Python numpy.bool8() 使用实例

The following are code examples for showing how to use . They are extracted from open source Python projects. You can vote up the examples you like or vote down the exmaples you don’t like. You can also save this page to your account.

Example 1

def kernel(self, X, Y=None):
        """
        Computes the hypercube kerpy k(x,y)=tanh(gamma)^d(x,y), where d is the
        Hamming distance between x and y
        
        X - 2d numpy.bool8 array, samples on right left side
        Y - 2d numpy.bool8 array, samples on left hand side.
            Can be None in which case its replaced by X
        """
        
        if not type(X) is numpy.ndarray:
            raise TypeError("X must be numpy array")
        
        if not len(X.shape) == 2:
            raise ValueError("X must be 2D numpy array")
        
        if not X.dtype == numpy.bool8:
            raise ValueError("X must be boolean numpy array")
        
        if not Y is None:
            if not type(Y) is numpy.ndarray:
                raise TypeError("Y must be None or numpy array")
            
            if not len(Y.shape) == 2:
                raise ValueError("Y must be None or 2D numpy array")
            
            if not Y.dtype == numpy.bool8:
                raise ValueError("Y must be boolean numpy array")
        
            if not X.shape[1] == Y.shape[1]:
                raise ValueError("X and Y must have same dimension if Y is not None")
        
        # un-normalise normalised hamming distance in both cases
        if Y is None:
            K = tanh(self.gamma) ** squareform(pdist(X, 'hamming') * X.shape[1])
        else:
            K = tanh(self.gamma) ** (cdist(X, Y, 'hamming') * X.shape[1])
            
        return K 

Example 2

def test_bool_types(self):
        _skip_if_no_xlrd()

        for np_type in (np.bool8, np.bool_):
            with ensure_clean(self.ext) as path:
                # Test np.bool values read come back as float.
                frame = (DataFrame([1, 0, True, False], dtype=np_type))
                frame.to_excel(path, 'test1')
                reader = ExcelFile(path)
                recons = read_excel(reader, 'test1').astype(np_type)
                tm.assert_frame_equal(frame, recons) 

Example 3

def __read_segment_list_v9(self):
        """
        Read a list of Segments with comments.

        This is version 9 of the data sequence.

        This is the same as __read_segment_list_v8, but contains some
        additional annotations.  These annotations are added to the Segment.

        --------------------------------------------------------
        Returns a list of the Segments created with this method.

        The returned objects are already added to the Block.

        ID: 29120
        """

        # segment_collection_v8 -- this is based off a segment_collection_v8
        segments = self.__read_segment_list_v8()

        # uint8
        feature_type = np.fromfile(self._fsrc, dtype=np.uint8,
                                   count=1)[0]

        # uint8
        go_by_closest_unit_center = np.fromfile(self._fsrc, dtype=np.bool8,
                                                count=1)[0]

        # uint8
        include_unit_bounds = np.fromfile(self._fsrc, dtype=np.bool8,
                                          count=1)[0]

        # create a dictionary of the annotations
        annotations = {'feature_type': feature_type,
                       'go_by_closest_unit_center': go_by_closest_unit_center,
                       'include_unit_bounds': include_unit_bounds}

        # add the annotations to each Segment
        for segment in segments:
            segment.annotations.update(annotations)

        return segments 

Example 4

def __read_segment_list_v9(self):
        """
        Read a list of Segments with comments.

        This is version 9 of the data sequence.

        This is the same as __read_segment_list_v8, but contains some
        additional annotations.  These annotations are added to the Segment.

        --------------------------------------------------------
        Returns a list of the Segments created with this method.

        The returned objects are already added to the Block.

        ID: 29120
        """

        # segment_collection_v8 -- this is based off a segment_collection_v8
        segments = self.__read_segment_list_v8()

        # uint8
        feature_type = np.fromfile(self._fsrc, dtype=np.uint8,
                                   count=1)[0]

        # uint8
        go_by_closest_unit_center = np.fromfile(self._fsrc, dtype=np.bool8,
                                                count=1)[0]

        # uint8
        include_unit_bounds = np.fromfile(self._fsrc, dtype=np.bool8,
                                          count=1)[0]

        # create a dictionary of the annotations
        annotations = {'feature_type': feature_type,
                       'go_by_closest_unit_center': go_by_closest_unit_center,
                       'include_unit_bounds': include_unit_bounds}

        # add the annotations to each Segment
        for segment in segments:
            segment.annotations.update(annotations)

        return segments 

Example 5

def omit_hsp_points(self, distance=0, reset=False):
        """Exclude head shape points that are far away from the MRI head

        Parameters
        ----------
        distance : float
            Exclude all points that are further away from the MRI head than
            this distance. Previously excluded points are still excluded unless
            reset=True is specified. A value of distance <= 0 excludes nothing.
        reset : bool
            Reset the filter before calculating new omission (default is
            False).
        """
        distance = float(distance)
        if reset:
            logger.info("Coregistration: Reset excluded head shape points")
            with warnings.catch_warnings(record=True):  # Traits None comp
                self.hsp.points_filter = None

        if distance <= 0:
            return

        # find the new filter
        hsp_pts = self.transformed_hsp_points
        mri_pts = self.transformed_mri_points
        point_distance = _point_cloud_error(hsp_pts, mri_pts)
        new_sub_filter = point_distance <= distance
        n_excluded = np.sum(new_sub_filter == False)  # noqa
        logger.info("Coregistration: Excluding %i head shape points with "
                    "distance >= %.3f m.", n_excluded, distance)

        # combine the new filter with the previous filter
        old_filter = self.hsp.points_filter
        if old_filter is None:
            new_filter = new_sub_filter
        else:
            new_filter = np.ones(len(self.hsp.raw_points), np.bool8)
            new_filter[old_filter] = new_sub_filter

        # set the filter
        with warnings.catch_warnings(record=True):  # comp to None in Traits
            self.hsp.points_filter = new_filter 

Example 6

def execute(self):
        self.resulting_image = None
        f_first = True

        resimg = self.images_iterator.read_reference_image()
        shape = resimg.shape

        resimg.image[:] = 2**resimg.color_depth / 2
        avrimg = Image(ishape=shape, dtype=resimg.dtype)
        std = np.zeros(shape[:2], dtype=resimg.dtype) + 2**resimg.color_depth

        dist = np.zeros(shape[:2], dtype=resimg.dtype)
        flags = np.zeros(shape[:2], dtype=np.bool8)

        iter_cnt = 5

        for itr in range(iter_cnt):
            invalid_imgs = []
            img_cnt = 0.0

            for imgarr in self.images_iterator:

                if shape != imgarr.shape:
                    self.images_iterator.discard_image()
                    continue

                img_cnt += 1

                dist[:] = np.sqrt(
                    np.power(resimg.image[:, :, 0] - imgarr.image[:, :, 0], 2) +
                    np.power(resimg.image[:, :, 1] - imgarr.image[:, :, 1], 2) +
                    np.power(resimg.image[:, :, 2] - imgarr.image[:, :, 2], 2))

                ca = time.clock()
                flags[:] = False
                flags[:] = dist[:] < std[:] / np.exp(np.float(itr) / 10.0)

                avrimg.image[flags] = avrimg.image[flags] + imgarr.image[flags]

                flags[:] = np.logical_not(flags)
                avrimg.image[flags] = avrimg.image[flags] + resimg.image[flags]

                cb = time.clock()
                print(cb - ca)

            resimg.image[:] = avrimg.image[:] / img_cnt
            std[:] = 0.0

            for imgarr in self.images_iterator:

                std[:] = (std[:] +
                          (np.power(resimg.image[:, :, 0] - imgarr.image[:, :, 0], 2) +
                           np.power(resimg.image[:, :, 1] - imgarr.image[:, :, 1], 2) +
                           np.power(resimg.image[:, :, 2] - imgarr.image[:, :, 2], 2)))

            std[:] = np.sqrt(std[:] / img_cnt)
            avrimg.image[:] = 0.0

        self.resulting_image = resimg 
点赞