Python numpy.array_equiv() 使用实例

The following are code examples for showing how to use . They are extracted from open source Python projects. You can vote up the examples you like or vote down the exmaples you don’t like. You can also save this page to your account.

Example 1

def test_array_equiv(self):
        res = np.array_equiv(np.array([1, 2]), np.array([1, 2]))
        assert_(res)
        assert_(type(res) is bool)
        res = np.array_equiv(np.array([1, 2]), np.array([1, 2, 3]))
        assert_(not res)
        assert_(type(res) is bool)
        res = np.array_equiv(np.array([1, 2]), np.array([3, 4]))
        assert_(not res)
        assert_(type(res) is bool)
        res = np.array_equiv(np.array([1, 2]), np.array([1, 3]))
        assert_(not res)
        assert_(type(res) is bool)

        res = np.array_equiv(np.array([1, 1]), np.array([1]))
        assert_(res)
        assert_(type(res) is bool)
        res = np.array_equiv(np.array([1, 1]), np.array([[1], [1]]))
        assert_(res)
        assert_(type(res) is bool)
        res = np.array_equiv(np.array([1, 2]), np.array([2]))
        assert_(not res)
        assert_(type(res) is bool)
        res = np.array_equiv(np.array([1, 2]), np.array([[1], [2]]))
        assert_(not res)
        assert_(type(res) is bool)
        res = np.array_equiv(np.array([1, 2]), np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]]))
        assert_(not res)
        assert_(type(res) is bool) 

Example 2

def test_tri_sym_convert():
    from brainiak.utils.utils import from_tri_2_sym, from_sym_2_tri
    import numpy as np

    sym = np.random.rand(3, 3)
    tri = from_sym_2_tri(sym)
    assert tri.shape[0] == 6,\
        "from_sym_2_tri returned wrong result!"
    sym1 = from_tri_2_sym(tri, 3)
    assert sym1.shape[0] == sym1.shape[1],\
        "from_tri_2_sym returned wrong shape!"
    tri1 = from_sym_2_tri(sym1)
    assert np.array_equiv(tri, tri1),\
        "from_sym_2_tri returned wrong result!" 

Example 3

def test_times_1():
    cntk_op = C.times([1, 2, 3], [[4], [5], [6]])
    cntk_ret = cntk_op.eval()

    ng_op, _ = CNTKImporter().import_model(cntk_op)
    ng_ret = ng.transformers.make_transformer().computation(ng_op)()

    assert np.array_equiv(cntk_ret, ng_ret) 

Example 4

def test_times_2():
    cntk_op = C.times([[1, 2], [3, 4]], [[5, 6], [7, 8]])
    cntk_ret = cntk_op.eval()

    ng_op, _ = CNTKImporter().import_model(cntk_op)
    ng_ret = ng.transformers.make_transformer().computation(ng_op)()

    assert np.array_equiv(cntk_ret, ng_ret) 

Example 5

def test_times_3():
    cntk_op = C.times([1, 2, 3], [[4, 5], [6, 7], [8, 9]])
    cntk_ret = cntk_op.eval()

    ng_op, _ = CNTKImporter().import_model(cntk_op)
    ng_ret = ng.transformers.make_transformer().computation(ng_op)()

    assert np.array_equiv(cntk_ret, ng_ret) 

Example 6

def test_times_4():
    cntk_op = C.times([[1, 2, 3], [4, 5, 6]], [[7], [8], [9]])
    cntk_ret = cntk_op.eval()

    ng_op, _ = CNTKImporter().import_model(cntk_op)
    ng_ret = ng.transformers.make_transformer().computation(ng_op)()

    assert np.array_equiv(cntk_ret, ng_ret) 

Example 7

def test_times_5():
    cntk_op = C.times([[1, 2, 3], [4, 5, 6]], [[7, 8], [9, 10], [11, 12]])
    cntk_ret = cntk_op.eval()

    ng_op, _ = CNTKImporter().import_model(cntk_op)
    ng_ret = ng.transformers.make_transformer().computation(ng_op)()

    assert np.array_equiv(cntk_ret, ng_ret) 

Example 8

def _process_sample_weight(self, interactions, sample_weight):

        if sample_weight is not None:

            if self.loss == 'warp-kos':
                raise NotImplementedError('k-OS loss with sample weights '
                                          'not implemented.')

            if not isinstance(sample_weight, sp.coo_matrix):
                raise ValueError('Sample_weight must be a COO matrix.')

            if sample_weight.shape != interactions.shape:
                raise ValueError('Sample weight and interactions '
                                 'matrices must be the same shape')

            if not (np.array_equal(interactions.row,
                                   sample_weight.row) and
                    np.array_equal(interactions.col,
                                   sample_weight.col)):
                raise ValueError('Sample weight and interaction matrix '
                                 'entries must be in the same order')

            if sample_weight.data.dtype != CYTHON_DTYPE:
                sample_weight_data = sample_weight.data.astype(CYTHON_DTYPE)
            else:
                sample_weight_data = sample_weight.data
        else:
            if np.array_equiv(interactions.data, 1.0):
                # Re-use interactions data if they are all
                # ones
                sample_weight_data = interactions.data
            else:
                # Otherwise allocate a new array of ones
                sample_weight_data = np.ones_like(interactions.data,
                                                  dtype=CYTHON_DTYPE)

        return sample_weight_data 

Example 9

def test_array_equiv(self):
        res = np.array_equiv(np.array([1, 2]), np.array([1, 2]))
        assert_(res)
        assert_(type(res) is bool)
        res = np.array_equiv(np.array([1, 2]), np.array([1, 2, 3]))
        assert_(not res)
        assert_(type(res) is bool)
        res = np.array_equiv(np.array([1, 2]), np.array([3, 4]))
        assert_(not res)
        assert_(type(res) is bool)
        res = np.array_equiv(np.array([1, 2]), np.array([1, 3]))
        assert_(not res)
        assert_(type(res) is bool)

        res = np.array_equiv(np.array([1, 1]), np.array([1]))
        assert_(res)
        assert_(type(res) is bool)
        res = np.array_equiv(np.array([1, 1]), np.array([[1], [1]]))
        assert_(res)
        assert_(type(res) is bool)
        res = np.array_equiv(np.array([1, 2]), np.array([2]))
        assert_(not res)
        assert_(type(res) is bool)
        res = np.array_equiv(np.array([1, 2]), np.array([[1], [2]]))
        assert_(not res)
        assert_(type(res) is bool)
        res = np.array_equiv(np.array([1, 2]), np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]]))
        assert_(not res)
        assert_(type(res) is bool) 

Example 10

def test_init(self):
        kf = KeyFrame(np.zeros((100, 100)), np.ones((2, 100)))
        self.assertTrue(np.array_equiv(kf.image, np.zeros((100, 100))))
        self.assertTrue(np.array_equiv(kf.features, np.ones((2, 100)))) 

Example 11

def test_serializzation(small_model):
    with io.BytesIO() as fileobj:
        pickle.dump(small_model, fileobj)
        fileobj.seek(0)
        loaded = pickle.load(fileobj)
        assert all(str(loaded.wv.vocab[w]) == str(small_model.wv.vocab[w]) for w in small_model.wv.vocab)
        assert all(str(loaded.lvocab[w]) == str(small_model.lvocab[w]) for w in small_model.lvocab)
        assert numpy.array_equiv(loaded.syn1, small_model.syn1)
        assert numpy.array_equiv(loaded.wv.syn0, small_model.wv.syn0) 

Example 12

def test_array_equiv(self):
        res = np.array_equiv(np.array([1, 2]), np.array([1, 2]))
        assert_(res)
        assert_(type(res) is bool)
        res = np.array_equiv(np.array([1, 2]), np.array([1, 2, 3]))
        assert_(not res)
        assert_(type(res) is bool)
        res = np.array_equiv(np.array([1, 2]), np.array([3, 4]))
        assert_(not res)
        assert_(type(res) is bool)
        res = np.array_equiv(np.array([1, 2]), np.array([1, 3]))
        assert_(not res)
        assert_(type(res) is bool)

        res = np.array_equiv(np.array([1, 1]), np.array([1]))
        assert_(res)
        assert_(type(res) is bool)
        res = np.array_equiv(np.array([1, 1]), np.array([[1], [1]]))
        assert_(res)
        assert_(type(res) is bool)
        res = np.array_equiv(np.array([1, 2]), np.array([2]))
        assert_(not res)
        assert_(type(res) is bool)
        res = np.array_equiv(np.array([1, 2]), np.array([[1], [2]]))
        assert_(not res)
        assert_(type(res) is bool)
        res = np.array_equiv(np.array([1, 2]), np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]]))
        assert_(not res)
        assert_(type(res) is bool) 

Example 13

def test_array_equiv(self):
        res = np.array_equiv(np.array([1, 2]), np.array([1, 2]))
        assert_(res)
        assert_(type(res) is bool)
        res = np.array_equiv(np.array([1, 2]), np.array([1, 2, 3]))
        assert_(not res)
        assert_(type(res) is bool)
        res = np.array_equiv(np.array([1, 2]), np.array([3, 4]))
        assert_(not res)
        assert_(type(res) is bool)
        res = np.array_equiv(np.array([1, 2]), np.array([1, 3]))
        assert_(not res)
        assert_(type(res) is bool)

        res = np.array_equiv(np.array([1, 1]), np.array([1]))
        assert_(res)
        assert_(type(res) is bool)
        res = np.array_equiv(np.array([1, 1]), np.array([[1], [1]]))
        assert_(res)
        assert_(type(res) is bool)
        res = np.array_equiv(np.array([1, 2]), np.array([2]))
        assert_(not res)
        assert_(type(res) is bool)
        res = np.array_equiv(np.array([1, 2]), np.array([[1], [2]]))
        assert_(not res)
        assert_(type(res) is bool)
        res = np.array_equiv(np.array([1, 2]), np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]]))
        assert_(not res)
        assert_(type(res) is bool) 

Example 14

def test_array_equiv(self):
        res = np.array_equiv(np.array([1, 2]), np.array([1, 2]))
        assert_(res)
        assert_(type(res) is bool)
        res = np.array_equiv(np.array([1, 2]), np.array([1, 2, 3]))
        assert_(not res)
        assert_(type(res) is bool)
        res = np.array_equiv(np.array([1, 2]), np.array([3, 4]))
        assert_(not res)
        assert_(type(res) is bool)
        res = np.array_equiv(np.array([1, 2]), np.array([1, 3]))
        assert_(not res)
        assert_(type(res) is bool)

        res = np.array_equiv(np.array([1, 1]), np.array([1]))
        assert_(res)
        assert_(type(res) is bool)
        res = np.array_equiv(np.array([1, 1]), np.array([[1], [1]]))
        assert_(res)
        assert_(type(res) is bool)
        res = np.array_equiv(np.array([1, 2]), np.array([2]))
        assert_(not res)
        assert_(type(res) is bool)
        res = np.array_equiv(np.array([1, 2]), np.array([[1], [2]]))
        assert_(not res)
        assert_(type(res) is bool)
        res = np.array_equiv(np.array([1, 2]), np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]]))
        assert_(not res)
        assert_(type(res) is bool) 

Example 15

def equality(self):
        equal = numpy.array_equiv(self.image_i, self.image_j)
        self.assertTrue(equal) 

Example 16

def equality(self):
        equal = numpy.array_equiv(self.image_i, self.image_j)
        self.assertTrue(equal) 

Example 17

def test_array_equiv(self):
        res = np.array_equiv(np.array([1, 2]), np.array([1, 2]))
        assert_(res)
        assert_(type(res) is bool)
        res = np.array_equiv(np.array([1, 2]), np.array([1, 2, 3]))
        assert_(not res)
        assert_(type(res) is bool)
        res = np.array_equiv(np.array([1, 2]), np.array([3, 4]))
        assert_(not res)
        assert_(type(res) is bool)
        res = np.array_equiv(np.array([1, 2]), np.array([1, 3]))
        assert_(not res)
        assert_(type(res) is bool)

        res = np.array_equiv(np.array([1, 1]), np.array([1]))
        assert_(res)
        assert_(type(res) is bool)
        res = np.array_equiv(np.array([1, 1]), np.array([[1], [1]]))
        assert_(res)
        assert_(type(res) is bool)
        res = np.array_equiv(np.array([1, 2]), np.array([2]))
        assert_(not res)
        assert_(type(res) is bool)
        res = np.array_equiv(np.array([1, 2]), np.array([[1], [2]]))
        assert_(not res)
        assert_(type(res) is bool)
        res = np.array_equiv(np.array([1, 2]), np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]]))
        assert_(not res)
        assert_(type(res) is bool) 

Example 18

def array_equal(a1, a2):
    """
    True if two arrays have the same shape and elements, False otherwise.

    Parameters
    ----------
    a1, a2 : array_like
        Input arrays.

    Returns
    -------
    b : bool
        Returns True if the arrays are equal.

    See Also
    --------
    allclose: Returns True if two arrays are element-wise equal within a
              tolerance.
    array_equiv: Returns True if input arrays are shape consistent and all
                 elements equal.

    Examples
    --------
    >>> np.array_equal([1, 2], [1, 2])
    True
    >>> np.array_equal(np.array([1, 2]), np.array([1, 2]))
    True
    >>> np.array_equal([1, 2], [1, 2, 3])
    False
    >>> np.array_equal([1, 2], [1, 4])
    False

    """
    try:
        a1, a2 = asarray(a1), asarray(a2)
    except:
        return False
    if a1.shape != a2.shape:
        return False
    return bool(asarray(a1 == a2).all()) 

Example 19

def arr_equiv():
    ar1 = np.array([[1, 2], [3, 4]])
    ar2 = np.array([[1, 2]])
    ar3 = np.array([[1, 2], [1, 2]])
    ar4 = np.array([1, 2])
    print np.array_equiv(ar1, ar2)
    # False
    print np.array_equiv(ar1, ar4)
    # False
    print np.array_equiv(ar2, ar3)
    # True 

Example 20

def test_array_equiv(self):
        res = np.array_equiv(np.array([1, 2]), np.array([1, 2]))
        assert_(res)
        assert_(type(res) is bool)
        res = np.array_equiv(np.array([1, 2]), np.array([1, 2, 3]))
        assert_(not res)
        assert_(type(res) is bool)
        res = np.array_equiv(np.array([1, 2]), np.array([3, 4]))
        assert_(not res)
        assert_(type(res) is bool)
        res = np.array_equiv(np.array([1, 2]), np.array([1, 3]))
        assert_(not res)
        assert_(type(res) is bool)

        res = np.array_equiv(np.array([1, 1]), np.array([1]))
        assert_(res)
        assert_(type(res) is bool)
        res = np.array_equiv(np.array([1, 1]), np.array([[1], [1]]))
        assert_(res)
        assert_(type(res) is bool)
        res = np.array_equiv(np.array([1, 2]), np.array([2]))
        assert_(not res)
        assert_(type(res) is bool)
        res = np.array_equiv(np.array([1, 2]), np.array([[1], [2]]))
        assert_(not res)
        assert_(type(res) is bool)
        res = np.array_equiv(np.array([1, 2]), np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]]))
        assert_(not res)
        assert_(type(res) is bool) 

Example 21

def preprocess(self, **kwargs):
        """Construct kernel distance arrays."""
        new_times = np.array(kwargs.get('all_times', []), dtype=float)
        self._codeltatime = kwargs.get(self.key('codeltatime'), -1)
        self._codeltalambda = kwargs.get(self.key('codeltalambda'), -1)
        if np.array_equiv(new_times, self._times) and self._preprocessed:
            return
        self._times = new_times
        self._all_band_indices = kwargs.get('all_band_indices', [])
        self._are_bands = np.array(self._all_band_indices) >= 0
        self._freqs = kwargs.get('all_frequencies', [])
        self._u_freqs = kwargs.get('all_u_frequencies', [])
        self._waves = np.array([
            self._average_wavelengths[bi] if bi >= 0 else
            C_CGS / self._freqs[i] / ANG_CGS for i, bi in
            enumerate(self._all_band_indices)])
        self._observed = np.array(kwargs.get('observed', []), dtype=bool)
        self._n_obs = len(self._observed)

        self._o_times = self._times[self._observed]
        self._o_waves = self._waves[self._observed]

        if self._type == 'full':
            self._times_1 = self._times
            self._times_2 = self._times
            self._waves_1 = self._waves
            self._waves_2 = self._waves
        elif self._type == 'oa':
            self._times_1 = self._o_times
            self._times_2 = self._times
            self._waves_1 = self._o_waves
            self._waves_2 = self._waves
        elif self._type == 'ao':
            self._times_1 = self._times
            self._times_2 = self._o_times
            self._waves_1 = self._waves
            self._waves_2 = self._o_waves
        else:
            self._times_1 = self._o_times
            self._times_2 = self._o_times
            self._waves_1 = self._o_waves
            self._waves_2 = self._o_waves

        # Time deltas (radial distance) for covariance matrix.
        if self._codeltatime >= 0:
            self._dt2mat = self._times_1[:, None] - self._times_2[None, :]
            self._dt2mat **= 2
            self._dt2mat *= -0.5

        # Wavelength deltas (radial distance) for covariance matrix.
        if self._codeltalambda >= 0:
            self._dl2mat = self._waves_1[:, None] - self._waves_2[None, :]
            self._dl2mat **= 2
            self._dl2mat *= -0.5

        self._preprocessed = True 

Example 22

def array_equiv(a1, a2):
    """
    Returns True if input arrays are shape consistent and all elements equal.

    Shape consistent means they are either the same shape, or one input array
    can be broadcasted to create the same shape as the other one.

    Parameters
    ----------
    a1, a2 : array_like
        Input arrays.

    Returns
    -------
    out : bool
        True if equivalent, False otherwise.

    Examples
    --------
    >>> np.array_equiv([1, 2], [1, 2])
    True
    >>> np.array_equiv([1, 2], [1, 3])
    False

    Showing the shape equivalence:

    >>> np.array_equiv([1, 2], [[1, 2], [1, 2]])
    True
    >>> np.array_equiv([1, 2], [[1, 2, 1, 2], [1, 2, 1, 2]])
    False

    >>> np.array_equiv([1, 2], [[1, 2], [1, 3]])
    False

    """
    try:
        a1, a2 = asarray(a1), asarray(a2)
    except:
        return False
    try:
        multiarray.broadcast(a1, a2)
    except:
        return False

    return bool(asarray(a1 == a2).all()) 

Example 23

def parse_array(self, ar):
        """
        Consolidate an array to something smaller and remains
        broadcastable to the original dimensions. ndim remains the same.

        todo:
        - if squeezable in multiple dimensions, squeeze in all dimensions.
            it currently does this, but the entire most_squeezable_dim can be
            left out.
        :param ar: array to be parsed
        :return: consolidated array
        """
        assert isinstance(ar, np.ndarray)

        output = np.unique(ar)

        if output.size == 1:
            return 0, output.item()

        elif output.size == 0:
            return -1, output

        else:
            items_per_squeezed_dim = ar.ndim * [0]

            for dim in range(ar.ndim):
                output, index = uniquend(ar, axis=dim, return_index=True)

                if len(index) == 1:
                    items_per_squeezed_dim[dim] = output.size

                else:
                    items_per_squeezed_dim[dim] = ar.size

            most_squeezable_dim = items_per_squeezed_dim.index(
                min(items_per_squeezed_dim))

            if ar.size == items_per_squeezed_dim[most_squeezable_dim]:
                return -1, ar

            else:
                # can be squeezable in multiple dimensions
                # therefore call self
                cur = uniquend(ar, axis=most_squeezable_dim)

                # test if broadcastable shape, same elements values
                assert np.array_equiv(ar, cur)

                return 1, self.parse_array(cur)[1] 
点赞