The following are code examples for showing how to use . They are extracted from open source Python projects. You can vote up the examples you like or vote down the exmaples you don’t like. You can also save this page to your account.
Example 1
def max2(iterable, key=lambda x: x): first = None second = None first_value = np.NINF second_value = np.NINF for v in iterable: n = key(v) if n > first_value: second = first second_value = first_value first = v first_value = n elif n > second_value: second = v second_value = n return first, first_value, second, second_value
Example 2
def max2(iterable, key=None): first = None second = None first_value = np.NINF second_value = np.NINF for v in iterable: n = key(v) if key is not None else v if n > first_value: second = first second_value = first_value first = v first_value = n elif n > second_value: second = v second_value = n return first, first_value, second, second_value
Example 3
def _plot_bucket_values(splits, values, title=None, class_labels={0: '0', 1: '1'}): class_0 = [val[0] for val in values] class_1 = [val[1] for val in values] sp = np.asarray(splits) non_na = sp[~np.isnan(sp)] non_na = np.insert(non_na, 0, np.NINF) label = ['({0:6.2f}, {1:6.2f}]'.format(tup[0], tup[1]) for tup in zip(non_na[:-1], non_na[1:])] + ['nan'] ind = np.arange(len(class_0)) w = 0.5 plt.bar(ind, class_0, w, label=class_labels[0]) plt.bar(ind, class_1, w, bottom=class_0, color='g', label=class_labels[1]) plt.xticks(ind + w / 2., label, size=16, rotation=75) plt.yticks(size=16) plt.legend(fontsize=16) if title: plt.title(title, size=16) plt.xlabel('bucket', size=18) plt.ylabel('bucket value', size=18)
Example 4
def _recurse_tree(tree, lst, mdlp, node_id=0, depth=0, min_val=np.NINF, max_val=np.PINF): left_child = tree.children_left[node_id] right_child = tree.children_right[node_id] if left_child == sklearn.tree._tree.TREE_LEAF: lst.append(((min_val, max_val), tree.value[node_id].flatten().tolist())) return else: if mdlp and _check_mdlp_stop(tree, node_id): lst.append(((min_val, max_val), tree.value[node_id].flatten().tolist())) return _recurse_tree(tree, lst, mdlp, left_child, depth=depth + 1, min_val=min_val, max_val=tree.threshold[node_id]) if right_child == sklearn.tree._tree.TREE_LEAF: lst.append(((min_val, max_val), tree.value[node_id].flatten().tolist())) return else: if mdlp and _check_mdlp_stop(tree, node_id): lst.append(((min_val, max_val), tree.value[node_id].flatten().tolist())) return _recurse_tree(tree, lst, mdlp, right_child, depth=depth + 1, min_val=tree.threshold[node_id], max_val=max_val)
Example 5
def get_transition_params(label_strs): '''Construct transtion scoresd (0 for allowed, -inf for invalid). Args: label_strs: A [num_tags,] sequence of BIO-tags. Returns: A [num_tags, num_tags] matrix of transition scores. ''' num_tags = len(label_strs) transition_params = numpy.zeros([num_tags, num_tags], dtype=numpy.float32) for i, prev_label in enumerate(label_strs): for j, label in enumerate(label_strs): if i != j and label[0] == 'I' and not prev_label == 'B' + label[1:]: transition_params[i,j] = numpy.NINF return transition_params
Example 6
def test_any_ninf(self): # atan2(+-y, -infinity) returns +-pi for finite y > 0. assert_almost_equal(ncu.arctan2(1, np.NINF), np.pi) assert_almost_equal(ncu.arctan2(-1, np.NINF), -np.pi)
Example 7
def test_any_ninf(self): # atan2(+-y, -infinity) returns +-pi for finite y > 0. assert_almost_equal(ncu.arctan2(1, np.NINF), np.pi) assert_almost_equal(ncu.arctan2(-1, np.NINF), -np.pi)
Example 8
def factor(self, marginals, targets): f = np.divide(targets, marginals) # We compute the factors f[f == np.NINF] = 1 # And treat the errors, with the infinites first f = f + 1 # and the NaN second f = np.nan_to_num(f) # The sequence of operations is just a resort to f[f == 0] = 2 # use at most numpy functions as possible instead of pure Python f = f - 1 return f
Example 9
def test_frame_from_json_nones(self): df = DataFrame([[1, 2], [4, 5, 6]]) unser = read_json(df.to_json()) self.assertTrue(np.isnan(unser[2][0])) df = DataFrame([['1', '2'], ['4', '5', '6']]) unser = read_json(df.to_json()) self.assertTrue(np.isnan(unser[2][0])) unser = read_json(df.to_json(), dtype=False) self.assertTrue(unser[2][0] is None) unser = read_json(df.to_json(), convert_axes=False, dtype=False) self.assertTrue(unser['2']['0'] is None) unser = read_json(df.to_json(), numpy=False) self.assertTrue(np.isnan(unser[2][0])) unser = read_json(df.to_json(), numpy=False, dtype=False) self.assertTrue(unser[2][0] is None) unser = read_json(df.to_json(), numpy=False, convert_axes=False, dtype=False) self.assertTrue(unser['2']['0'] is None) # infinities get mapped to nulls which get mapped to NaNs during # deserialisation df = DataFrame([[1, 2], [4, 5, 6]]) df.loc[0, 2] = np.inf unser = read_json(df.to_json()) self.assertTrue(np.isnan(unser[2][0])) unser = read_json(df.to_json(), dtype=False) self.assertTrue(np.isnan(unser[2][0])) df.loc[0, 2] = np.NINF unser = read_json(df.to_json()) self.assertTrue(np.isnan(unser[2][0])) unser = read_json(df.to_json(), dtype=False) self.assertTrue(np.isnan(unser[2][0]))
Example 10
def test_any_ninf(self): # atan2(+-y, -infinity) returns +-pi for finite y > 0. assert_almost_equal(ncu.arctan2(1, np.NINF), np.pi) assert_almost_equal(ncu.arctan2(-1, np.NINF), -np.pi)
Example 11
def test_any_ninf(self): # atan2(+-y, -infinity) returns +-pi for finite y > 0. assert_almost_equal(ncu.arctan2(1, np.NINF), np.pi) assert_almost_equal(ncu.arctan2(-1, np.NINF), -np.pi)
Example 12
def test_any_ninf(self): # atan2(+-y, -infinity) returns +-pi for finite y > 0. assert_almost_equal(ncu.arctan2(1, np.NINF), np.pi) assert_almost_equal(ncu.arctan2(-1, np.NINF), -np.pi)
Example 13
def compute_weights(data, Nlive): """Returns log_ev, log_wts for the log-likelihood samples in data, assumed to be a result of nested sampling with Nlive live points.""" start_data=np.concatenate(([float('-inf')], data[:-Nlive])) end_data=data[-Nlive:] log_wts=np.zeros(data.shape[0]) log_vols_start=np.cumsum(np.ones(len(start_data)+1)*np.log1p(-1./Nlive))-np.log1p(-1./Nlive) log_vols_end=np.zeros(len(end_data)) log_vols_end[-1]=np.NINF log_vols_end[0]=log_vols_start[-1]+np.log1p(-1.0/Nlive) for i in range(len(end_data)-1): log_vols_end[i+1]=log_vols_end[i]+np.log1p(-1.0/(Nlive-i)) log_likes = np.concatenate((start_data,end_data,[end_data[-1]])) log_vols=np.concatenate((log_vols_start,log_vols_end)) log_ev = log_integrate_log_trap(log_likes, log_vols) log_dXs = logsubexp(log_vols[:-1], log_vols[1:]) log_wts = log_likes[1:-1] + log_dXs[:-1] log_wts -= log_ev return log_ev, log_wts
Example 14
def test_any_ninf(self): # atan2(+-y, -infinity) returns +-pi for finite y > 0. assert_almost_equal(ncu.arctan2(1, np.NINF), np.pi) assert_almost_equal(ncu.arctan2(-1, np.NINF), -np.pi)
Example 15
def _recurse(tree, feature_vec): assert isinstance(tree, Tree), "Tree is not a sklearn Tree" break_idx = 0 node_id = 0 if not isinstance(feature_vec, list): feature_vec = list([feature_vec]) leaf_node_id = 0 lower = np.NINF upper = np.PINF while (node_id != TREE_LEAF) & (tree.feature[node_id] != TREE_UNDEFINED): feature_idx = tree.feature[node_id] threshold = tree.threshold[node_id] if np.float32(feature_vec[feature_idx]) <= threshold: upper = threshold if (tree.children_left[node_id] != TREE_LEAF) and (tree.children_left[node_id] != TREE_UNDEFINED): leaf_node_id = tree.children_left[node_id] node_id = tree.children_left[node_id] else: lower = threshold if (tree.children_right[node_id] == TREE_LEAF) and (tree.children_right[node_id] != TREE_UNDEFINED): leaf_node_id = tree.children_right[node_id] node_id = tree.children_right[node_id] break_idx += 1 if break_idx > 2 * tree.node_count: raise RuntimeError("infinite recursion!") return leaf_node_id, lower, upper
Example 16
def test_any_ninf(self): # atan2(+-y, -infinity) returns +-pi for finite y > 0. assert_almost_equal(ncu.arctan2(1, np.NINF), np.pi) assert_almost_equal(ncu.arctan2(-1, np.NINF), -np.pi)
Example 17
def describe_1d(data, **kwargs): leng = len(data) # number of observations in the Series count = data.count() # number of non-NaN observations in the Series # Replace infinite values with NaNs to avoid issues with # histograms later. data.replace(to_replace=[np.inf, np.NINF, np.PINF], value=np.nan, inplace=True) n_infinite = count - data.count() # number of infinte observations in the Series distinct_count = data.nunique(dropna=False) # number of unique elements in the Series if count > distinct_count > 1: mode = data.mode().iloc[0] else: mode = data[0] results_data = {'count': count, 'distinct_count': distinct_count, 'p_missing': 1 - count / leng, 'n_missing': leng - count, 'p_infinite': n_infinite / leng, 'n_infinite': n_infinite, 'is_unique': distinct_count == leng, 'mode': mode, 'p_unique': distinct_count / leng} try: # pandas 0.17 onwards results_data['memorysize'] = data.memory_usage() except: results_data['memorysize'] = 0 result = pd.Series(results_data, name=data.name) vartype = get_vartype(data) if vartype == 'CONST': result = result.append(describe_constant_1d(data)) elif vartype == 'BOOL': result = result.append(describe_boolean_1d(data, **kwargs)) elif vartype == 'NUM': result = result.append(describe_numeric_1d(data, **kwargs)) elif vartype == 'DATE': result = result.append(describe_date_1d(data, **kwargs)) elif vartype == 'UNIQUE': result = result.append(describe_unique_1d(data, **kwargs)) else: result = result.append(describe_categorical_1d(data)) return result
Example 18
def compute_loss(self, scores, scores_no_dropout, labels): loss = tf.constant(0.0) if self.viterbi: zero_elements = tf.equal(self.sequence_lengths, tf.zeros_like(self.sequence_lengths)) count_zeros_per_row = tf.reduce_sum(tf.to_int32(zero_elements), axis=1) flat_sequence_lengths = tf.add(tf.reduce_sum(self.sequence_lengths, 1), tf.scalar_mul(2, count_zeros_per_row)) log_likelihood, transition_params = tf.contrib.crf.crf_log_likelihood(scores, labels, flat_sequence_lengths, transition_params=self.transition_params) loss += tf.reduce_mean(-log_likelihood) else: if self.which_loss == "mean" or self.which_loss == "block": losses = tf.nn.sparse_softmax_cross_entropy_with_logits(logits=scores, labels=labels) masked_losses = tf.multiply(losses, self.input_mask) loss += tf.div(tf.reduce_sum(masked_losses), tf.reduce_sum(self.input_mask)) elif self.which_loss == "sum": losses = tf.nn.sparse_softmax_cross_entropy_with_logits(logits=scores, labels=labels) masked_losses = tf.multiply(losses, self.input_mask) loss += tf.reduce_sum(masked_losses) elif self.which_loss == "margin": # todo put into utils # also todo put idx-into-3d as sep func flat_labels = tf.reshape(labels, [-1]) batch_offsets = tf.multiply(tf.range(self.batch_size), self.max_seq_len * self.num_classes) repeated_batch_offsets = tf_utils.repeat(batch_offsets, self.max_seq_len) tok_offsets = tf.multiply(tf.range(self.max_seq_len), self.num_classes) tiled_tok_offsets = tf.tile(tok_offsets, [self.batch_size]) indices = tf.add(tf.add(repeated_batch_offsets, tiled_tok_offsets), flat_labels) # scores w/ true label set to -inf sparse = tf.sparse_to_dense(indices, [self.batch_size * self.max_seq_len * self.num_classes], np.NINF) loss_augmented_flat = tf.add(tf.reshape(scores, [-1]), sparse) loss_augmented = tf.reshape(loss_augmented_flat, [self.batch_size, self.max_seq_len, self.num_classes]) # maxes excluding true label max_scores = tf.reshape(tf.reduce_max(loss_augmented, [-1]), [-1]) sparse = tf.sparse_to_dense(indices, [self.batch_size * self.max_seq_len * self.num_classes], -self.margin) loss_augmented_flat = tf.add(tf.reshape(scores, [-1]), sparse) label_scores = tf.gather(loss_augmented_flat, indices) # margin + max_logit - correct_logit == max_logit - (correct - margin) max2_diffs = tf.subtract(max_scores, label_scores) mask = tf.reshape(self.input_mask, [-1]) loss += tf.reduce_mean(tf.multiply(mask, tf.nn.relu(max2_diffs))) loss += self.l2_penalty * self.l2_loss drop_loss = tf.nn.l2_loss(tf.subtract(scores, scores_no_dropout)) loss += self.drop_penalty * drop_loss return loss