The following are code examples for showing how to use . They are extracted from open source Python projects. You can vote up the examples you like or vote down the exmaples you don’t like. You can also save this page to your account.
Example 1
def kernel(self, X, Y=None): """ Computes the hypercube kerpy k(x,y)=tanh(gamma)^d(x,y), where d is the Hamming distance between x and y X - 2d numpy.bool8 array, samples on right left side Y - 2d numpy.bool8 array, samples on left hand side. Can be None in which case its replaced by X """ if not type(X) is numpy.ndarray: raise TypeError("X must be numpy array") if not len(X.shape) == 2: raise ValueError("X must be 2D numpy array") if not X.dtype == numpy.bool8: raise ValueError("X must be boolean numpy array") if not Y is None: if not type(Y) is numpy.ndarray: raise TypeError("Y must be None or numpy array") if not len(Y.shape) == 2: raise ValueError("Y must be None or 2D numpy array") if not Y.dtype == numpy.bool8: raise ValueError("Y must be boolean numpy array") if not X.shape[1] == Y.shape[1]: raise ValueError("X and Y must have same dimension if Y is not None") # un-normalise normalised hamming distance in both cases if Y is None: K = tanh(self.gamma) ** squareform(pdist(X, 'hamming') * X.shape[1]) else: K = tanh(self.gamma) ** (cdist(X, Y, 'hamming') * X.shape[1]) return K
Example 2
def test_bool_types(self): _skip_if_no_xlrd() for np_type in (np.bool8, np.bool_): with ensure_clean(self.ext) as path: # Test np.bool values read come back as float. frame = (DataFrame([1, 0, True, False], dtype=np_type)) frame.to_excel(path, 'test1') reader = ExcelFile(path) recons = read_excel(reader, 'test1').astype(np_type) tm.assert_frame_equal(frame, recons)
Example 3
def __read_segment_list_v9(self): """ Read a list of Segments with comments. This is version 9 of the data sequence. This is the same as __read_segment_list_v8, but contains some additional annotations. These annotations are added to the Segment. -------------------------------------------------------- Returns a list of the Segments created with this method. The returned objects are already added to the Block. ID: 29120 """ # segment_collection_v8 -- this is based off a segment_collection_v8 segments = self.__read_segment_list_v8() # uint8 feature_type = np.fromfile(self._fsrc, dtype=np.uint8, count=1)[0] # uint8 go_by_closest_unit_center = np.fromfile(self._fsrc, dtype=np.bool8, count=1)[0] # uint8 include_unit_bounds = np.fromfile(self._fsrc, dtype=np.bool8, count=1)[0] # create a dictionary of the annotations annotations = {'feature_type': feature_type, 'go_by_closest_unit_center': go_by_closest_unit_center, 'include_unit_bounds': include_unit_bounds} # add the annotations to each Segment for segment in segments: segment.annotations.update(annotations) return segments
Example 4
def __read_segment_list_v9(self): """ Read a list of Segments with comments. This is version 9 of the data sequence. This is the same as __read_segment_list_v8, but contains some additional annotations. These annotations are added to the Segment. -------------------------------------------------------- Returns a list of the Segments created with this method. The returned objects are already added to the Block. ID: 29120 """ # segment_collection_v8 -- this is based off a segment_collection_v8 segments = self.__read_segment_list_v8() # uint8 feature_type = np.fromfile(self._fsrc, dtype=np.uint8, count=1)[0] # uint8 go_by_closest_unit_center = np.fromfile(self._fsrc, dtype=np.bool8, count=1)[0] # uint8 include_unit_bounds = np.fromfile(self._fsrc, dtype=np.bool8, count=1)[0] # create a dictionary of the annotations annotations = {'feature_type': feature_type, 'go_by_closest_unit_center': go_by_closest_unit_center, 'include_unit_bounds': include_unit_bounds} # add the annotations to each Segment for segment in segments: segment.annotations.update(annotations) return segments
Example 5
def omit_hsp_points(self, distance=0, reset=False): """Exclude head shape points that are far away from the MRI head Parameters ---------- distance : float Exclude all points that are further away from the MRI head than this distance. Previously excluded points are still excluded unless reset=True is specified. A value of distance <= 0 excludes nothing. reset : bool Reset the filter before calculating new omission (default is False). """ distance = float(distance) if reset: logger.info("Coregistration: Reset excluded head shape points") with warnings.catch_warnings(record=True): # Traits None comp self.hsp.points_filter = None if distance <= 0: return # find the new filter hsp_pts = self.transformed_hsp_points mri_pts = self.transformed_mri_points point_distance = _point_cloud_error(hsp_pts, mri_pts) new_sub_filter = point_distance <= distance n_excluded = np.sum(new_sub_filter == False) # noqa logger.info("Coregistration: Excluding %i head shape points with " "distance >= %.3f m.", n_excluded, distance) # combine the new filter with the previous filter old_filter = self.hsp.points_filter if old_filter is None: new_filter = new_sub_filter else: new_filter = np.ones(len(self.hsp.raw_points), np.bool8) new_filter[old_filter] = new_sub_filter # set the filter with warnings.catch_warnings(record=True): # comp to None in Traits self.hsp.points_filter = new_filter
Example 6
def execute(self): self.resulting_image = None f_first = True resimg = self.images_iterator.read_reference_image() shape = resimg.shape resimg.image[:] = 2**resimg.color_depth / 2 avrimg = Image(ishape=shape, dtype=resimg.dtype) std = np.zeros(shape[:2], dtype=resimg.dtype) + 2**resimg.color_depth dist = np.zeros(shape[:2], dtype=resimg.dtype) flags = np.zeros(shape[:2], dtype=np.bool8) iter_cnt = 5 for itr in range(iter_cnt): invalid_imgs = [] img_cnt = 0.0 for imgarr in self.images_iterator: if shape != imgarr.shape: self.images_iterator.discard_image() continue img_cnt += 1 dist[:] = np.sqrt( np.power(resimg.image[:, :, 0] - imgarr.image[:, :, 0], 2) + np.power(resimg.image[:, :, 1] - imgarr.image[:, :, 1], 2) + np.power(resimg.image[:, :, 2] - imgarr.image[:, :, 2], 2)) ca = time.clock() flags[:] = False flags[:] = dist[:] < std[:] / np.exp(np.float(itr) / 10.0) avrimg.image[flags] = avrimg.image[flags] + imgarr.image[flags] flags[:] = np.logical_not(flags) avrimg.image[flags] = avrimg.image[flags] + resimg.image[flags] cb = time.clock() print(cb - ca) resimg.image[:] = avrimg.image[:] / img_cnt std[:] = 0.0 for imgarr in self.images_iterator: std[:] = (std[:] + (np.power(resimg.image[:, :, 0] - imgarr.image[:, :, 0], 2) + np.power(resimg.image[:, :, 1] - imgarr.image[:, :, 1], 2) + np.power(resimg.image[:, :, 2] - imgarr.image[:, :, 2], 2))) std[:] = np.sqrt(std[:] / img_cnt) avrimg.image[:] = 0.0 self.resulting_image = resimg