Python numpy.nper() 使用实例

The following are code examples for showing how to use . They are extracted from open source Python projects. You can vote up the examples you like or vote down the exmaples you don’t like. You can also save this page to your account.

Example 1

def test_broadcast(self):
        assert_almost_equal(np.nper(0.075, -2000, 0, 100000., [0, 1]),
                            [21.5449442, 20.76156441], 4)

        assert_almost_equal(np.ipmt(0.1/12, list(range(5)), 24, 2000),
                            [-17.29165168, -16.66666667, -16.03647345,
                                -15.40102862, -14.76028842], 4)

        assert_almost_equal(np.ppmt(0.1/12, list(range(5)), 24, 2000),
                            [-74.998201, -75.62318601, -76.25337923,
                                -76.88882405, -77.52956425], 4)

        assert_almost_equal(np.ppmt(0.1/12, list(range(5)), 24, 2000, 0,
                                    [0, 0, 1, 'end', 'begin']),
                            [-74.998201, -75.62318601, -75.62318601,
                                -76.88882405, -76.88882405], 4) 

Example 2

def test_broadcast(self):
        assert_almost_equal(np.nper(0.075, -2000, 0, 100000., [0, 1]),
                            [21.5449442, 20.76156441], 4)

        assert_almost_equal(np.ipmt(0.1/12, list(range(5)), 24, 2000),
                            [-17.29165168, -16.66666667, -16.03647345,
                                -15.40102862, -14.76028842], 4)

        assert_almost_equal(np.ppmt(0.1/12, list(range(5)), 24, 2000),
                            [-74.998201, -75.62318601, -76.25337923,
                                -76.88882405, -77.52956425], 4)

        assert_almost_equal(np.ppmt(0.1/12, list(range(5)), 24, 2000, 0,
                                    [0, 0, 1, 'end', 'begin']),
                            [-74.998201, -75.62318601, -75.62318601,
                                -76.88882405, -76.88882405], 4) 

Example 3

def test_broadcast(self):
        assert_almost_equal(np.nper(0.075, -2000, 0, 100000., [0, 1]),
                            [21.5449442, 20.76156441], 4)

        assert_almost_equal(np.ipmt(0.1/12, list(range(5)), 24, 2000),
                            [-17.29165168, -16.66666667, -16.03647345,
                                -15.40102862, -14.76028842], 4)

        assert_almost_equal(np.ppmt(0.1/12, list(range(5)), 24, 2000),
                            [-74.998201, -75.62318601, -76.25337923,
                                -76.88882405, -77.52956425], 4)

        assert_almost_equal(np.ppmt(0.1/12, list(range(5)), 24, 2000, 0,
                                    [0, 0, 1, 'end', 'begin']),
                            [-74.998201, -75.62318601, -75.62318601,
                                -76.88882405, -76.88882405], 4) 

Example 4

def test_broadcast(self):
        assert_almost_equal(np.nper(0.075, -2000, 0, 100000., [0, 1]),
                            [21.5449442, 20.76156441], 4)

        assert_almost_equal(np.ipmt(0.1/12, list(range(5)), 24, 2000),
                            [-17.29165168, -16.66666667, -16.03647345,
                                -15.40102862, -14.76028842], 4)

        assert_almost_equal(np.ppmt(0.1/12, list(range(5)), 24, 2000),
                            [-74.998201, -75.62318601, -76.25337923,
                                -76.88882405, -77.52956425], 4)

        assert_almost_equal(np.ppmt(0.1/12, list(range(5)), 24, 2000, 0,
                                    [0, 0, 1, 'end', 'begin']),
                            [-74.998201, -75.62318601, -75.62318601,
                                -76.88882405, -76.88882405], 4) 

Example 5

def test_broadcast(self):
        assert_almost_equal(np.nper(0.075, -2000, 0, 100000., [0, 1]),
                            [21.5449442, 20.76156441], 4)

        assert_almost_equal(np.ipmt(0.1/12, list(range(5)), 24, 2000),
                            [-17.29165168, -16.66666667, -16.03647345,
                                -15.40102862, -14.76028842], 4)

        assert_almost_equal(np.ppmt(0.1/12, list(range(5)), 24, 2000),
                            [-74.998201, -75.62318601, -76.25337923,
                                -76.88882405, -77.52956425], 4)

        assert_almost_equal(np.ppmt(0.1/12, list(range(5)), 24, 2000, 0,
                                    [0, 0, 1, 'end', 'begin']),
                            [-74.998201, -75.62318601, -75.62318601,
                                -76.88882405, -76.88882405], 4) 

Example 6

def test_broadcast(self):
        assert_almost_equal(np.nper(0.075, -2000, 0, 100000., [0, 1]),
                            [21.5449442, 20.76156441], 4)

        assert_almost_equal(np.ipmt(0.1/12, list(range(5)), 24, 2000),
                            [-17.29165168, -16.66666667, -16.03647345,
                                -15.40102862, -14.76028842], 4)

        assert_almost_equal(np.ppmt(0.1/12, list(range(5)), 24, 2000),
                            [-74.998201, -75.62318601, -76.25337923,
                                -76.88882405, -77.52956425], 4)

        assert_almost_equal(np.ppmt(0.1/12, list(range(5)), 24, 2000, 0,
                                    [0, 0, 1, 'end', 'begin']),
                            [-74.998201, -75.62318601, -75.62318601,
                                -76.88882405, -76.88882405], 4) 

Example 7

def test_nper(self):
        assert_almost_equal(np.nper(0.075, -2000, 0, 100000.),
                            21.54, 2) 

Example 8

def test_nper2(self):
        assert_almost_equal(np.nper(0.0, -2000, 0, 100000.),
                            50.0, 1) 

Example 9

def ppmt(rate, per, nper, pv, fv=0.0, when='end'):
    """
    Compute the payment against loan principal.

    Parameters
    ----------
    rate : array_like
        Rate of interest (per period)
    per : array_like, int
        Amount paid against the loan changes.  The `per` is the period of
        interest.
    nper : array_like
        Number of compounding periods
    pv : array_like
        Present value
    fv : array_like, optional
        Future value
    when : {{'begin', 1}, {'end', 0}}, {string, int}
        When payments are due ('begin' (1) or 'end' (0))

    See Also
    --------
    pmt, pv, ipmt

    """
    total = pmt(rate, nper, pv, fv, when)
    return total - ipmt(rate, per, nper, pv, fv, when) 

Example 10

def test_nper(self):
        assert_almost_equal(np.nper(0.075, -2000, 0, 100000.),
                            21.54, 2) 

Example 11

def test_nper2(self):
        assert_almost_equal(np.nper(0.0, -2000, 0, 100000.),
                            50.0, 1) 

Example 12

def ppmt(rate, per, nper, pv, fv=0.0, when='end'):
    """
    Compute the payment against loan principal.

    Parameters
    ----------
    rate : array_like
        Rate of interest (per period)
    per : array_like, int
        Amount paid against the loan changes.  The `per` is the period of
        interest.
    nper : array_like
        Number of compounding periods
    pv : array_like
        Present value
    fv : array_like, optional
        Future value
    when : {{'begin', 1}, {'end', 0}}, {string, int}
        When payments are due ('begin' (1) or 'end' (0))

    See Also
    --------
    pmt, pv, ipmt

    """
    total = pmt(rate, nper, pv, fv, when)
    return total - ipmt(rate, per, nper, pv, fv, when) 

Example 13

def test_nper(self):
        assert_almost_equal(np.nper(0.075, -2000, 0, 100000.),
                            21.54, 2) 

Example 14

def test_nper2(self):
        assert_almost_equal(np.nper(0.0, -2000, 0, 100000.),
                            50.0, 1) 

Example 15

def ppmt(rate, per, nper, pv, fv=0.0, when='end'):
    """
    Compute the payment against loan principal.

    Parameters
    ----------
    rate : array_like
        Rate of interest (per period)
    per : array_like, int
        Amount paid against the loan changes.  The `per` is the period of
        interest.
    nper : array_like
        Number of compounding periods
    pv : array_like
        Present value
    fv : array_like, optional
        Future value
    when : {{'begin', 1}, {'end', 0}}, {string, int}
        When payments are due ('begin' (1) or 'end' (0))

    See Also
    --------
    pmt, pv, ipmt

    """
    total = pmt(rate, nper, pv, fv, when)
    return total - ipmt(rate, per, nper, pv, fv, when) 

Example 16

def test_nper(self):
        assert_almost_equal(np.nper(0.075, -2000, 0, 100000.),
                            21.54, 2) 

Example 17

def test_nper2(self):
        assert_almost_equal(np.nper(0.0, -2000, 0, 100000.),
                            50.0, 1) 

Example 18

def ppmt(rate, per, nper, pv, fv=0.0, when='end'):
    """
    Compute the payment against loan principal.

    Parameters
    ----------
    rate : array_like
        Rate of interest (per period)
    per : array_like, int
        Amount paid against the loan changes.  The `per` is the period of
        interest.
    nper : array_like
        Number of compounding periods
    pv : array_like
        Present value
    fv : array_like, optional
        Future value
    when : {{'begin', 1}, {'end', 0}}, {string, int}
        When payments are due ('begin' (1) or 'end' (0))

    See Also
    --------
    pmt, pv, ipmt

    """
    total = pmt(rate, nper, pv, fv, when)
    return total - ipmt(rate, per, nper, pv, fv, when) 

Example 19

def test_nper(self):
        assert_almost_equal(np.nper(0.075, -2000, 0, 100000.),
                            21.54, 2) 

Example 20

def test_nper2(self):
        assert_almost_equal(np.nper(0.0, -2000, 0, 100000.),
                            50.0, 1) 

Example 21

def ppmt(rate, per, nper, pv, fv=0.0, when='end'):
    """
    Compute the payment against loan principal.

    Parameters
    ----------
    rate : array_like
        Rate of interest (per period)
    per : array_like, int
        Amount paid against the loan changes.  The `per` is the period of
        interest.
    nper : array_like
        Number of compounding periods
    pv : array_like
        Present value
    fv : array_like, optional
        Future value
    when : {{'begin', 1}, {'end', 0}}, {string, int}
        When payments are due ('begin' (1) or 'end' (0))

    See Also
    --------
    pmt, pv, ipmt

    """
    total = pmt(rate, nper, pv, fv, when)
    return total - ipmt(rate, per, nper, pv, fv, when) 

Example 22

def test_nper(self):
        assert_almost_equal(np.nper(0.075, -2000, 0, 100000.),
                            21.54, 2) 

Example 23

def test_nper2(self):
        assert_almost_equal(np.nper(0.0, -2000, 0, 100000.),
                            50.0, 1) 

Example 24

def ppmt(rate, per, nper, pv, fv=0.0, when='end'):
    """
    Compute the payment against loan principal.

    Parameters
    ----------
    rate : array_like
        Rate of interest (per period)
    per : array_like, int
        Amount paid against the loan changes.  The `per` is the period of
        interest.
    nper : array_like
        Number of compounding periods
    pv : array_like
        Present value
    fv : array_like, optional
        Future value
    when : {{'begin', 1}, {'end', 0}}, {string, int}
        When payments are due ('begin' (1) or 'end' (0))

    See Also
    --------
    pmt, pv, ipmt

    """
    total = pmt(rate, nper, pv, fv, when)
    return total - ipmt(rate, per, nper, pv, fv, when) 

Example 25

def rate(nper, pmt, pv, fv, when='end', guess=0.10, tol=1e-6, maxiter=100):
    """
    Compute the rate of interest per period.

    Parameters
    ----------
    nper : array_like
        Number of compounding periods
    pmt : array_like
        Payment
    pv : array_like
        Present value
    fv : array_like
        Future value
    when : {{'begin', 1}, {'end', 0}}, {string, int}, optional
        When payments are due ('begin' (1) or 'end' (0))
    guess : float, optional
        Starting guess for solving the rate of interest
    tol : float, optional
        Required tolerance for the solution
    maxiter : int, optional
        Maximum iterations in finding the solution

    Notes
    -----
    The rate of interest is computed by iteratively solving the
    (non-linear) equation::

     fv + pv*(1+rate)**nper + pmt*(1+rate*when)/rate * ((1+rate)**nper - 1) = 0

    for ``rate``.

    References
    ----------
    Wheeler, D. A., E. Rathke, and R. Weir (Eds.) (2009, May). Open Document
    Format for Office Applications (OpenDocument)v1.2, Part 2: Recalculated
    Formula (OpenFormula) Format - Annotated Version, Pre-Draft 12.
    Organization for the Advancement of Structured Information Standards
    (OASIS). Billerica, MA, USA. [ODT Document]. Available:
    http://www.oasis-open.org/committees/documents.php?wg_abbrev=office-formula
    OpenDocument-formula-20090508.odt

    """
    when = _convert_when(when)
    (nper, pmt, pv, fv, when) = map(np.asarray, [nper, pmt, pv, fv, when])
    rn = guess
    iter = 0
    close = False
    while (iter < maxiter) and not close:
        rnp1 = rn - _g_div_gp(rn, nper, pmt, pv, fv, when)
        diff = abs(rnp1-rn)
        close = np.all(diff < tol)
        iter += 1
        rn = rnp1
    if not close:
        # Return nan's in array of the same shape as rn
        return np.nan + rn
    else:
        return rn 

Example 26

def rate(nper, pmt, pv, fv, when='end', guess=0.10, tol=1e-6, maxiter=100):
    """
    Compute the rate of interest per period.

    Parameters
    ----------
    nper : array_like
        Number of compounding periods
    pmt : array_like
        Payment
    pv : array_like
        Present value
    fv : array_like
        Future value
    when : {{'begin', 1}, {'end', 0}}, {string, int}, optional
        When payments are due ('begin' (1) or 'end' (0))
    guess : float, optional
        Starting guess for solving the rate of interest
    tol : float, optional
        Required tolerance for the solution
    maxiter : int, optional
        Maximum iterations in finding the solution

    Notes
    -----
    The rate of interest is computed by iteratively solving the
    (non-linear) equation::

     fv + pv*(1+rate)**nper + pmt*(1+rate*when)/rate * ((1+rate)**nper - 1) = 0

    for ``rate``.

    References
    ----------
    Wheeler, D. A., E. Rathke, and R. Weir (Eds.) (2009, May). Open Document
    Format for Office Applications (OpenDocument)v1.2, Part 2: Recalculated
    Formula (OpenFormula) Format - Annotated Version, Pre-Draft 12.
    Organization for the Advancement of Structured Information Standards
    (OASIS). Billerica, MA, USA. [ODT Document]. Available:
    http://www.oasis-open.org/committees/documents.php?wg_abbrev=office-formula
    OpenDocument-formula-20090508.odt

    """
    when = _convert_when(when)
    (nper, pmt, pv, fv, when) = map(np.asarray, [nper, pmt, pv, fv, when])
    rn = guess
    iter = 0
    close = False
    while (iter < maxiter) and not close:
        rnp1 = rn - _g_div_gp(rn, nper, pmt, pv, fv, when)
        diff = abs(rnp1-rn)
        close = np.all(diff < tol)
        iter += 1
        rn = rnp1
    if not close:
        # Return nan's in array of the same shape as rn
        return np.nan + rn
    else:
        return rn 

Example 27

def rate(nper, pmt, pv, fv, when='end', guess=0.10, tol=1e-6, maxiter=100):
    """
    Compute the rate of interest per period.

    Parameters
    ----------
    nper : array_like
        Number of compounding periods
    pmt : array_like
        Payment
    pv : array_like
        Present value
    fv : array_like
        Future value
    when : {{'begin', 1}, {'end', 0}}, {string, int}, optional
        When payments are due ('begin' (1) or 'end' (0))
    guess : float, optional
        Starting guess for solving the rate of interest
    tol : float, optional
        Required tolerance for the solution
    maxiter : int, optional
        Maximum iterations in finding the solution

    Notes
    -----
    The rate of interest is computed by iteratively solving the
    (non-linear) equation::

     fv + pv*(1+rate)**nper + pmt*(1+rate*when)/rate * ((1+rate)**nper - 1) = 0

    for ``rate``.

    References
    ----------
    Wheeler, D. A., E. Rathke, and R. Weir (Eds.) (2009, May). Open Document
    Format for Office Applications (OpenDocument)v1.2, Part 2: Recalculated
    Formula (OpenFormula) Format - Annotated Version, Pre-Draft 12.
    Organization for the Advancement of Structured Information Standards
    (OASIS). Billerica, MA, USA. [ODT Document]. Available:
    http://www.oasis-open.org/committees/documents.php?wg_abbrev=office-formula
    OpenDocument-formula-20090508.odt

    """
    when = _convert_when(when)
    (nper, pmt, pv, fv, when) = map(np.asarray, [nper, pmt, pv, fv, when])
    rn = guess
    iter = 0
    close = False
    while (iter < maxiter) and not close:
        rnp1 = rn - _g_div_gp(rn, nper, pmt, pv, fv, when)
        diff = abs(rnp1-rn)
        close = np.all(diff < tol)
        iter += 1
        rn = rnp1
    if not close:
        # Return nan's in array of the same shape as rn
        return np.nan + rn
    else:
        return rn 

Example 28

def rate(nper, pmt, pv, fv, when='end', guess=0.10, tol=1e-6, maxiter=100):
    """
    Compute the rate of interest per period.

    Parameters
    ----------
    nper : array_like
        Number of compounding periods
    pmt : array_like
        Payment
    pv : array_like
        Present value
    fv : array_like
        Future value
    when : {{'begin', 1}, {'end', 0}}, {string, int}, optional
        When payments are due ('begin' (1) or 'end' (0))
    guess : float, optional
        Starting guess for solving the rate of interest
    tol : float, optional
        Required tolerance for the solution
    maxiter : int, optional
        Maximum iterations in finding the solution

    Notes
    -----
    The rate of interest is computed by iteratively solving the
    (non-linear) equation::

     fv + pv*(1+rate)**nper + pmt*(1+rate*when)/rate * ((1+rate)**nper - 1) = 0

    for ``rate``.

    References
    ----------
    Wheeler, D. A., E. Rathke, and R. Weir (Eds.) (2009, May). Open Document
    Format for Office Applications (OpenDocument)v1.2, Part 2: Recalculated
    Formula (OpenFormula) Format - Annotated Version, Pre-Draft 12.
    Organization for the Advancement of Structured Information Standards
    (OASIS). Billerica, MA, USA. [ODT Document]. Available:
    http://www.oasis-open.org/committees/documents.php?wg_abbrev=office-formula
    OpenDocument-formula-20090508.odt

    """
    when = _convert_when(when)
    (nper, pmt, pv, fv, when) = map(np.asarray, [nper, pmt, pv, fv, when])
    rn = guess
    iter = 0
    close = False
    while (iter < maxiter) and not close:
        rnp1 = rn - _g_div_gp(rn, nper, pmt, pv, fv, when)
        diff = abs(rnp1-rn)
        close = np.all(diff < tol)
        iter += 1
        rn = rnp1
    if not close:
        # Return nan's in array of the same shape as rn
        return np.nan + rn
    else:
        return rn 

Example 29

def rate(nper, pmt, pv, fv, when='end', guess=0.10, tol=1e-6, maxiter=100):
    """
    Compute the rate of interest per period.

    Parameters
    ----------
    nper : array_like
        Number of compounding periods
    pmt : array_like
        Payment
    pv : array_like
        Present value
    fv : array_like
        Future value
    when : {{'begin', 1}, {'end', 0}}, {string, int}, optional
        When payments are due ('begin' (1) or 'end' (0))
    guess : float, optional
        Starting guess for solving the rate of interest
    tol : float, optional
        Required tolerance for the solution
    maxiter : int, optional
        Maximum iterations in finding the solution

    Notes
    -----
    The rate of interest is computed by iteratively solving the
    (non-linear) equation::

     fv + pv*(1+rate)**nper + pmt*(1+rate*when)/rate * ((1+rate)**nper - 1) = 0

    for ``rate``.

    References
    ----------
    Wheeler, D. A., E. Rathke, and R. Weir (Eds.) (2009, May). Open Document
    Format for Office Applications (OpenDocument)v1.2, Part 2: Recalculated
    Formula (OpenFormula) Format - Annotated Version, Pre-Draft 12.
    Organization for the Advancement of Structured Information Standards
    (OASIS). Billerica, MA, USA. [ODT Document]. Available:
    http://www.oasis-open.org/committees/documents.php?wg_abbrev=office-formula
    OpenDocument-formula-20090508.odt

    """
    when = _convert_when(when)
    (nper, pmt, pv, fv, when) = map(np.asarray, [nper, pmt, pv, fv, when])
    rn = guess
    iter = 0
    close = False
    while (iter < maxiter) and not close:
        rnp1 = rn - _g_div_gp(rn, nper, pmt, pv, fv, when)
        diff = abs(rnp1-rn)
        close = np.all(diff < tol)
        iter += 1
        rn = rnp1
    if not close:
        # Return nan's in array of the same shape as rn
        return np.nan + rn
    else:
        return rn 

Example 30

def rate(nper, pmt, pv, fv, when='end', guess=0.10, tol=1e-6, maxiter=100):
    """
    Compute the rate of interest per period.

    Parameters
    ----------
    nper : array_like
        Number of compounding periods
    pmt : array_like
        Payment
    pv : array_like
        Present value
    fv : array_like
        Future value
    when : {{'begin', 1}, {'end', 0}}, {string, int}, optional
        When payments are due ('begin' (1) or 'end' (0))
    guess : float, optional
        Starting guess for solving the rate of interest
    tol : float, optional
        Required tolerance for the solution
    maxiter : int, optional
        Maximum iterations in finding the solution

    Notes
    -----
    The rate of interest is computed by iteratively solving the
    (non-linear) equation::

     fv + pv*(1+rate)**nper + pmt*(1+rate*when)/rate * ((1+rate)**nper - 1) = 0

    for ``rate``.

    References
    ----------
    Wheeler, D. A., E. Rathke, and R. Weir (Eds.) (2009, May). Open Document
    Format for Office Applications (OpenDocument)v1.2, Part 2: Recalculated
    Formula (OpenFormula) Format - Annotated Version, Pre-Draft 12.
    Organization for the Advancement of Structured Information Standards
    (OASIS). Billerica, MA, USA. [ODT Document]. Available:
    http://www.oasis-open.org/committees/documents.php?wg_abbrev=office-formula
    OpenDocument-formula-20090508.odt

    """
    when = _convert_when(when)
    (nper, pmt, pv, fv, when) = map(np.asarray, [nper, pmt, pv, fv, when])
    rn = guess
    iter = 0
    close = False
    while (iter < maxiter) and not close:
        rnp1 = rn - _g_div_gp(rn, nper, pmt, pv, fv, when)
        diff = abs(rnp1-rn)
        close = np.all(diff < tol)
        iter += 1
        rn = rnp1
    if not close:
        # Return nan's in array of the same shape as rn
        return np.nan + rn
    else:
        return rn 
点赞