range(inp.size): d = np.arange(inp.size, dtype=dt) inp[:] = -d inp[i] = v d[i] = -v if v == -np.inf else v assert_array_equal(np.abs(inp), d, err_msg=msg) np.abs(inp, out=out) assert_array_equal(out, d, err_msg=msg) assert_array_equal(-inp, -1*inp, err_msg=msg) np.negative(inp, out=out) assert_array_equal(out, -1*inp, err_msg=msg)
Example 49
def test_lower_align(self): # check data that is not aligned to element size # i.e doubles are aligned to 4 bytes on i386 d = np.zeros(23 * 8, dtype=np.int8)[4:-4].view(np.float64) assert_equal(np.abs(d), d) assert_equal(np.negative(d), -d) np.negative(d, out=d) np.negative(np.ones_like(d), out=d) np.abs(d, out=d) np.abs(np.ones_like(d), out=d)
Example 50
def test_datetime_unary(self): for tda, tdb, tdzero, tdone, tdmone in \ [ # One-dimensional arrays (np.array([3], dtype='m8[D]'), np.array([-3], dtype='m8[D]'), np.array([0], dtype='m8[D]'), np.array([1], dtype='m8[D]'), np.array([-1], dtype='m8[D]')), # NumPy scalars (np.timedelta64(3, '[D]'), np.timedelta64(-3, '[D]'), np.timedelta64(0, '[D]'), np.timedelta64(1, '[D]'), np.timedelta64(-1, '[D]'))]: # negative ufunc assert_equal(-tdb, tda) assert_equal((-tdb).dtype, tda.dtype) assert_equal(np.negative(tdb), tda) assert_equal(np.negative(tdb).dtype, tda.dtype) # absolute ufunc assert_equal(np.absolute(tdb), tda) assert_equal(np.absolute(tdb).dtype, tda.dtype) # sign ufunc assert_equal(np.sign(tda), tdone) assert_equal(np.sign(tdb), tdmone) assert_equal(np.sign(tdzero), tdzero) assert_equal(np.sign(tda).dtype, tda.dtype) # The ufuncs always produce native-endian results assert_