Frequent values
Description You are given a sequence of n integers a1 , a2 , … , an in non-decreasing order. In addition to that, you are given several queries consisting of indices i and j (1 ≤ i ≤ j ≤ n). For each query, determine the most frequent value among the integers ai , … , aj. Input The input consists of several test cases. Each test case starts with a line containing two integers n and q (1 ≤ n, q ≤ 100000). The next line contains n integers a1 , … , an (-100000 ≤ ai≤ 100000, for each i ∈ {1, …, n}) separated by spaces. You can assume that for each i ∈ {1, …, n-1}: ai ≤ ai+1. The following q lines contain one query each, consisting of two integers i and j (1 ≤ i ≤ j ≤ n), which indicate the boundary indices for the The last test case is followed by a line containing a single 0. Output For each query, print one line with one integer: The number of occurrences of the most frequent value within the given range. Sample Input 10 3 -1 -1 1 1 1 1 3 10 10 10 2 3 1 10 5 10 0 Sample Output 1 4 3 Source |
这题需要一个区间内,出现次数最多的数出现的次数。
先离散化处理下,然后转化成RMQ问题。
1 #include <stdio.h> 2 #include <string.h> 3 #include <algorithm> 4 #include <iostream> 5 using namespace std; 6 7 const int MAXN = 100010; 8 9 int dp[MAXN][20]; 10 int mm[MAXN]; 11 12 void initRMQ(int n,int b[]) 13 { 14 mm[0] = -1; 15 for(int i = 1;i <= n;i++) 16 { 17 mm[i] = ((i&(i-1)) == 0)?mm[i-1]+1:mm[i-1]; 18 dp[i][0] = b[i]; 19 } 20 for(int j = 1;j <= mm[n];j++) 21 for(int i = 1;i + (1<<j) - 1 <= n;i++) 22 dp[i][j] = max(dp[i][j-1],dp[i+(1<<(j-1))][j-1]); 23 } 24 int rmq(int x,int y) 25 { 26 int k = mm[y-x+1]; 27 return max(dp[x][k],dp[y-(1<<k)+1][k]); 28 } 29 30 int a[MAXN]; 31 int hash[MAXN]; 32 int L[MAXN],R[MAXN]; 33 int b[MAXN]; 34 35 int main() 36 { 37 int n,m; 38 while(scanf("%d",&n) == 1 && n) 39 { 40 scanf("%d",&m); 41 for(int i = 1;i <= n;i++) 42 scanf("%d",&a[i]); 43 int k = 1; 44 int l = 1; 45 memset(b,0,sizeof(b)); 46 for(int i = 1;i <= n;i++) 47 { 48 if(i > 1 && a[i] != a[i-1]) 49 { 50 for(int j = l;j < i;j++) 51 { 52 L[j] = l; 53 R[j] = i-1; 54 } 55 b[k] = i - l; 56 l = i; 57 k ++; 58 } 59 hash[i] = k; 60 } 61 for(int j = l;j <= n;j++) 62 { 63 L[j] = l; 64 R[j] = n; 65 } 66 b[k] = n-l+1; 67 initRMQ(k,b); 68 69 int u,v; 70 while(m--) 71 { 72 scanf("%d%d",&u,&v); 73 int t1 = hash[u]; 74 int t2 = hash[v]; 75 if(t1 == t2) 76 { 77 printf("%d\n",v-u+1); 78 continue; 79 } 80 int ans = max(R[u]-u+1,v-L[v]+1); 81 t1++; 82 t2--; 83 if(t1 <= t2)ans = max(ans,rmq(t1,t2)); 84 printf("%d\n",ans); 85 } 86 } 87 return 0; 88 }