Python numpy.setxor1d() 使用实例

The following are code examples for showing how to use . They are extracted from open source Python projects. You can vote up the examples you like or vote down the exmaples you don’t like. You can also save this page to your account.

Example 1

def sampleYes(array, N):
    """Sample without replacement N points from an array of XY coordinates.

    Args:
        array: 2D numpy array of XY points.
        N: Integer number of points to sample without replacement from
            input array.

    Returns:
        Tuple of (sampled points, unsampled points).

    """

    # array is a Mx2 array of X,Y points
    m, n = array.shape
    allidx = np.arange(0, m)
    sampleidx = np.random.choice(allidx, size=N, replace=False)
    nosampleidx = np.setxor1d(allidx, sampleidx)
    sampled = array[sampleidx, :]
    notsampled = array[nosampleidx, :]
    return (sampled, notsampled) 

Example 2

def test_boolean_spheres_overlap():
    r"""Test to make sure that boolean objects (spheres, overlap)
    behave the way we expect.

    Test overlapping spheres.
    """
    ds = fake_amr_ds()
    sp1 = ds.sphere([0.45, 0.45, 0.45], 0.15)
    sp2 = ds.sphere([0.55, 0.55, 0.55], 0.15)
    # Get indices of both.
    i1 = sp1["index","morton_index"]
    i2 = sp2["index","morton_index"]
    # Make some booleans
    bo1 = sp1 & sp2
    bo2 = sp1 - sp2
    bo3 = sp1 | sp2
    bo4 = ds.union([sp1, sp2])
    bo5 = ds.intersection([sp1, sp2])
    # Now make sure the indices also behave as we expect.
    lens = np.intersect1d(i1, i2)
    apple = np.setdiff1d(i1, i2)
    both = np.union1d(i1, i2)
    b1 = bo1["index","morton_index"]
    b1.sort()
    b2 = bo2["index","morton_index"]
    b2.sort()
    b3 = bo3["index","morton_index"]
    b3.sort()
    assert_array_equal(b1, lens)
    assert_array_equal(b2, apple)
    assert_array_equal(b3, both)
    b4 = bo4["index","morton_index"]
    b4.sort()
    b5 = bo5["index","morton_index"]
    b5.sort()
    assert_array_equal(b3, b4)
    assert_array_equal(b1, b5)
    bo6 = sp1 ^ sp2
    b6 = bo6["index", "morton_index"]
    b6.sort()
    assert_array_equal(b6, np.setxor1d(i1, i2)) 

Example 3

def test_boolean_regions_overlap():
    r"""Test to make sure that boolean objects (regions, overlap)
    behave the way we expect.

    Test overlapping regions.
    """
    ds = fake_amr_ds()
    re1 = ds.region([0.55]*3, [0.5]*3, [0.6]*3)
    re2 = ds.region([0.6]*3, [0.55]*3, [0.65]*3)
    # Get indices of both.
    i1 = re1["index","morton_index"]
    i2 = re2["index","morton_index"]
    # Make some booleans
    bo1 = re1 & re2
    bo2 = re1 - re2
    bo3 = re1 | re2
    bo4 = ds.union([re1, re2])
    bo5 = ds.intersection([re1, re2])
    # Now make sure the indices also behave as we expect.
    cube = np.intersect1d(i1, i2)
    bite_cube = np.setdiff1d(i1, i2)
    both = np.union1d(i1, i2)
    b1 = bo1["index","morton_index"]
    b1.sort()
    b2 = bo2["index","morton_index"]
    b2.sort()
    b3 = bo3["index","morton_index"]
    b3.sort()
    assert_array_equal(b1, cube)
    assert_array_equal(b2, bite_cube)
    assert_array_equal(b3, both)
    b4 = bo4["index","morton_index"]
    b4.sort()
    b5 = bo5["index","morton_index"]
    b5.sort()
    assert_array_equal(b3, b4)
    assert_array_equal(b1, b5)
    bo6 = re1 ^ re2
    b6 = bo6["index", "morton_index"]
    b6.sort()
    assert_array_equal(b6, np.setxor1d(i1, i2)) 

Example 4

def test_boolean_ellipsoids_overlap():
    r"""Test to make sure that boolean objects (ellipsoids, overlap)
    behave the way we expect.

    Test overlapping ellipsoids.
    """
    ds = fake_amr_ds()
    ell1 = ds.ellipsoid([0.45]*3, 0.05, 0.05, 0.05, np.array([0.1]*3), 0.1)
    ell2 = ds.ellipsoid([0.55]*3, 0.05, 0.05, 0.05, np.array([0.1]*3), 0.1)
    # Get indices of both.
    i1 = ell1["index","morton_index"]
    i2 = ell2["index","morton_index"]
    # Make some booleans
    bo1 = ell1 & ell2
    bo2 = ell1 - ell2
    bo3 = ell1 | ell2
    bo4 = ds.union([ell1, ell2])
    bo5 = ds.intersection([ell1, ell2])
    # Now make sure the indices also behave as we expect.
    overlap = np.intersect1d(i1, i2)
    diff = np.setdiff1d(i1, i2)
    both = np.union1d(i1, i2)
    b1 = bo1["index","morton_index"]
    b1.sort()
    b2 = bo2["index","morton_index"]
    b2.sort()
    b3 = bo3["index","morton_index"]
    b3.sort()
    assert_array_equal(b1, overlap)
    assert_array_equal(b2, diff)
    assert_array_equal(b3, both)
    b4 = bo4["index","morton_index"]
    b4.sort()
    b5 = bo5["index","morton_index"]
    b5.sort()
    assert_array_equal(b3, b4)
    assert_array_equal(b1, b5)
    bo6 = ell1 ^ ell2
    b6 = bo6["index", "morton_index"]
    b6.sort()
    assert_array_equal(b6, np.setxor1d(i1, i2)) 

Example 5

def test_boolean_slices_overlap():
    r"""Test to make sure that boolean objects (slices, overlap)
    behave the way we expect.

    Test overlapping slices.
    """
    ds = fake_amr_ds()
    sl1 = ds.r[:,:,0.25]
    sl2 = ds.r[:,0.75,:]
    # Get indices of both.
    i1 = sl1["index","morton_index"]
    i2 = sl2["index","morton_index"]
    # Make some booleans
    bo1 = sl1 & sl2
    bo2 = sl1 - sl2
    bo3 = sl1 | sl2
    bo4 = ds.union([sl1, sl2])
    bo5 = ds.intersection([sl1, sl2])
    # Now make sure the indices also behave as we expect.
    line = np.intersect1d(i1, i2)
    orig = np.setdiff1d(i1, i2)
    both = np.union1d(i1, i2)
    b1 = bo1["index","morton_index"]
    b1.sort()
    b2 = bo2["index","morton_index"]
    b2.sort()
    b3 = bo3["index","morton_index"]
    b3.sort()
    assert_array_equal(b1, line)
    assert_array_equal(b2, orig)
    assert_array_equal(b3, both)
    b4 = bo4["index","morton_index"]
    b4.sort()
    b5 = bo5["index","morton_index"]
    b5.sort()
    assert_array_equal(b3, b4)
    assert_array_equal(b1, b5)
    bo6 = sl1 ^ sl2
    b6 = bo6["index", "morton_index"]
    b6.sort()
    assert_array_equal(b6, np.setxor1d(i1, i2)) 

Example 6

def sampleNo(xvar, yvar, N, avoididx):
    """
    Sample from pixels in mesh, excluding yes pixels and already sampled no
    pixels.

    Args:
        xvar: Numpy array of centers of all columns in mesh.
        yvar: Numpy array of centers of all rows in mesh.
        N: Number of no pixels to sample.
        avoididx: 1D array of indices from mesh that should NOT be sampled
            from.  Initially this will be the array of indices where the yes
            pixels are.

    Returns:
        Randomly chosen list of tuples of (x,y) coordinate points that are
        outside polygons.

    """

    # flattened array of all indices in mesh
    allidx = np.arange(0, len(xvar) * len(yvar))
    noidx = np.setxor1d(allidx, avoididx)  # allidx - avoididx
    nosampleidx = np.random.choice(noidx, size=N, replace=False)
    newavoididx = np.sort(np.hstack((avoididx, nosampleidx)))
    rowidx, colidx = np.unravel_index(nosampleidx, (len(yvar), len(xvar)))
    samples = []
    for row, col in zip(rowidx, colidx):
        xp = xvar[col]
        yp = yvar[row]
        samples.append((xp, yp))

    return (samples, newavoididx) 

Example 7

def setxor1d(ar1, ar2, assume_unique=False):
    """
    Find the set exclusive-or of two arrays.

    Return the sorted, unique values that are in only one (not both) of the
    input arrays.

    Parameters
    ----------
    ar1, ar2 : array_like
        Input arrays.
    assume_unique : bool
        If True, the input arrays are both assumed to be unique, which
        can speed up the calculation.  Default is False.

    Returns
    -------
    setxor1d : ndarray
        Sorted 1D array of unique values that are in only one of the input
        arrays.

    Examples
    --------
    >>> a = np.array([1, 2, 3, 2, 4])
    >>> b = np.array([2, 3, 5, 7, 5])
    >>> np.setxor1d(a,b)
    array([1, 4, 5, 7])

    """
    if not assume_unique:
        ar1 = unique(ar1)
        ar2 = unique(ar2)

    aux = np.concatenate((ar1, ar2))
    if aux.size == 0:
        return aux

    aux.sort()
#    flag = ediff1d( aux, to_end = 1, to_begin = 1 ) == 0
    flag = np.concatenate(([True], aux[1:] != aux[:-1], [True]))
#    flag2 = ediff1d( flag ) == 0
    flag2 = flag[1:] == flag[:-1]
    return aux[flag2] 

Example 8

def setxor1d(ar1, ar2, assume_unique=False):
    """
    Find the set exclusive-or of two arrays.

    Return the sorted, unique values that are in only one (not both) of the
    input arrays.

    Parameters
    ----------
    ar1, ar2 : array_like
        Input arrays.
    assume_unique : bool
        If True, the input arrays are both assumed to be unique, which
        can speed up the calculation.  Default is False.

    Returns
    -------
    setxor1d : ndarray
        Sorted 1D array of unique values that are in only one of the input
        arrays.

    Examples
    --------
    >>> a = np.array([1, 2, 3, 2, 4])
    >>> b = np.array([2, 3, 5, 7, 5])
    >>> np.setxor1d(a,b)
    array([1, 4, 5, 7])

    """
    if not assume_unique:
        ar1 = unique(ar1)
        ar2 = unique(ar2)

    aux = np.concatenate((ar1, ar2))
    if aux.size == 0:
        return aux

    aux.sort()
#    flag = ediff1d( aux, to_end = 1, to_begin = 1 ) == 0
    flag = np.concatenate(([True], aux[1:] != aux[:-1], [True]))
#    flag2 = ediff1d( flag ) == 0
    flag2 = flag[1:] == flag[:-1]
    return aux[flag2] 

Example 9

def test_boolean_spheres_no_overlap():
    r"""Test to make sure that boolean objects (spheres, no overlap)
    behave the way we expect.

    Test non-overlapping spheres. This also checks that the original spheres
    don't change as part of constructing the booleans.
    """
    ds = fake_amr_ds()
    sp1 = ds.sphere([0.25, 0.25, 0.25], 0.15)
    sp2 = ds.sphere([0.75, 0.75, 0.75], 0.15)
    # Store the original indices
    i1 = sp1["index","morton_index"]
    i1.sort()
    i2 = sp2["index","morton_index"]
    i2.sort()
    ii = np.concatenate((i1, i2))
    ii.sort()
    # Make some booleans
    bo1 = sp1 & sp2
    bo2 = sp1 - sp2
    bo3 = sp1 | sp2 # also works with +
    bo4 = ds.union([sp1, sp2])
    bo5 = ds.intersection([sp1, sp2])
    # This makes sure the original containers didn't change.
    new_i1 = sp1["index","morton_index"]
    new_i1.sort()
    new_i2 = sp2["index","morton_index"]
    new_i2.sort()
    assert_array_equal(new_i1, i1)
    assert_array_equal(new_i2, i2)
    # Now make sure the indices also behave as we expect.
    empty = np.array([])
    assert_array_equal(bo1["index","morton_index"], empty)
    assert_array_equal(bo5["index","morton_index"], empty)
    b2 = bo2["index","morton_index"]
    b2.sort()
    assert_array_equal(b2, i1)
    b3 = bo3["index","morton_index"]
    b3.sort()
    assert_array_equal(b3, ii)
    b4 = bo4["index","morton_index"]
    b4.sort()
    assert_array_equal(b4, ii)
    bo6 = sp1 ^ sp2
    b6 = bo6["index", "morton_index"]
    b6.sort()
    assert_array_equal(b6, np.setxor1d(i1, i2)) 

Example 10

def test_boolean_regions_no_overlap():
    r"""Test to make sure that boolean objects (regions, no overlap)
    behave the way we expect.

    Test non-overlapping regions. This also checks that the original regions
    don't change as part of constructing the booleans.
    """
    ds = fake_amr_ds()
    re1 = ds.region([0.25]*3, [0.2]*3, [0.3]*3)
    re2 = ds.region([0.65]*3, [0.6]*3, [0.7]*3)
    # Store the original indices
    i1 = re1["index","morton_index"]
    i1.sort()
    i2 = re2["index","morton_index"]
    i2.sort()
    ii = np.concatenate((i1, i2))
    ii.sort()
    # Make some booleans
    bo1 = re1 & re2
    bo2 = re1 - re2
    bo3 = re1 | re2
    bo4 = ds.union([re1, re2])
    bo5 = ds.intersection([re1, re2])
    # This makes sure the original containers didn't change.
    new_i1 = re1["index","morton_index"]
    new_i1.sort()
    new_i2 = re2["index","morton_index"]
    new_i2.sort()
    assert_array_equal(new_i1, i1)
    assert_array_equal(new_i2, i2)
    # Now make sure the indices also behave as we expect.
    empty = np.array([])
    assert_array_equal(bo1["index","morton_index"], empty)
    assert_array_equal(bo5["index","morton_index"], empty)
    b2 = bo2["index","morton_index"]
    b2.sort()
    assert_array_equal(b2, i1 )
    b3 = bo3["index","morton_index"]
    b3.sort()
    assert_array_equal(b3, ii)
    b4 = bo4["index","morton_index"]
    b4.sort()
    b5 = bo5["index","morton_index"]
    b5.sort()
    assert_array_equal(b3, b4)
    bo6 = re1 ^ re2
    b6 = bo6["index", "morton_index"]
    b6.sort()
    assert_array_equal(b6, np.setxor1d(i1, i2)) 

Example 11

def test_boolean_cylinders_no_overlap():
    r"""Test to make sure that boolean objects (cylinders, no overlap)
    behave the way we expect.

    Test non-overlapping cylinders. This also checks that the original cylinders
    don't change as part of constructing the booleans.
    """
    ds = fake_amr_ds()
    cyl1 = ds.disk([0.25]*3, [1, 0, 0], 0.1, 0.1)
    cyl2 = ds.disk([0.75]*3, [1, 0, 0], 0.1, 0.1)
    # Store the original indices
    i1 = cyl1["index","morton_index"]
    i1.sort()
    i2 = cyl2["index","morton_index"]
    i2.sort()
    ii = np.concatenate((i1, i2))
    ii.sort()
    # Make some booleans
    bo1 = cyl1 & cyl2
    bo2 = cyl1 - cyl2
    bo3 = cyl1 | cyl2
    bo4 = ds.union([cyl1, cyl2])
    bo5 = ds.intersection([cyl1, cyl2])
    # This makes sure the original containers didn't change.
    new_i1 = cyl1["index","morton_index"]
    new_i1.sort()
    new_i2 = cyl2["index","morton_index"]
    new_i2.sort()
    assert_array_equal(new_i1, i1)
    assert_array_equal(new_i2, i2)
    # Now make sure the indices also behave as we expect.
    empty = np.array([])
    assert_array_equal(bo1["index","morton_index"], empty)
    assert_array_equal(bo5["index","morton_index"], empty)
    b2 = bo2["index","morton_index"]
    b2.sort()
    assert_array_equal(b2, i1)
    b3 = bo3["index","morton_index"]
    b3.sort()
    assert_array_equal(b3, ii)
    b4 = bo4["index","morton_index"]
    b4.sort()
    b5 = bo5["index","morton_index"]
    b5.sort()
    assert_array_equal(b3, b4)
    bo6 = cyl1 ^ cyl2
    b6 = bo6["index", "morton_index"]
    b6.sort()
    assert_array_equal(b6, np.setxor1d(i1, i2)) 

Example 12

def test_boolean_ellipsoids_no_overlap():
    r"""Test to make sure that boolean objects (ellipsoids, no overlap)
    behave the way we expect.

    Test non-overlapping ellipsoids. This also checks that the original
    ellipsoids don't change as part of constructing the booleans.
    """
    ds = fake_amr_ds()
    ell1 = ds.ellipsoid([0.25]*3, 0.05, 0.05, 0.05, np.array([0.1]*3), 0.1)
    ell2 = ds.ellipsoid([0.75]*3, 0.05, 0.05, 0.05, np.array([0.1]*3), 0.1)
    # Store the original indices
    i1 = ell1["index","morton_index"]
    i1.sort()
    i2 = ell2["index","morton_index"]
    i2.sort()
    ii = np.concatenate((i1, i2))
    ii.sort()
    # Make some booleans
    bo1 = ell1 & ell2
    bo2 = ell1 - ell2
    bo3 = ell1 | ell2
    bo4 = ds.union([ell1, ell2])
    bo5 = ds.intersection([ell1, ell2])
    # This makes sure the original containers didn't change.
    new_i1 = ell1["index","morton_index"]
    new_i1.sort()
    new_i2 = ell2["index","morton_index"]
    new_i2.sort()
    assert_array_equal(new_i1, i1 )
    assert_array_equal(new_i2, i2)
    # Now make sure the indices also behave as we expect.
    empty = np.array([])
    assert_array_equal(bo1["index","morton_index"], empty)
    assert_array_equal(bo5["index","morton_index"], empty)
    b2 = bo2["index","morton_index"]
    b2.sort()
    assert_array_equal(b2, i1)
    b3 = bo3["index","morton_index"]
    b3.sort()
    assert_array_equal(b3, ii)
    b4 = bo4["index","morton_index"]
    b4.sort()
    b5 = bo5["index","morton_index"]
    b5.sort()
    assert_array_equal(b3, b4)
    bo6 = ell1 ^ ell2
    b6 = bo6["index", "morton_index"]
    b6.sort()
    assert_array_equal(b6, np.setxor1d(i1, i2)) 

Example 13

def test_boolean_mix_periodicity():
    r"""Test that a hybrid boolean region behaves as we expect.

    This also tests nested logic and that periodicity works.
    """
    ds = fake_amr_ds()
    re = ds.region([0.5]*3, [0.0]*3, [1]*3) # whole thing
    sp = ds.sphere([0.95]*3, 0.3) # wraps around
    cyl = ds.disk([0.05]*3, [1,1,1], 0.1, 0.4) # wraps around
    # Get original indices
    rei = re["index","morton_index"]
    spi = sp["index","morton_index"]
    cyli = cyl["index","morton_index"]
    # Make some booleans
    # whole box minux spherical bites at corners
    bo1 = re - sp
    # sphere plus cylinder
    bo2 = sp | cyl
    # a jumble, the region minus the sp+cyl
    bo3 = re - (sp | cyl)
    # Now make sure the indices also behave as we expect.
    bo4 = ds.union([re, sp, cyl])
    bo5 = ds.intersection([re, sp, cyl])
    expect = np.setdiff1d(rei, spi)
    ii = bo1["index","morton_index"]
    ii.sort()
    assert_array_equal(expect, ii)
    #
    expect = np.union1d(spi, cyli)
    ii = bo2["index","morton_index"]
    ii.sort()
    assert_array_equal(expect, ii)
    #
    expect = np.union1d(spi, cyli)
    expect = np.setdiff1d(rei, expect)
    ii = bo3["index","morton_index"]
    ii.sort()
    assert_array_equal(expect, ii)
    b4 = bo4["index","morton_index"]
    b4.sort()
    b5 = bo5["index","morton_index"]
    b5.sort()
    ii = np.union1d(np.union1d(rei, cyli), spi)
    ii.sort()
    assert_array_equal(ii, b4)
    ii = np.intersect1d(np.intersect1d(rei, cyli), spi)
    ii.sort()
    assert_array_equal(ii, b5)

    bo6 = (re ^ sp) ^ cyl
    b6 = bo6["index", "morton_index"]
    b6.sort()
    assert_array_equal(b6, np.setxor1d(np.setxor1d(rei, spi), cyli)) 

Example 14

def test_boolean_ray_region_no_overlap():
    r"""Test to make sure that boolean objects (ray, region, no overlap)
    behave the way we expect.

    Test non-overlapping ray and region. This also checks that the original 
    objects don't change as part of constructing the booleans.
    """
    ds = fake_amr_ds()
    re = ds.box([0.25]*3, [0.75]*3)
    ra = ds.ray([0.1]*3, [0.1, 0.1, 0.9])
    # Store the original indices
    i1 = re["index","morton_index"]
    i1.sort()
    i2 = ra["index","morton_index"]
    i2.sort()
    ii = np.concatenate((i1, i2))
    ii.sort()
    # Make some booleans
    bo1 = re & ra
    bo2 = re - ra
    bo3 = re | ra
    bo4 = ds.union([re, ra])
    bo5 = ds.intersection([re, ra])
    # This makes sure the original containers didn't change.
    new_i1 = re["index","morton_index"]
    new_i1.sort()
    new_i2 = ra["index","morton_index"]
    new_i2.sort()
    assert_array_equal(new_i1, i1)
    assert_array_equal(new_i2, i2)
    # Now make sure the indices also behave as we expect.
    empty = np.array([])
    assert_array_equal(bo1["index","morton_index"], empty)
    assert_array_equal(bo5["index","morton_index"], empty)
    b2 = bo2["index","morton_index"]
    b2.sort()
    assert_array_equal(b2, i1 )
    b3 = bo3["index","morton_index"]
    b3.sort()
    assert_array_equal(b3, ii)
    b4 = bo4["index","morton_index"]
    b4.sort()
    b5 = bo5["index","morton_index"]
    b5.sort()
    assert_array_equal(b3, b4)
    bo6 = re ^ ra
    b6 = bo6["index", "morton_index"]
    b6.sort()
    assert_array_equal(b6, np.setxor1d(i1, i2)) 

Example 15

def test_boolean_ray_region_overlap():
    r"""Test to make sure that boolean objects (ray, region, overlap)
    behave the way we expect.

    Test overlapping ray and region. This also checks that the original 
    objects don't change as part of constructing the booleans.
    """
    ds = fake_amr_ds()
    re = ds.box([0.25]*3, [0.75]*3)
    ra = ds.ray([0]*3, [1]*3)
    # Get indices of both.
    i1 = re["index","morton_index"]
    i2 = ra["index","morton_index"]
    # Make some booleans
    bo1 = re & ra
    bo2 = re - ra
    bo3 = re | ra
    bo4 = ds.union([re, ra])
    bo5 = ds.intersection([re, ra])
    # Now make sure the indices also behave as we expect.
    short_line = np.intersect1d(i1, i2)
    cube_minus_line = np.setdiff1d(i1, i2)
    both = np.union1d(i1, i2)
    b1 = bo1["index","morton_index"]
    b1.sort()
    b2 = bo2["index","morton_index"]
    b2.sort()
    b3 = bo3["index","morton_index"]
    b3.sort()
    assert_array_equal(b1, short_line)
    assert_array_equal(b2, cube_minus_line)
    assert_array_equal(b3, both)
    b4 = bo4["index","morton_index"]
    b4.sort()
    b5 = bo5["index","morton_index"]
    b5.sort()
    assert_array_equal(b3, b4)
    assert_array_equal(b1, b5)
    bo6 = re ^ ra
    b6 = bo6["index", "morton_index"]
    b6.sort()
    assert_array_equal(b6, np.setxor1d(i1, i2)) 

Example 16

def test_boolean_rays_overlap():
    r"""Test to make sure that boolean objects (rays, overlap)
    behave the way we expect.

    Test non-overlapping rays.
    """
    ds = fake_amr_ds()
    ra1 = ds.ray([0]*3, [1]*3)
    ra2 = ds.ray([0]*3, [0.5]*3)
    # Get indices of both.
    i1 = ra1["index","morton_index"]
    i1.sort()
    i2 = ra2["index","morton_index"]
    i2.sort()
    ii = np.concatenate((i1, i2))
    ii.sort()
    # Make some booleans
    bo1 = ra1 & ra2
    bo2 = ra1 - ra2
    bo3 = ra1 | ra2
    bo4 = ds.union([ra1, ra2])
    bo5 = ds.intersection([ra1, ra2])
    # Now make sure the indices also behave as we expect.
    short_line = np.intersect1d(i1, i2)
    short_line_b = np.setdiff1d(i1, i2)
    full_line = np.union1d(i1, i2)
    b1 = bo1["index","morton_index"]
    b1.sort()
    b2 = bo2["index","morton_index"]
    b2.sort()
    b3 = bo3["index","morton_index"]
    b3.sort()
    assert_array_equal(b1, short_line)
    assert_array_equal(b2, short_line_b)
    assert_array_equal(b3, full_line)
    b4 = bo4["index","morton_index"]
    b4.sort()
    b5 = bo5["index","morton_index"]
    b5.sort()
    assert_array_equal(b3, i1)
    assert_array_equal(b3, b4)
    assert_array_equal(b1, b5)
    bo6 = ra1 ^ ra2
    b6 = bo6["index", "morton_index"]
    b6.sort()
    assert_array_equal(b6, np.setxor1d(i1, i2)) 

Example 17

def test_boolean_slices_no_overlap():
    r"""Test to make sure that boolean objects (slices, no overlap)
    behave the way we expect.

    Test non-overlapping slices. This also checks that the original regions
    don't change as part of constructing the booleans.
    """
    ds = fake_amr_ds()
    sl1 = ds.r[:,:,0.25]
    sl2 = ds.r[:,:,0.75]
    # Store the original indices
    i1 = sl1["index","morton_index"]
    i1.sort()
    i2 = sl2["index","morton_index"]
    i2.sort()
    ii = np.concatenate((i1, i2))
    ii.sort()
    # Make some booleans
    bo1 = sl1 & sl2
    bo2 = sl1 - sl2
    bo3 = sl1 | sl2
    bo4 = ds.union([sl1, sl2])
    bo5 = ds.intersection([sl1, sl2])
    # This makes sure the original containers didn't change.
    new_i1 = sl1["index","morton_index"]
    new_i1.sort()
    new_i2 = sl2["index","morton_index"]
    new_i2.sort()
    assert_array_equal(new_i1, i1)
    assert_array_equal(new_i2, i2)
    # Now make sure the indices also behave as we expect.
    empty = np.array([])
    assert_array_equal(bo1["index","morton_index"], empty)
    assert_array_equal(bo5["index","morton_index"], empty)
    b2 = bo2["index","morton_index"]
    b2.sort()
    assert_array_equal(b2, i1 )
    b3 = bo3["index","morton_index"]
    b3.sort()
    assert_array_equal(b3, ii)
    b4 = bo4["index","morton_index"]
    b4.sort()
    b5 = bo5["index","morton_index"]
    b5.sort()
    assert_array_equal(b3, b4)
    bo6 = sl1 ^ sl2
    b6 = bo6["index", "morton_index"]
    b6.sort()
    assert_array_equal(b6, np.setxor1d(i1, i2)) 

Example 18

def test_boolean_ray_slice_no_overlap():
    r"""Test to make sure that boolean objects (ray, slice, no overlap)
    behave the way we expect.

    Test non-overlapping ray and slice. This also checks that the original 
    regions don't change as part of constructing the booleans.
    """
    ds = fake_amr_ds()
    sl = ds.r[:,:,0.25]
    ra = ds.ray([0]*3, [0, 1, 0])
    # Store the original indices
    i1 = sl["index","morton_index"]
    i1.sort()
    i2 = ra["index","morton_index"]
    i2.sort()
    ii = np.concatenate((i1, i2))
    ii.sort()
    # Make some booleans
    bo1 = sl & ra
    bo2 = sl - ra
    bo3 = sl | ra
    bo4 = ds.union([sl, ra])
    bo5 = ds.intersection([sl, ra])
    # This makes sure the original containers didn't change.
    new_i1 = sl["index","morton_index"]
    new_i1.sort()
    new_i2 = ra["index","morton_index"]
    new_i2.sort()
    assert_array_equal(new_i1, i1)
    assert_array_equal(new_i2, i2)
    # Now make sure the indices also behave as we expect.
    empty = np.array([])
    assert_array_equal(bo1["index","morton_index"], empty)
    assert_array_equal(bo5["index","morton_index"], empty)
    b2 = bo2["index","morton_index"]
    b2.sort()
    assert_array_equal(b2, i1 )
    b3 = bo3["index","morton_index"]
    b3.sort()
    assert_array_equal(b3, ii)
    b4 = bo4["index","morton_index"]
    b4.sort()
    b5 = bo5["index","morton_index"]
    b5.sort()
    assert_array_equal(b3, b4)
    bo6 = sl ^ ra
    b6 = bo6["index", "morton_index"]
    b6.sort()
    assert_array_equal(b6, np.setxor1d(i1, i2)) 

Example 19

def test_boolean_ray_slice_overlap():
    r"""Test to make sure that boolean objects (rays and slices, overlap)
    behave the way we expect.

    Test overlapping rays and slices.
    """
    ds = fake_amr_ds()
    sl = ds.r[:,:,0.25]
    ra = ds.ray([0, 0, 0.25], [0, 1, 0.25])
    # Get indices of both.
    i1 = sl["index","morton_index"]
    i1.sort()
    i2 = ra["index","morton_index"]
    i1.sort()
    ii = np.concatenate((i1, i2))
    ii.sort()
    # Make some booleans
    bo1 = sl & ra
    bo2 = sl - ra
    bo3 = sl | ra
    bo4 = ds.union([sl, ra])
    bo5 = ds.intersection([sl, ra])
    # Now make sure the indices also behave as we expect.
    line = np.intersect1d(i1, i2)
    sheet_minus_line = np.setdiff1d(i1, i2)
    sheet = np.union1d(i1, i2)
    b1 = bo1["index","morton_index"]
    b1.sort()
    b2 = bo2["index","morton_index"]
    b2.sort()
    b3 = bo3["index","morton_index"]
    b3.sort()
    assert_array_equal(b1, line)
    assert_array_equal(b2, sheet_minus_line)
    assert_array_equal(b3, sheet)
    b4 = bo4["index","morton_index"]
    b4.sort()
    b5 = bo5["index","morton_index"]
    b5.sort()
    assert_array_equal(b3, i1)
    assert_array_equal(b3, b4)
    assert_array_equal(b1, b5)
    bo6 = sl ^ ra
    b6 = bo6["index", "morton_index"]
    b6.sort()
    assert_array_equal(b6, np.setxor1d(i1, i2)) 

Example 20

def setxor1d(ar1, ar2, assume_unique=False):
    """
    Find the set exclusive-or of two arrays.

    Return the sorted, unique values that are in only one (not both) of the
    input arrays.

    Parameters
    ----------
    ar1, ar2 : array_like
        Input arrays.
    assume_unique : bool
        If True, the input arrays are both assumed to be unique, which
        can speed up the calculation.  Default is False.

    Returns
    -------
    setxor1d : ndarray
        Sorted 1D array of unique values that are in only one of the input
        arrays.

    Examples
    --------
    >>> a = np.array([1, 2, 3, 2, 4])
    >>> b = np.array([2, 3, 5, 7, 5])
    >>> np.setxor1d(a,b)
    array([1, 4, 5, 7])

    """
    if not assume_unique:
        ar1 = unique(ar1)
        ar2 = unique(ar2)

    aux = np.concatenate((ar1, ar2))
    if aux.size == 0:
        return aux

    aux.sort()
#    flag = ediff1d( aux, to_end = 1, to_begin = 1 ) == 0
    flag = np.concatenate(([True], aux[1:] != aux[:-1], [True]))
#    flag2 = ediff1d( flag ) == 0
    flag2 = flag[1:] == flag[:-1]
    return aux[flag2] 

Example 21

def setxor1d(ar1, ar2, assume_unique=False):
    """
    Find the set exclusive-or of two arrays.

    Return the sorted, unique values that are in only one (not both) of the
    input arrays.

    Parameters
    ----------
    ar1, ar2 : array_like
        Input arrays.
    assume_unique : bool
        If True, the input arrays are both assumed to be unique, which
        can speed up the calculation.  Default is False.

    Returns
    -------
    setxor1d : ndarray
        Sorted 1D array of unique values that are in only one of the input
        arrays.

    Examples
    --------
    >>> a = np.array([1, 2, 3, 2, 4])
    >>> b = np.array([2, 3, 5, 7, 5])
    >>> np.setxor1d(a,b)
    array([1, 4, 5, 7])

    """
    if not assume_unique:
        ar1 = unique(ar1)
        ar2 = unique(ar2)

    aux = np.concatenate((ar1, ar2))
    if aux.size == 0:
        return aux

    aux.sort()
#    flag = ediff1d( aux, to_end = 1, to_begin = 1 ) == 0
    flag = np.concatenate(([True], aux[1:] != aux[:-1], [True]))
#    flag2 = ediff1d( flag ) == 0
    flag2 = flag[1:] == flag[:-1]
    return aux[flag2] 

Example 22

def setxor1d(ar1, ar2, assume_unique=False):
    """
    Find the set exclusive-or of two arrays.

    Return the sorted, unique values that are in only one (not both) of the
    input arrays.

    Parameters
    ----------
    ar1, ar2 : array_like
        Input arrays.
    assume_unique : bool
        If True, the input arrays are both assumed to be unique, which
        can speed up the calculation.  Default is False.

    Returns
    -------
    setxor1d : ndarray
        Sorted 1D array of unique values that are in only one of the input
        arrays.

    Examples
    --------
    >>> a = np.array([1, 2, 3, 2, 4])
    >>> b = np.array([2, 3, 5, 7, 5])
    >>> np.setxor1d(a,b)
    array([1, 4, 5, 7])

    """
    if not assume_unique:
        ar1 = unique(ar1)
        ar2 = unique(ar2)

    aux = np.concatenate((ar1, ar2))
    if aux.size == 0:
        return aux

    aux.sort()
#    flag = ediff1d( aux, to_end = 1, to_begin = 1 ) == 0
    flag = np.concatenate(([True], aux[1:] != aux[:-1], [True]))
#    flag2 = ediff1d( flag ) == 0
    flag2 = flag[1:] == flag[:-1]
    return aux[flag2] 

Example 23

def setxor1d(ar1, ar2, assume_unique=False):
    """
    Find the set exclusive-or of two arrays.

    Return the sorted, unique values that are in only one (not both) of the
    input arrays.

    Parameters
    ----------
    ar1, ar2 : array_like
        Input arrays.
    assume_unique : bool
        If True, the input arrays are both assumed to be unique, which
        can speed up the calculation.  Default is False.

    Returns
    -------
    setxor1d : ndarray
        Sorted 1D array of unique values that are in only one of the input
        arrays.

    Examples
    --------
    >>> a = np.array([1, 2, 3, 2, 4])
    >>> b = np.array([2, 3, 5, 7, 5])
    >>> np.setxor1d(a,b)
    array([1, 4, 5, 7])

    """
    if not assume_unique:
        ar1 = unique(ar1)
        ar2 = unique(ar2)

    aux = np.concatenate((ar1, ar2))
    if aux.size == 0:
        return aux

    aux.sort()
#    flag = ediff1d( aux, to_end = 1, to_begin = 1 ) == 0
    flag = np.concatenate(([True], aux[1:] != aux[:-1], [True]))
#    flag2 = ediff1d( flag ) == 0
    flag2 = flag[1:] == flag[:-1]
    return aux[flag2] 
点赞