The following are code examples for showing how to use . They are extracted from open source Python projects. You can vote up the examples you like or vote down the exmaples you don’t like. You can also save this page to your account.
Example 1
def test_NotImplemented_not_returned(self): # See gh-5964 and gh-2091. Some of these functions are not operator # related and were fixed for other reasons in the past. binary_funcs = [ np.power, np.add, np.subtract, np.multiply, np.divide, np.true_divide, np.floor_divide, np.bitwise_and, np.bitwise_or, np.bitwise_xor, np.left_shift, np.right_shift, np.fmax, np.fmin, np.fmod, np.hypot, np.logaddexp, np.logaddexp2, np.logical_and, np.logical_or, np.logical_xor, np.maximum, np.minimum, np.mod ] # These functions still return NotImplemented. Will be fixed in # future. # bad = [np.greater, np.greater_equal, np.less, np.less_equal, np.not_equal] a = np.array('1') b = 1 for f in binary_funcs: assert_raises(TypeError, f, a, b)
Example 2
def test_NotImplemented_not_returned(self): # See gh-5964 and gh-2091. Some of these functions are not operator # related and were fixed for other reasons in the past. binary_funcs = [ np.power, np.add, np.subtract, np.multiply, np.divide, np.true_divide, np.floor_divide, np.bitwise_and, np.bitwise_or, np.bitwise_xor, np.left_shift, np.right_shift, np.fmax, np.fmin, np.fmod, np.hypot, np.logaddexp, np.logaddexp2, np.logical_and, np.logical_or, np.logical_xor, np.maximum, np.minimum, np.mod ] # These functions still return NotImplemented. Will be fixed in # future. # bad = [np.greater, np.greater_equal, np.less, np.less_equal, np.not_equal] a = np.array('1') b = 1 for f in binary_funcs: assert_raises(TypeError, f, a, b)
Example 3
def test_NotImplemented_not_returned(self): # See gh-5964 and gh-2091. Some of these functions are not operator # related and were fixed for other reasons in the past. binary_funcs = [ np.power, np.add, np.subtract, np.multiply, np.divide, np.true_divide, np.floor_divide, np.bitwise_and, np.bitwise_or, np.bitwise_xor, np.left_shift, np.right_shift, np.fmax, np.fmin, np.fmod, np.hypot, np.logaddexp, np.logaddexp2, np.logical_and, np.logical_or, np.logical_xor, np.maximum, np.minimum, np.mod ] # These functions still return NotImplemented. Will be fixed in # future. # bad = [np.greater, np.greater_equal, np.less, np.less_equal, np.not_equal] a = np.array('1') b = 1 for f in binary_funcs: assert_raises(TypeError, f, a, b)
Example 4
def test_NotImplemented_not_returned(self): # See gh-5964 and gh-2091. Some of these functions are not operator # related and were fixed for other reasons in the past. binary_funcs = [ np.power, np.add, np.subtract, np.multiply, np.divide, np.true_divide, np.floor_divide, np.bitwise_and, np.bitwise_or, np.bitwise_xor, np.left_shift, np.right_shift, np.fmax, np.fmin, np.fmod, np.hypot, np.logaddexp, np.logaddexp2, np.logical_and, np.logical_or, np.logical_xor, np.maximum, np.minimum, np.mod ] # These functions still return NotImplemented. Will be fixed in # future. # bad = [np.greater, np.greater_equal, np.less, np.less_equal, np.not_equal] a = np.array('1') b = 1 for f in binary_funcs: assert_raises(TypeError, f, a, b)
Example 5
def test_NotImplemented_not_returned(self): # See gh-5964 and gh-2091. Some of these functions are not operator # related and were fixed for other reasons in the past. binary_funcs = [ np.power, np.add, np.subtract, np.multiply, np.divide, np.true_divide, np.floor_divide, np.bitwise_and, np.bitwise_or, np.bitwise_xor, np.left_shift, np.right_shift, np.fmax, np.fmin, np.fmod, np.hypot, np.logaddexp, np.logaddexp2, np.logical_and, np.logical_or, np.logical_xor, np.maximum, np.minimum, np.mod ] # These functions still return NotImplemented. Will be fixed in # future. # bad = [np.greater, np.greater_equal, np.less, np.less_equal, np.not_equal] a = np.array('1') b = 1 for f in binary_funcs: assert_raises(TypeError, f, a, b)
Example 6
def test_logaddexp2_values(self): x = [1, 2, 3, 4, 5] y = [5, 4, 3, 2, 1] z = [6, 6, 6, 6, 6] for dt, dec_ in zip(['f', 'd', 'g'], [6, 15, 15]): xf = np.log2(np.array(x, dtype=dt)) yf = np.log2(np.array(y, dtype=dt)) zf = np.log2(np.array(z, dtype=dt)) assert_almost_equal(np.logaddexp2(xf, yf), zf, decimal=dec_)
Example 7
def test_logaddexp2_range(self): x = [1000000, -1000000, 1000200, -1000200] y = [1000200, -1000200, 1000000, -1000000] z = [1000200, -1000000, 1000200, -1000000] for dt in ['f', 'd', 'g']: logxf = np.array(x, dtype=dt) logyf = np.array(y, dtype=dt) logzf = np.array(z, dtype=dt) assert_almost_equal(np.logaddexp2(logxf, logyf), logzf)
Example 8
def test_inf(self): inf = np.inf x = [inf, -inf, inf, -inf, inf, 1, -inf, 1] y = [inf, inf, -inf, -inf, 1, inf, 1, -inf] z = [inf, inf, inf, -inf, inf, inf, 1, 1] with np.errstate(invalid='raise'): for dt in ['f', 'd', 'g']: logxf = np.array(x, dtype=dt) logyf = np.array(y, dtype=dt) logzf = np.array(z, dtype=dt) assert_equal(np.logaddexp2(logxf, logyf), logzf)
Example 9
def test_nan(self): assert_(np.isnan(np.logaddexp2(np.nan, np.inf))) assert_(np.isnan(np.logaddexp2(np.inf, np.nan))) assert_(np.isnan(np.logaddexp2(np.nan, 0))) assert_(np.isnan(np.logaddexp2(0, np.nan))) assert_(np.isnan(np.logaddexp2(np.nan, np.nan)))
Example 10
def test_NotImplemented_not_returned(self): # See gh-5964 and gh-2091. Some of these functions are not operator # related and were fixed for other reasons in the past. binary_funcs = [ np.power, np.add, np.subtract, np.multiply, np.divide, np.true_divide, np.floor_divide, np.bitwise_and, np.bitwise_or, np.bitwise_xor, np.left_shift, np.right_shift, np.fmax, np.fmin, np.fmod, np.hypot, np.logaddexp, np.logaddexp2, np.logical_and, np.logical_or, np.logical_xor, np.maximum, np.minimum, np.mod ] # These functions still return NotImplemented. Will be fixed in # future. # bad = [np.greater, np.greater_equal, np.less, np.less_equal, np.not_equal] a = np.array('1') b = 1 for f in binary_funcs: assert_raises(TypeError, f, a, b)
Example 11
def sample_next(self, prev, incl_eos = True): """Samples a single word from context. Can be useful to debug the model, for example if you have a bigram model, and know the probability of X-Y should be really high, you can run sample_next([Y]) to see how often X get generated. incl_eos determines whether the space of words should include EOS or not. """ wps = [] tot = -np.inf # this is the log (total mass) for w in self.lm.vocab(): if not incl_eos and w == "END_OF_SENTENCE": continue lp = self.lm.cond_logprob(w, prev) wps.append([w, lp/self.temp]) tot = np.logaddexp2(lp/self.temp, tot) p = self.rnd.random() word = self.rnd.choice(wps)[0] s = -np.inf # running mass for w,lp in wps: s = np.logaddexp2(s, lp) if p < pow(2, s-tot): word = w break return word
Example 12
def test_logaddexp2_values(self): x = [1, 2, 3, 4, 5] y = [5, 4, 3, 2, 1] z = [6, 6, 6, 6, 6] for dt, dec_ in zip(['f', 'd', 'g'], [6, 15, 15]): xf = np.log2(np.array(x, dtype=dt)) yf = np.log2(np.array(y, dtype=dt)) zf = np.log2(np.array(z, dtype=dt)) assert_almost_equal(np.logaddexp2(xf, yf), zf, decimal=dec_)
Example 13
def test_logaddexp2_range(self): x = [1000000, -1000000, 1000200, -1000200] y = [1000200, -1000200, 1000000, -1000000] z = [1000200, -1000000, 1000200, -1000000] for dt in ['f', 'd', 'g']: logxf = np.array(x, dtype=dt) logyf = np.array(y, dtype=dt) logzf = np.array(z, dtype=dt) assert_almost_equal(np.logaddexp2(logxf, logyf), logzf)
Example 14
def test_inf(self): inf = np.inf x = [inf, -inf, inf, -inf, inf, 1, -inf, 1] y = [inf, inf, -inf, -inf, 1, inf, 1, -inf] z = [inf, inf, inf, -inf, inf, inf, 1, 1] with np.errstate(invalid='raise'): for dt in ['f', 'd', 'g']: logxf = np.array(x, dtype=dt) logyf = np.array(y, dtype=dt) logzf = np.array(z, dtype=dt) assert_equal(np.logaddexp2(logxf, logyf), logzf)
Example 15
def test_nan(self): assert_(np.isnan(np.logaddexp2(np.nan, np.inf))) assert_(np.isnan(np.logaddexp2(np.inf, np.nan))) assert_(np.isnan(np.logaddexp2(np.nan, 0))) assert_(np.isnan(np.logaddexp2(0, np.nan))) assert_(np.isnan(np.logaddexp2(np.nan, np.nan)))
Example 16
def test_NotImplemented_not_returned(self): # See gh-5964 and gh-2091. Some of these functions are not operator # related and were fixed for other reasons in the past. binary_funcs = [ np.power, np.add, np.subtract, np.multiply, np.divide, np.true_divide, np.floor_divide, np.bitwise_and, np.bitwise_or, np.bitwise_xor, np.left_shift, np.right_shift, np.fmax, np.fmin, np.fmod, np.hypot, np.logaddexp, np.logaddexp2, np.logical_and, np.logical_or, np.logical_xor, np.maximum, np.minimum, np.mod ] # These functions still return NotImplemented. Will be fixed in # future. # bad = [np.greater, np.greater_equal, np.less, np.less_equal, np.not_equal] a = np.array('1') b = 1 for f in binary_funcs: assert_raises(TypeError, f, a, b)
Example 17
def _baum_welch_step(self, sequence, model, symbol_to_number): N = len(model._states) M = len(model._symbols) T = len(sequence) # compute forward and backward probabilities alpha = model._forward_probability(sequence) beta = model._backward_probability(sequence) # find the log probability of the sequence lpk = logsumexp2(alpha[T-1]) A_numer = _ninf_array((N, N)) B_numer = _ninf_array((N, M)) A_denom = _ninf_array(N) B_denom = _ninf_array(N) transitions_logprob = model._transitions_matrix().T for t in range(T): symbol = sequence[t][_TEXT] # not found? FIXME next_symbol = None if t < T - 1: next_symbol = sequence[t+1][_TEXT] # not found? FIXME xi = symbol_to_number[symbol] next_outputs_logprob = model._outputs_vector(next_symbol) alpha_plus_beta = alpha[t] + beta[t] if t < T - 1: numer_add = transitions_logprob + next_outputs_logprob + \ beta[t+1] + alpha[t].reshape(N, 1) A_numer = np.logaddexp2(A_numer, numer_add) A_denom = np.logaddexp2(A_denom, alpha_plus_beta) else: B_denom = np.logaddexp2(A_denom, alpha_plus_beta) B_numer[:,xi] = np.logaddexp2(B_numer[:,xi], alpha_plus_beta) return lpk, A_numer, A_denom, B_numer, B_denom
Example 18
def test_logaddexp2_values(self): x = [1, 2, 3, 4, 5] y = [5, 4, 3, 2, 1] z = [6, 6, 6, 6, 6] for dt, dec_ in zip(['f', 'd', 'g'], [6, 15, 15]): xf = np.log2(np.array(x, dtype=dt)) yf = np.log2(np.array(y, dtype=dt)) zf = np.log2(np.array(z, dtype=dt)) assert_almost_equal(np.logaddexp2(xf, yf), zf, decimal=dec_)
Example 19
def test_logaddexp2_range(self): x = [1000000, -1000000, 1000200, -1000200] y = [1000200, -1000200, 1000000, -1000000] z = [1000200, -1000000, 1000200, -1000000] for dt in ['f', 'd', 'g']: logxf = np.array(x, dtype=dt) logyf = np.array(y, dtype=dt) logzf = np.array(z, dtype=dt) assert_almost_equal(np.logaddexp2(logxf, logyf), logzf)
Example 20
def test_inf(self): inf = np.inf x = [inf, -inf, inf, -inf, inf, 1, -inf, 1] y = [inf, inf, -inf, -inf, 1, inf, 1, -inf] z = [inf, inf, inf, -inf, inf, inf, 1, 1] with np.errstate(invalid='raise'): for dt in ['f', 'd', 'g']: logxf = np.array(x, dtype=dt) logyf = np.array(y, dtype=dt) logzf = np.array(z, dtype=dt) assert_equal(np.logaddexp2(logxf, logyf), logzf)
Example 21
def test_nan(self): assert_(np.isnan(np.logaddexp2(np.nan, np.inf))) assert_(np.isnan(np.logaddexp2(np.inf, np.nan))) assert_(np.isnan(np.logaddexp2(np.nan, 0))) assert_(np.isnan(np.logaddexp2(0, np.nan))) assert_(np.isnan(np.logaddexp2(np.nan, np.nan)))
Example 22
def test_logaddexp2_values(self): x = [1, 2, 3, 4, 5] y = [5, 4, 3, 2, 1] z = [6, 6, 6, 6, 6] for dt, dec_ in zip(['f', 'd', 'g'], [6, 15, 15]): xf = np.log2(np.array(x, dtype=dt)) yf = np.log2(np.array(y, dtype=dt)) zf = np.log2(np.array(z, dtype=dt)) assert_almost_equal(np.logaddexp2(xf, yf), zf, decimal=dec_)
Example 23
def test_logaddexp2_range(self): x = [1000000, -1000000, 1000200, -1000200] y = [1000200, -1000200, 1000000, -1000000] z = [1000200, -1000000, 1000200, -1000000] for dt in ['f', 'd', 'g']: logxf = np.array(x, dtype=dt) logyf = np.array(y, dtype=dt) logzf = np.array(z, dtype=dt) assert_almost_equal(np.logaddexp2(logxf, logyf), logzf)
Example 24
def test_inf(self): inf = np.inf x = [inf, -inf, inf, -inf, inf, 1, -inf, 1] y = [inf, inf, -inf, -inf, 1, inf, 1, -inf] z = [inf, inf, inf, -inf, inf, inf, 1, 1] with np.errstate(invalid='raise'): for dt in ['f', 'd', 'g']: logxf = np.array(x, dtype=dt) logyf = np.array(y, dtype=dt) logzf = np.array(z, dtype=dt) assert_equal(np.logaddexp2(logxf, logyf), logzf)
Example 25
def test_nan(self): assert_(np.isnan(np.logaddexp2(np.nan, np.inf))) assert_(np.isnan(np.logaddexp2(np.inf, np.nan))) assert_(np.isnan(np.logaddexp2(np.nan, 0))) assert_(np.isnan(np.logaddexp2(0, np.nan))) assert_(np.isnan(np.logaddexp2(np.nan, np.nan)))
Example 26
def _baum_welch_step(self, sequence, model, symbol_to_number): N = len(model._states) M = len(model._symbols) T = len(sequence) # compute forward and backward probabilities alpha = model._forward_probability(sequence) beta = model._backward_probability(sequence) # find the log probability of the sequence lpk = logsumexp2(alpha[T-1]) A_numer = _ninf_array((N, N)) B_numer = _ninf_array((N, M)) A_denom = _ninf_array(N) B_denom = _ninf_array(N) transitions_logprob = model._transitions_matrix().T for t in range(T): symbol = sequence[t][_TEXT] # not found? FIXME next_symbol = None if t < T - 1: next_symbol = sequence[t+1][_TEXT] # not found? FIXME xi = symbol_to_number[symbol] next_outputs_logprob = model._outputs_vector(next_symbol) alpha_plus_beta = alpha[t] + beta[t] if t < T - 1: numer_add = transitions_logprob + next_outputs_logprob + \ beta[t+1] + alpha[t].reshape(N, 1) A_numer = np.logaddexp2(A_numer, numer_add) A_denom = np.logaddexp2(A_denom, alpha_plus_beta) else: B_denom = np.logaddexp2(A_denom, alpha_plus_beta) B_numer[:,xi] = np.logaddexp2(B_numer[:,xi], alpha_plus_beta) return lpk, A_numer, A_denom, B_numer, B_denom
Example 27
def _baum_welch_step(self, sequence, model, symbol_to_number): N = len(model._states) M = len(model._symbols) T = len(sequence) # compute forward and backward probabilities alpha = model._forward_probability(sequence) beta = model._backward_probability(sequence) # find the log probability of the sequence lpk = logsumexp2(alpha[T-1]) A_numer = _ninf_array((N, N)) B_numer = _ninf_array((N, M)) A_denom = _ninf_array(N) B_denom = _ninf_array(N) transitions_logprob = model._transitions_matrix().T for t in range(T): symbol = sequence[t][_TEXT] # not found? FIXME next_symbol = None if t < T - 1: next_symbol = sequence[t+1][_TEXT] # not found? FIXME xi = symbol_to_number[symbol] next_outputs_logprob = model._outputs_vector(next_symbol) alpha_plus_beta = alpha[t] + beta[t] if t < T - 1: numer_add = transitions_logprob + next_outputs_logprob + \ beta[t+1] + alpha[t].reshape(N, 1) A_numer = np.logaddexp2(A_numer, numer_add) A_denom = np.logaddexp2(A_denom, alpha_plus_beta) else: B_denom = np.logaddexp2(A_denom, alpha_plus_beta) B_numer[:,xi] = np.logaddexp2(B_numer[:,xi], alpha_plus_beta) return lpk, A_numer, A_denom, B_numer, B_denom
Example 28
def test_logaddexp2_values(self): x = [1, 2, 3, 4, 5] y = [5, 4, 3, 2, 1] z = [6, 6, 6, 6, 6] for dt, dec_ in zip(['f', 'd', 'g'], [6, 15, 15]): xf = np.log2(np.array(x, dtype=dt)) yf = np.log2(np.array(y, dtype=dt)) zf = np.log2(np.array(z, dtype=dt)) assert_almost_equal(np.logaddexp2(xf, yf), zf, decimal=dec_)
Example 29
def test_logaddexp2_range(self): x = [1000000, -1000000, 1000200, -1000200] y = [1000200, -1000200, 1000000, -1000000] z = [1000200, -1000000, 1000200, -1000000] for dt in ['f', 'd', 'g']: logxf = np.array(x, dtype=dt) logyf = np.array(y, dtype=dt) logzf = np.array(z, dtype=dt) assert_almost_equal(np.logaddexp2(logxf, logyf), logzf)
Example 30
def test_inf(self): inf = np.inf x = [inf, -inf, inf, -inf, inf, 1, -inf, 1] y = [inf, inf, -inf, -inf, 1, inf, 1, -inf] z = [inf, inf, inf, -inf, inf, inf, 1, 1] with np.errstate(invalid='raise'): for dt in ['f', 'd', 'g']: logxf = np.array(x, dtype=dt) logyf = np.array(y, dtype=dt) logzf = np.array(z, dtype=dt) assert_equal(np.logaddexp2(logxf, logyf), logzf)
Example 31
def test_nan(self): assert_(np.isnan(np.logaddexp2(np.nan, np.inf))) assert_(np.isnan(np.logaddexp2(np.inf, np.nan))) assert_(np.isnan(np.logaddexp2(np.nan, 0))) assert_(np.isnan(np.logaddexp2(0, np.nan))) assert_(np.isnan(np.logaddexp2(np.nan, np.nan)))
Example 32
def test_logaddexp2_values(self): x = [1, 2, 3, 4, 5] y = [5, 4, 3, 2, 1] z = [6, 6, 6, 6, 6] for dt, dec_ in zip(['f', 'd', 'g'], [6, 15, 15]): xf = np.log2(np.array(x, dtype=dt)) yf = np.log2(np.array(y, dtype=dt)) zf = np.log2(np.array(z, dtype=dt)) assert_almost_equal(np.logaddexp2(xf, yf), zf, decimal=dec_)
Example 33
def test_logaddexp2_range(self): x = [1000000, -1000000, 1000200, -1000200] y = [1000200, -1000200, 1000000, -1000000] z = [1000200, -1000000, 1000200, -1000000] for dt in ['f', 'd', 'g']: logxf = np.array(x, dtype=dt) logyf = np.array(y, dtype=dt) logzf = np.array(z, dtype=dt) assert_almost_equal(np.logaddexp2(logxf, logyf), logzf)
Example 34
def test_inf(self): inf = np.inf x = [inf, -inf, inf, -inf, inf, 1, -inf, 1] y = [inf, inf, -inf, -inf, 1, inf, 1, -inf] z = [inf, inf, inf, -inf, inf, inf, 1, 1] with np.errstate(invalid='raise'): for dt in ['f', 'd', 'g']: logxf = np.array(x, dtype=dt) logyf = np.array(y, dtype=dt) logzf = np.array(z, dtype=dt) assert_equal(np.logaddexp2(logxf, logyf), logzf)
Example 35
def test_nan(self): assert_(np.isnan(np.logaddexp2(np.nan, np.inf))) assert_(np.isnan(np.logaddexp2(np.inf, np.nan))) assert_(np.isnan(np.logaddexp2(np.nan, 0))) assert_(np.isnan(np.logaddexp2(0, np.nan))) assert_(np.isnan(np.logaddexp2(np.nan, np.nan)))
Example 36
def _baum_welch_step(self, sequence, model, symbol_to_number): N = len(model._states) M = len(model._symbols) T = len(sequence) # compute forward and backward probabilities alpha = model._forward_probability(sequence) beta = model._backward_probability(sequence) # find the log probability of the sequence lpk = logsumexp2(alpha[T-1]) A_numer = _ninf_array((N, N)) B_numer = _ninf_array((N, M)) A_denom = _ninf_array(N) B_denom = _ninf_array(N) transitions_logprob = model._transitions_matrix().T for t in range(T): symbol = sequence[t][_TEXT] # not found? FIXME next_symbol = None if t < T - 1: next_symbol = sequence[t+1][_TEXT] # not found? FIXME xi = symbol_to_number[symbol] next_outputs_logprob = model._outputs_vector(next_symbol) alpha_plus_beta = alpha[t] + beta[t] if t < T - 1: numer_add = transitions_logprob + next_outputs_logprob + \ beta[t+1] + alpha[t].reshape(N, 1) A_numer = np.logaddexp2(A_numer, numer_add) A_denom = np.logaddexp2(A_denom, alpha_plus_beta) else: B_denom = np.logaddexp2(A_denom, alpha_plus_beta) B_numer[:,xi] = np.logaddexp2(B_numer[:,xi], alpha_plus_beta) return lpk, A_numer, A_denom, B_numer, B_denom
Example 37
def _baum_welch_step(self, sequence, model, symbol_to_number): N = len(model._states) M = len(model._symbols) T = len(sequence) # compute forward and backward probabilities alpha = model._forward_probability(sequence) beta = model._backward_probability(sequence) # find the log probability of the sequence lpk = logsumexp2(alpha[T-1]) A_numer = _ninf_array((N, N)) B_numer = _ninf_array((N, M)) A_denom = _ninf_array(N) B_denom = _ninf_array(N) transitions_logprob = model._transitions_matrix().T for t in range(T): symbol = sequence[t][_TEXT] # not found? FIXME next_symbol = None if t < T - 1: next_symbol = sequence[t+1][_TEXT] # not found? FIXME xi = symbol_to_number[symbol] next_outputs_logprob = model._outputs_vector(next_symbol) alpha_plus_beta = alpha[t] + beta[t] if t < T - 1: numer_add = transitions_logprob + next_outputs_logprob + \ beta[t+1] + alpha[t].reshape(N, 1) A_numer = np.logaddexp2(A_numer, numer_add) A_denom = np.logaddexp2(A_denom, alpha_plus_beta) else: B_denom = np.logaddexp2(A_denom, alpha_plus_beta) B_numer[:,xi] = np.logaddexp2(B_numer[:,xi], alpha_plus_beta) return lpk, A_numer, A_denom, B_numer, B_denom
Example 38
def _baum_welch_step(self, sequence, model, symbol_to_number): N = len(model._states) M = len(model._symbols) T = len(sequence) # compute forward and backward probabilities alpha = model._forward_probability(sequence) beta = model._backward_probability(sequence) # find the log probability of the sequence lpk = logsumexp2(alpha[T-1]) A_numer = _ninf_array((N, N)) B_numer = _ninf_array((N, M)) A_denom = _ninf_array(N) B_denom = _ninf_array(N) transitions_logprob = model._transitions_matrix().T for t in range(T): symbol = sequence[t][_TEXT] # not found? FIXME next_symbol = None if t < T - 1: next_symbol = sequence[t+1][_TEXT] # not found? FIXME xi = symbol_to_number[symbol] next_outputs_logprob = model._outputs_vector(next_symbol) alpha_plus_beta = alpha[t] + beta[t] if t < T - 1: numer_add = transitions_logprob + next_outputs_logprob + \ beta[t+1] + alpha[t].reshape(N, 1) A_numer = np.logaddexp2(A_numer, numer_add) A_denom = np.logaddexp2(A_denom, alpha_plus_beta) else: B_denom = np.logaddexp2(A_denom, alpha_plus_beta) B_numer[:,xi] = np.logaddexp2(B_numer[:,xi], alpha_plus_beta) return lpk, A_numer, A_denom, B_numer, B_denom
Example 39
def _baum_welch_step(self, sequence, model, symbol_to_number): N = len(model._states) M = len(model._symbols) T = len(sequence) # compute forward and backward probabilities alpha = model._forward_probability(sequence) beta = model._backward_probability(sequence) # find the log probability of the sequence lpk = logsumexp2(alpha[T-1]) A_numer = _ninf_array((N, N)) B_numer = _ninf_array((N, M)) A_denom = _ninf_array(N) B_denom = _ninf_array(N) transitions_logprob = model._transitions_matrix().T for t in range(T): symbol = sequence[t][_TEXT] # not found? FIXME next_symbol = None if t < T - 1: next_symbol = sequence[t+1][_TEXT] # not found? FIXME xi = symbol_to_number[symbol] next_outputs_logprob = model._outputs_vector(next_symbol) alpha_plus_beta = alpha[t] + beta[t] if t < T - 1: numer_add = transitions_logprob + next_outputs_logprob + \ beta[t+1] + alpha[t].reshape(N, 1) A_numer = np.logaddexp2(A_numer, numer_add) A_denom = np.logaddexp2(A_denom, alpha_plus_beta) else: B_denom = np.logaddexp2(A_denom, alpha_plus_beta) B_numer[:,xi] = np.logaddexp2(B_numer[:,xi], alpha_plus_beta) return lpk, A_numer, A_denom, B_numer, B_denom
Example 40
def test_logaddexp2_values(self): x = [1, 2, 3, 4, 5] y = [5, 4, 3, 2, 1] z = [6, 6, 6, 6, 6] for dt, dec_ in zip(['f', 'd', 'g'], [6, 15, 15]): xf = np.log2(np.array(x, dtype=dt)) yf = np.log2(np.array(y, dtype=dt)) zf = np.log2(np.array(z, dtype=dt)) assert_almost_equal(np.logaddexp2(xf, yf), zf, decimal=dec_)
Example 41
def test_logaddexp2_range(self): x = [1000000, -1000000, 1000200, -1000200] y = [1000200, -1000200, 1000000, -1000000] z = [1000200, -1000000, 1000200, -1000000] for dt in ['f', 'd', 'g']: logxf = np.array(x, dtype=dt) logyf = np.array(y, dtype=dt) logzf = np.array(z, dtype=dt) assert_almost_equal(np.logaddexp2(logxf, logyf), logzf)
Example 42
def test_inf(self): inf = np.inf x = [inf, -inf, inf, -inf, inf, 1, -inf, 1] y = [inf, inf, -inf, -inf, 1, inf, 1, -inf] z = [inf, inf, inf, -inf, inf, inf, 1, 1] with np.errstate(invalid='raise'): for dt in ['f', 'd', 'g']: logxf = np.array(x, dtype=dt) logyf = np.array(y, dtype=dt) logzf = np.array(z, dtype=dt) assert_equal(np.logaddexp2(logxf, logyf), logzf)
Example 43
def test_nan(self): assert_(np.isnan(np.logaddexp2(np.nan, np.inf))) assert_(np.isnan(np.logaddexp2(np.inf, np.nan))) assert_(np.isnan(np.logaddexp2(np.nan, 0))) assert_(np.isnan(np.logaddexp2(0, np.nan))) assert_(np.isnan(np.logaddexp2(np.nan, np.nan)))