吉哥系列故事——恨7不成妻
Time Limit: 1000/500 MS (Java/Others) Memory Limit: 65535/32768 K (Java/Others)
Total Submission(s): 746 Accepted Submission(s): 227
Problem Description 单身!
依然单身!
吉哥依然单身!
DS级码农吉哥依然单身!
所以,他生平最恨情人节,不管是214还是77,他都讨厌!
吉哥观察了214和77这两个数,发现:
2+1+4=7
7+7=7*2
77=7*11
最终,他发现原来这一切归根到底都是因为和7有关!所以,他现在甚至讨厌一切和7有关的数!
什么样的数和7有关呢?
如果一个整数符合下面3个条件之一,那么我们就说这个整数和7有关——
1、整数中某一位是7;
2、整数的每一位加起来的和是7的整数倍;
3、这个整数是7的整数倍;
现在问题来了:吉哥想知道在一定区间内和7无关的数字的平方和。
Input 输入数据的第一行是case数T(1 <= T <= 50),然后接下来的T行表示T个case;每个case在一行内包含两个正整数L, R(1 <= L <= R <= 10^18)。
Output 请计算[L,R]中和7无关的数字的平方和,并将结果对10^9 + 7 求模后输出。
Sample Input 3 1 9 10 11 17 17
Sample Output 236 221 0
Source
2013腾讯编程马拉松初赛第一场(3月21日)
Recommend liuyiding
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4507
如果一个整数符合下面3个条件之一,那么我们就说这个整数和7有关——
1、整数中某一位是7;
2、整数的每一位加起来的和是7的整数倍;
3、这个整数是7的整数倍;
要求一个区间中和7无关的数的平方和。
需要用数位DP维护3个值:
1.与7无关的数的个数
2.与7无关的数的和
3、与7无关的数的平方和。
第一个是与7无关的数的个数,就是简单的数位DP了,很常规。
第二个与7无关的数的和的维护需要用到第一个个数。
处理到第pos个数位时,加上i*10^pos * 后面的个数
第三个的维护需要用到前面两个
(pre*10^pos + next)^2= (pre*10^pos)^2+2*pre*10^pos*next +next^2
/* * 如果一个整数符合下面3个条件之一,那么我们就说这个整数和7有关—— 1、整数中某一位是7; 2、整数的每一位加起来的和是7的整数倍; 3、这个整数是7的整数倍; 求一个区间中与7无关的数的平方和 */ #include <iostream> #include <stdio.h> #include <string.h> #include <algorithm> using namespace std; const long long MOD=1000000007LL; struct Node { long long cnt;//与7无关的数的个数 long long sum;//与7无关的数的和 long long sqsum;//平方和 }dp[20][10][10];//分别是处理的数位、数字和%7,数%7 int bit[20]; long long p[20];//p[i]=10^i Node dfs(int pos,int pre1,int pre2,bool flag) { if(pos==-1) { Node tmp; tmp.cnt=(pre1!=0 && pre2!=0); tmp.sum=tmp.sqsum=0; return tmp; } if(!flag && dp[pos][pre1][pre2].cnt!=-1) return dp[pos][pre1][pre2]; int end=flag?bit[pos]:9; Node ans; Node tmp; ans.cnt=ans.sqsum=ans.sum=0; for(int i=0;i<=end;i++) { if(i==7)continue; tmp=dfs(pos-1,(pre1+i)%7,(pre2*10+i)%7,flag&&i==end); ans.cnt+=tmp.cnt; ans.cnt%=MOD; ans.sum+=(tmp.sum+ ((p[pos]*i)%MOD)*tmp.cnt%MOD )%MOD; ans.sum%=MOD; ans.sqsum+=(tmp.sqsum + ( (2*p[pos]*i)%MOD )*tmp.sum)%MOD; ans.sqsum%=MOD; ans.sqsum+=( (tmp.cnt*p[pos])%MOD*p[pos]%MOD*i*i%MOD ); ans.sqsum%=MOD; } if(!flag)dp[pos][pre1][pre2]=ans; return ans; } long long calc(long long n) { int pos=0; while(n) { bit[pos++]=n%10; n/=10; } return dfs(pos-1,0,0,1).sqsum; } int main() { //freopen("in.txt","r",stdin); //freopen("out.txt","w",stdout); int T; long long l,r; p[0]=1; for(int i=1;i<20;i++) p[i]=(p[i-1]*10)%MOD; for(int i=0;i<20;i++) for(int j=0;j<10;j++) for(int k=0;k<10;k++) dp[i][j][k].cnt=-1; scanf("%d",&T); while(T--) { scanf("%I64d%I64d",&l,&r); long long ans=calc(r); ans-=calc(l-1); ans=(ans%MOD+MOD)%MOD; printf("%I64d\n",ans); } return 0; }