Java集合类源码分析

常用类及源码分析

集合类原理分析
Collection 
List 
Vector

扩充容量的方法 ensureCapacityHelper
很多方法都加入了synchronized同步语句,来保证线程安全
Vector中也允许元素为null
Vector现在已经基本不再使用

ArrayList 

ArrayList是基于数组实现 
不是线程安全的,只能用在单线程环境下
可以通过下标索引直接查找到指定位置的元素,因此查找效率高,但每次插入或删除元素,就要大量地移动元素,插入删除元素的效率低
允许元素为null

LinkedList 

LinkedList是基于双向循环链表实现的,除了可以当做链表来操作外,它还可以当做栈、队列和双端队列来使用
非线程安全的,只在单线程下适合使用
LinkedList中允许元素为null
插入删除效率高,查找效率低

Set 同Collection
HashSet 通过Map中的HashMap实现
TreeSet 通过Map中的TreeMap实现
Map 
Hashtable 

Hashtable同样是基于哈希表实现的,同样每个元素是一个key-value对,其内部也是通过单链表解决冲突问题,容量不足(超过了阀值)时,同样会自动增长。
HashTable在不指定容量的情况下的默认容量为11,而HashMap为16,Hashtable不要求底层数组的容量一定要为2的整数次幂,而HashMap则要求一定为2的整数次幂。
Hashtable扩容时,将容量变为原来的2倍加1,而HashMap扩容时,将容量变为原来的2倍。
Hashtable也是JDK1.0引入的类,是线程安全的,能用于多线程环境中
Hashtable中key和value都不允许为null,而HashMap中key和value都允许为null(key只能有一个为null,而value则可以有多个为null)。

Properties 
HashMap 

HashMap是基于哈希表实现的,每一个元素是一个key-value对,其内部通过单链表解决冲突问题,容量不足(超过了阀值)时,同样会自动增长
HashMap是非线程安全的,只是用于单线程环境下,多线程环境下可以采用concurrent并发包下的ConcurrentHashMap。
HashMap中key和value都允许为null。

TreeMap 

TreeMap是基于红黑树实现 红黑树是一种特殊的二叉排序树
TreeMap是根据key进行排序的,它的排序和定位需要依赖比较器或覆写Comparable接口,也因此不需要key覆写hashCode方法和equals方法
就可以排除掉重复的key,而HashMap的key则需要通过覆写hashCode方法和equals方法来确保没有重复的key。
TreeMap的查询、插入、删除效率均没有HashMap高,一般只有要对key排序时才使用TreeMap。
TreeMap的key不能为null,而HashMap的key可以为null

public interface Collection <E> extends Iterable<E> {
    //1添加
    boolean add(E e); boolean addAll(Collection<? extends E> c); //2删除 boolean remove(Object o); boolean removeAll(Collection<?> c); void clear(); //3判断 boolean contains(Object o); boolean containsAll(Collection<?> c); boolean isEmpty(); //集合是否为空 //4获取 int size(); Iterator<E> iterator(); //迭代器 取出元素方式 //5其它 boolean retainAll(Collection<?> c); //取交集 Object[] toArray(); //转数组 <T> T[] toArray(T[] a); boolean equals(Object o); int hashCode(); }
public interface Iterable<T> {
    Iterator<T> iterator(); //具体集合类返回一个迭代器
} public interface Iterator<E> { boolean hasNext(); //是否还有下个元素 E next(); //下一个元素 void remove(); }
public interface List<E> extends Collection<E> {
    //其它方法与Collection中相同
    //1添加
    void add(int index, E element); boolean addAll(int index, Collection<? extends E> c); //2删除 E remove(int index); //3修改 E set(int index, E element); //4获取 E get(int index); int indexOf(Object o); int lastIndexOf(Object o); List<E> subList(int fromIndex, int toIndex); ListIterator<E> listIterator(); ListIterator<E> listIterator(int index); }
public class Vector <E> extends AbstractList<E> implements List<E>, RandomAccess, Cloneable, java.io.Serializable{
    protected Object[] elementData; //数据数组 
    protected int elementCount; //实际数据的数量
    protected int capacityIncrement; //容量增长系数
    private static final long serialVersionUID = -2767605614048989439L; //序列版本号
    
    //四个不同的构造方法
    // Vector构造函数。默认容量是10。
    public Vector() { this(10); } //指定Vector容量大小的构造函数 public Vector(int initialCapacity) { this(initialCapacity, 0); } //指定Vector"容量大小"和"增长系数"的构造函数 public Vector(int initialCapacity, int capacityIncrement) { super(); if (initialCapacity < 0) throw new IllegalArgumentException("Illegal Capacity: "+initialCapacity); this.elementData = new Object[initialCapacity]; this.capacityIncrement = capacityIncrement; } // 指定集合的Vector构造函数 public Vector(Collection<? extends E> c) { elementData = c.toArray(); elementCount = elementData.length; if (elementData.getClass() != Object[].class) elementData = Arrays.copyOf(elementData, elementCount, Object[].class); } //1增 // 在index位置处插入元素(obj) public synchronized void insertElementAt(E obj, int index) { modCount++; if (index > elementCount) { throw new ArrayIndexOutOfBoundsException(index + " > " + elementCount); } ensureCapacityHelper(elementCount + 1); System.arraycopy(elementData, index, elementData, index + 1, elementCount - index); elementData[index] = obj; elementCount++; } // 将“元素obj”添加到Vector末尾 public synchronized void addElement(E obj) { modCount++; ensureCapacityHelper(elementCount + 1); elementData[elementCount++] = obj; } // 将“元素e”添加到Vector最后。 public synchronized boolean add(E e) { modCount++; ensureCapacityHelper(elementCount + 1); elementData[elementCount++] = e; return true; } // 在index位置添加元素element public void add(int index, E element) { insertElementAt(element, index); } // 将集合c添加到Vector中 public synchronized boolean addAll(Collection<? extends E> c) { modCount++; Object[] a = c.toArray(); int numNew = a.length; ensureCapacityHelper(elementCount + numNew); System.arraycopy(a, 0, elementData, elementCount, numNew); elementCount += numNew; return numNew != 0; } // 从index位置开始,将集合c添加到Vector中 public synchronized boolean addAll(int index, Collection<? extends E> c) { modCount++; if (index < 0 || index > elementCount) throw new ArrayIndexOutOfBoundsException(index); Object[] a = c.toArray(); int numNew = a.length; ensureCapacityHelper(elementCount + numNew); int numMoved = elementCount - index; if (numMoved > 0) System.arraycopy(elementData, index, elementData, index + numNew, numMoved); System.arraycopy(a, 0, elementData, index, numNew); elementCount += numNew; return numNew != 0; } //2删 // 删除index位置的元素 public synchronized void removeElementAt(int index) { modCount++; if (index >= elementCount) { throw new ArrayIndexOutOfBoundsException(index + " >= " + elementCount); } else if (index < 0) { throw new ArrayIndexOutOfBoundsException(index); } int j = elementCount - index - 1; if (j > 0) { System.arraycopy(elementData, index + 1, elementData, index, j); } elementCount--; elementData[elementCount] = null; } // 在Vector中查找并删除元素obj 成功的话,返回true;否则,返回false。 public synchronized boolean removeElement(Object obj) { modCount++; int i = indexOf(obj); if (i >= 0) { removeElementAt(i); return true; } return false; } // 删除Vector中的全部元素 public synchronized void removeAllElements() { modCount++; for (int i = 0; i < elementCount; i++) elementData[i] = null; elementCount = 0; } // 删除Vector中的元素o public boolean remove(Object o) { return removeElement(o); } // 删除index位置的元素,并返回index位置的原始值 public synchronized E remove(int index) { modCount++; if (index >= elementCount) throw new ArrayIndexOutOfBoundsException(index); E oldValue = elementData(index); int numMoved = elementCount - index - 1; if (numMoved > 0) System.arraycopy(elementData, index+1, elementData, index, numMoved); elementData[--elementCount] = null; return oldValue; } // 清空Vector public void clear() { removeAllElements(); } // 删除集合c的全部元素 public synchronized boolean removeAll(Collection<?> c) { return super.removeAll(c); } // 删除“非集合c中的元素” public synchronized boolean retainAll(Collection<?> c) { return super.retainAll(c); } // 删除Vector中fromIndex到toIndex的元素 protected synchronized void removeRange(int fromIndex, int toIndex) { modCount++; int numMoved = elementCount - toIndex; System.arraycopy(elementData, toIndex, elementData, fromIndex, numMoved); int newElementCount = elementCount - (toIndex-fromIndex); while (elementCount != newElementCount) elementData[--elementCount] = null; } //3改 // 设置index位置的元素值为obj public synchronized void setElementAt(E obj, int index) { if (index >= elementCount) { throw new ArrayIndexOutOfBoundsException(index + " >= " + elementCount); } elementData[index] = obj; } // 设置index位置的值为element。并返回index位置的原始值 public synchronized E set(int index, E element) { if (index >= elementCount) throw new ArrayIndexOutOfBoundsException(index); E oldValue = elementData(index); elementData[index] = element; return oldValue; } //4查 // 返回“Vector的实际大小”,即Vector中元素个数 public synchronized int size() { return elementCount; } // 判断Vector是否为空 public synchronized boolean isEmpty() { return elementCount == 0; } // 返回“Vector中全部元素对应的Enumeration” public Enumeration<E> elements() { return new Enumeration<E>() { int count = 0; public boolean hasMoreElements() { return count < elementCount; } public E nextElement() { synchronized (Vector.this) { if (count < elementCount) { return elementData(count++); } } throw new NoSuchElementException("Vector Enumeration"); } }; } // 返回Vector中是否包含对象(o) public boolean contains(Object o) { return indexOf(o, 0) >= 0; } // 查找并返回元素(o)在Vector中的索引值 public int indexOf(Object o) { return indexOf(o, 0); } // 从index位置开始向后查找元素(o) 若找到,则返回元素的索引值;否则,返回-1 public synchronized int indexOf(Object o, int index) { if (o == null) { for (int i = index ; i < elementCount ; i++) if (elementData[i]==null) return i; } else { for (int i = index ; i < elementCount ; i++) if (o.equals(elementData[i])) return i; } return -1; } // 从后向前查找元素(o)。并返回元素的索引 public synchronized int lastIndexOf(Object o) { return lastIndexOf(o, elementCount-1); } // 从后向前查找元素(o)。开始位置是从前向后的第index个数 若找到,则返回元素的“索引值”;否则,返回-1。 public synchronized int lastIndexOf(Object o, int index) { if (index >= elementCount) throw new IndexOutOfBoundsException(index + " >= "+ elementCount); if (o == null) { for (int i = index; i >= 0; i--) if (elementData[i]==null) return i; } else { for (int i = index; i >= 0; i--) if (o.equals(elementData[i])) return i; } return -1; } // 返回Vector中index位置的元素 若index越界,则抛出异常 public synchronized E elementAt(int index) { if (index >= elementCount) { throw new ArrayIndexOutOfBoundsException(index + " >= " + elementCount); } return elementData(index); } // 获取Vector中的第一个元素 若失败,则抛出异常! public synchronized E firstElement() { if (elementCount == 0) { throw new NoSuchElementException(); } return elementData(0); } // 获取Vector中的最后一个元素 若失败,则抛出异常! public synchronized E lastElement() { if (elementCount == 0) { throw new NoSuchElementException(); } return elementData(elementCount - 1); } @SuppressWarnings("unchecked") E elementData(int index) { return (E) elementData[index]; } // 获取index位置的元素 public synchronized E get(int index) { if (index >= elementCount) throw new ArrayIndexOutOfBoundsException(index); return elementData(index); } // 返回Vector是否包含集合c public synchronized boolean containsAll(Collection<?> c) { return super.containsAll(c); } // 获取Vector中fromIndex(包括)到toIndex(不包括)的子集 public synchronized List<E> subList(int fromIndex, int toIndex) { return Collections.synchronizedList(super.subList(fromIndex, toIndex), this); } //5其它 // 返回Object数组 public synchronized Object[] toArray() { return Arrays.copyOf(elementData, elementCount); } // 返回Vector的模板数组。所谓模板数组,即可以将T设为任意的数据类型 @SuppressWarnings("unchecked") public synchronized <T> T[] toArray(T[] a) { if (a.length < elementCount) return (T[]) Arrays.copyOf(elementData, elementCount, a.getClass()); System.arraycopy(elementData, 0, a, 0, elementCount); if (a.length > elementCount) a[elementCount] = null; return a; } // 将数组Vector的全部元素都拷贝到数组anArray中 public synchronized void copyInto(Object[] anArray) { System.arraycopy(elementData, 0, anArray, 0, elementCount); } // 将当前容量值设为实际元素个数 public synchronized void trimToSize() { modCount++; int oldCapacity = elementData.length; if (elementCount < oldCapacity) { elementData = Arrays.copyOf(elementData, elementCount); } } // 确定Vector的容量 public synchronized void ensureCapacity(int minCapacity) { if (minCapacity > 0) { modCount++; ensureCapacityHelper(minCapacity); } } // 确认“Vector容量”的帮助函数 private void ensureCapacityHelper(int minCapacity) { if (minCapacity - elementData.length > 0) grow(minCapacity); } private static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8; // 当Vector的容量不足以容纳当前的全部元素,增加容量大小。 // 若 容量增量系数>0(即capacityIncrement>0),则将容量增大当capacityIncrement // 否则,将容量增大一倍。 private void grow(int minCapacity) { int oldCapacity = elementData.length; int newCapacity = oldCapacity + ((capacityIncrement > 0) ? capacityIncrement : oldCapacity); if (newCapacity - minCapacity < 0) newCapacity = minCapacity; if (newCapacity - MAX_ARRAY_SIZE > 0) newCapacity = hugeCapacity(minCapacity); elementData = Arrays.copyOf(elementData, newCapacity); } private static int hugeCapacity(int minCapacity) { if (minCapacity < 0) // overflow throw new OutOfMemoryError(); return (minCapacity > MAX_ARRAY_SIZE) ? Integer.MAX_VALUE : MAX_ARRAY_SIZE; } // 设置容量值为 newSize public synchronized void setSize(int newSize) { modCount++; if (newSize > elementCount) { ensureCapacityHelper(newSize); } else { for (int i = newSize ; i < elementCount ; i++) { elementData[i] = null; } } elementCount = newSize; } // 返回“Vector的总的容量” public synchronized int capacity() { return elementData.length; } public synchronized Object clone() { try { @SuppressWarnings("unchecked") Vector<E> v = (Vector<E>) super.clone(); v.elementData = Arrays.copyOf(elementData, elementCount); v.modCount = 0; return v; } catch (CloneNotSupportedException e) { throw new InternalError(); } } public synchronized boolean equals(Object o) { return super.equals(o); } public synchronized int hashCode() { return super.hashCode(); } public synchronized String toString() { return super.toString(); } //写入函数 private void writeObject(java.io.ObjectOutputStream s) throws java.io.IOException { final java.io.ObjectOutputStream.PutField fields = s.putFields(); final Object[] data; synchronized (this) { fields.put("capacityIncrement", capacityIncrement); fields.put("elementCount", elementCount); data = elementData.clone(); } fields.put("elementData", data); s.writeFields(); } public synchronized ListIterator<E> listIterator(int index) { if (index < 0 || index > elementCount) throw new IndexOutOfBoundsException("Index: "+index); return new ListItr(index); } public synchronized ListIterator<E> listIterator() { return new ListItr(0); } public synchronized Iterator<E> iterator() { return new Itr(); } private class Itr implements Iterator<E> { int cursor; // index of next element to return int lastRet = -1; // index of last element returned; -1 if no such int expectedModCount = modCount; public boolean hasNext() { return cursor != elementCount; } public E next() { synchronized (Vector.this) { checkForComodification(); int i = cursor; if (i >= elementCount) throw new NoSuchElementException(); cursor = i + 1; return elementData(lastRet = i); } } public void remove() { if (lastRet == -1) throw new IllegalStateException(); synchronized (Vector.this) { checkForComodification(); Vector.this.remove(lastRet); expectedModCount = modCount; } cursor = lastRet; lastRet = -1; } final void checkForComodification() { if (modCount != expectedModCount) throw new ConcurrentModificationException(); } } final class ListItr extends Itr implements ListIterator<E> { ListItr(int index) { super(); cursor = index; } public boolean hasPrevious() { return cursor != 0; } public int nextIndex() { return cursor; } public int previousIndex() { return cursor - 1; } public E previous() { synchronized (Vector.this) { checkForComodification(); int i = cursor - 1; if (i < 0) throw new NoSuchElementException(); cursor = i; return elementData(lastRet = i); } } public void set(E e) { if (lastRet == -1) throw new IllegalStateException(); synchronized (Vector.this) { checkForComodification(); Vector.this.set(lastRet, e); } } public void add(E e) { int i = cursor; synchronized (Vector.this) { checkForComodification(); Vector.this.add(i, e); expectedModCount = modCount; } cursor = i + 1; lastRet = -1; } } }
public class LinkedList<E> extends AbstractSequentialList<E> implements List<E>, Deque<E>, Cloneable, java.io.Serializable{
    transient int size = 0; //LinkedList中元素个数 
    transient Node<E> first; //链表的表头
    transient Node<E> last; ////链表的末尾
    
    // 默认构造函数:创建一个空的链表
    public LinkedList() { } //创建一个包含“集合”的LinkedList public LinkedList(Collection<? extends E> c) { this(); addAll(c); } //1增 // 将元素添加到LinkedList的起始位置 private void linkFirst(E e) { final Node<E> f = first; final Node<E> newNode = new Node<>(null, e, f); first = newNode; if (f == null) last = newNode; else f.prev = newNode; size++; modCount++; } // 将元素添加到LinkedList的结束位置 void linkLast(E e) { final Node<E> l = last; final Node<E> newNode = new Node<>(l, e, null); last = newNode; if (l == null) first = newNode; else l.next = newNode; size++; modCount++; } void linkBefore(E e, Node<E> succ) { final Node<E> pred = succ.prev; final Node<E> newNode = new Node<>(pred, e, succ); succ.prev = newNode; if (pred == null) first = newNode; else pred.next = newNode; size++; modCount++; } // 将元素添加到LinkedList的起始位置 public void addFirst(E e) { linkFirst(e); } // 将元素添加到LinkedList的结束位置 public void addLast(E e) { linkLast(e); } // 将元素(E)添加到LinkedList结束位置 public boolean add(E e) { linkLast(e); return true; } //从双向链表的末尾开始,将“集合(c)”添加到双向链表中 public boolean addAll(Collection<? extends E> c) { return addAll(size, c); } //从双向链表的index开始,将“集合(c)”添加到双向链表中 public boolean addAll(int index, Collection<? extends E> c) { checkPositionIndex(index); Object[] a = c.toArray(); int numNew = a.length; if (numNew == 0) return false; Node<E> pred, succ; if (index == size) { succ = null; pred = last; } else { succ = node(index); pred = succ.prev; } for (Object o : a) { @SuppressWarnings("unchecked") E e = (E) o; Node<E> newNode = new Node<>(pred, e, null); if (pred == null) first = newNode; else pred.next = newNode; pred = newNode; } if (succ == null) { last = pred; } else { pred.next = succ; succ.prev = pred; } size += numNew; modCount++; return true; } // 在index前添加节点,且节点的值为element public void add(int index, E element) { checkPositionIndex(index); if (index == size) linkLast(element); else linkBefore(element, node(index)); } // 将e添加双向链表末尾 public boolean offer(E e) { return add(e); } // 将e添加双向链表开头 public boolean offerFirst(E e) { addFirst(e); return true; } // 将e添加双向链表末尾 public boolean offerLast(E e) { addLast(e); return true; } // 将e插入到双向链表开头 public void push(E e) { addFirst(e); } //2删 private E unlinkFirst(Node<E> f) { final E element = f.item; final Node<E> next = f.next; f.item = null; f.next = null; first = next; if (next == null) last = null; else next.prev = null; size--; modCount++; return element; } private E unlinkLast(Node<E> l) { final E element = l.item; final Node<E> prev = l.prev; l.item = null; l.prev = null; last = prev; if (prev == null) first = null; else prev.next = null; size--; modCount++; return element; } E unlink(Node<E> x) { final E element = x.item; final Node<E> next = x.next; final Node<E> prev = x.prev; if (prev == null) { first = next; } else { prev.next = next; x.prev = null; } if (next == null) { last = prev; } else { next.prev = prev; x.next = null; } x.item = null; size--; modCount++; return element; } // 删除LinkedList的第一个元素 public E removeFirst() { final Node<E> f = first; if (f == null) throw new NoSuchElementException(); return unlinkFirst(f); } // 删除LinkedList的最后一个元素 public E removeLast() { final Node<E> l = last; if (l == null) throw new NoSuchElementException(); return unlinkLast(l); } // 从LinkedList中删除元素(o) 从链表开始查找,如存在元素(o)则删除该元素并返回true 否则,返回false。 public boolean remove(Object o) { if (o == null) { for (Node<E> x = first; x != null; x = x.next) { if (x.item == null) { unlink(x); return true; } } } else { for (Node<E> x = first; x != null; x = x.next) { if (o.equals(x.item)) { unlink(x); return true; } } } return false; } // 清空双向链表 public void clear() { for (Node<E> x = first; x != null; ) { // 从表头开始,逐个向后遍历;对遍历到的节点执行一下操作: // 设置前一个节点为null // 设置当前节点的内容为null // 设置后一个节点为“新的当前节点” Node<E> next = x.next; x.item = null; x.next = null; x.prev = null; x = next; } first = last = null; size = 0; modCount++; } // 删除index位置的节点 public E remove(int index) { checkElementIndex(index); return unlink(node(index)); } // 删除并返回第一个节点 若LinkedList的大小为0,则返回null public E poll() { final Node<E> f = first; return (f == null) ? null : unlinkFirst(f); } // 删除并返回第一个节点 若LinkedList的大小为0,则返回null public E pollFirst() { final Node<E> f = first; return (f == null) ? null : unlinkFirst(f); } // 删除并返回最后一个节点 若LinkedList的大小为0,则返回null public E pollLast() { final Node<E> l = last; return (l == null) ? null : unlinkLast(l); } // 删除并返回第一个节点 public E pop() { return removeFirst(); } // 从LinkedList开始向后查找,删除第一个值为元素(o)的节点 public boolean removeFirstOccurrence(Object o) { return remove(o); } // 从LinkedList末尾向前查找,删除第一个值为元素(o)的节点 public boolean removeLastOccurrence(Object o) { if (o == null) { for (Node<E> x = last; x != null; x = x.prev) { if (x.item == null) { unlink(x); return true; } } } else { for (Node<E> x = last; x != null; x = x.prev) { if (o.equals(x.item)) { unlink(x); return true; } } } return false; } public E remove() { return removeFirst(); } //3改 // 设置index位置对应的节点的值为element public E set(int index, E element) { checkElementIndex(index); Node<E> x = node(index); E oldVal = x.item; x.item = element; return oldVal; } //4查 // 获取LinkedList的第一个元素 public E getFirst() { final Node<E> f = first; if (f == null) throw new NoSuchElementException(); return f.item; } // 获取LinkedList的最后一个元素 public E getLast() { final Node<E> l = last; if (l == null) throw new NoSuchElementException(); return l.item; } // 判断LinkedList是否包含元素(o) public boolean contains(Object o) { return indexOf(o) != -1; } // 返回LinkedList的大小 public int size() { return size; } // 返回LinkedList指定位置的元素 public E get(int index) { checkElementIndex(index); return node(index).item; } // 获取双向链表中指定位置的节点 Node<E> node(int index) { // 获取index处的节点。 // 若index < 双向链表长度的1/2,则从前先后查找; // 否则,从后向前查找。 if (index < (size >> 1)) { Node<E> x = first; for (int i = 0; i < index; i++) x = x.next; return x; } else { Node<E> x = last; for (int i = size - 1; i > index; i--) x = x.prev; return x; } } // 从前向后查找,返回“值为对象(o)的节点对应的索引” 不存在就返回-1 public int indexOf(Object o) { int index = 0; if (o == null) { for (Node<E> x = first; x != null; x = x.next) { if (x.item == null) return index; index++; } } else { for (Node<E> x = first; x != null; x = x.next) { if (o.equals(x.item)) return index; index++; } } return -1; } // 从后向前查找,返回“值为对象(o)的节点对应的索引” 不存在就返回-1 public int lastIndexOf(Object o) { int index = size; if (o == null) { for (Node<E> x = last; x != null; x = x.prev) { index--; if (x.item == null) return index; } } else { for (Node<E> x = last; x != null; x = x.prev) { index--; if (o.equals(x.item)) return index; } } return -1; } // 返回第一个节点 若LinkedList的大小为0,则返回null public E peek() { final Node<E> f = first; return (f == null) ? null : f.item; } // 返回第一个节点 若LinkedList的大小为0,则抛出异常 public E element() { return getFirst(); } // 返回第一个节点 若LinkedList的大小为0,则返回null public E peekFirst() { final Node<E> f = first; return (f == null) ? null : f.item; } // 返回最后一个节点 若LinkedList的大小为0,则返回null public E peekLast() { final Node<E> l = last; return (l == null) ? null : l.item; } //5其它 private boolean isElementIndex(int index) { return index >= 0 && index < size; } private boolean isPositionIndex(int index) { return index >= 0 && index <= size; } private String outOfBoundsMsg(int index) { return "Index: "+index+", Size: "+size; } private void checkElementIndex(int index) { if (!isElementIndex(index)) throw new IndexOutOfBoundsException(outOfBoundsMsg(index)); } private void checkPositionIndex(int index) { if (!isPositionIndex(index)) throw new IndexOutOfBoundsException(outOfBoundsMsg(index)); } public ListIterator<E> listIterator(int index) { checkPositionIndex(index); return new ListItr(index); } // List迭代器 private class ListItr implements ListIterator<E> { private Node<E> lastReturned = null; private Node<E> next; private int nextIndex; private int expectedModCount = modCount; ListItr(int index) { next = (index == size) ? null : node(index); nextIndex = index; } public boolean hasNext() { return nextIndex < size; } public E next() { checkForComodification(); if (!hasNext()) throw new NoSuchElementException(); lastReturned = next; next = next.next; nextIndex++; return lastReturned.item; } public boolean hasPrevious() { return nextIndex > 0; } public E previous() { checkForComodification(); if (!hasPrevious()) throw new NoSuchElementException(); lastReturned = next = (next == null) ? last : next.prev; nextIndex--; return lastReturned.item; } public int nextIndex() { return nextIndex; } public int previousIndex() { return nextIndex - 1; } public void remove() { checkForComodification(); if (lastReturned == null) throw new IllegalStateException(); Node<E> lastNext = lastReturned.next; unlink(lastReturned); if (next == lastReturned) next = lastNext; else nextIndex--; lastReturned = null; expectedModCount++; } public void set(E e) { if (lastReturned == null) throw new IllegalStateException(); checkForComodification(); lastReturned.item = e; } public void add(E e) { checkForComodification(); lastReturned = null; if (next == null) linkLast(e); else linkBefore(e, next); nextIndex++; expectedModCount++; } final void checkForComodification() { if (modCount != expectedModCount) throw new ConcurrentModificationException(); } } // 双向链表的节点所对应的数据结构 包含3部分:上一节点,下一节点,当前节点值 private static class Node<E> { E item; //当前节点所包含的值 Node<E> next; // 下一个节点 Node<E> prev; //上一个节点  Node(Node<E> prev, E element, Node<E> next) { this.item = element; this.next = next; this.prev = prev; } } // 反向迭代器 public Iterator<E> descendingIterator() { return new DescendingIterator(); } private class DescendingIterator implements Iterator<E> { private final ListItr itr = new ListItr(size()); public boolean hasNext() { return itr.hasPrevious(); } public E next() { return itr.previous(); } public void remove() { itr.remove(); } } @SuppressWarnings("unchecked") private LinkedList<E> superClone() { try { return (LinkedList<E>) super.clone(); } catch (CloneNotSupportedException e) { throw new InternalError(); } } public Object clone() { LinkedList<E> clone = superClone(); clone.first = clone.last = null; clone.size = 0; clone.modCount = 0; for (Node<E> x = first; x != null; x = x.next) clone.add(x.item); return clone; } public Object[] toArray() { Object[] result = new Object[size]; int i = 0; for (Node<E> x = first; x != null; x = x.next) result[i++] = x.item; return result; } @SuppressWarnings("unchecked") public <T> T[] toArray(T[] a) { if (a.length < size) a = (T[])java.lang.reflect.Array.newInstance( a.getClass().getComponentType(), size); int i = 0; Object[] result = a; for (Node<E> x = first; x != null; x = x.next) result[i++] = x.item; if (a.length > size) a[size] = null; return a; } private static final long serialVersionUID = 876323262645176354L; private void writeObject(java.io.ObjectOutputStream s) throws java.io.IOException { // Write out any hidden serialization magic  s.defaultWriteObject(); // Write out size  s.writeInt(size); // Write out all elements in the proper order. for (Node<E> x = first; x != null; x = x.next) s.writeObject(x.item); } @SuppressWarnings("unchecked") private void readObject(java.io.ObjectInputStream s) throws java.io.IOException, ClassNotFoundException { // Read in any hidden serialization magic  s.defaultReadObject(); // Read in size int size = s.readInt(); // Read in all elements in the proper order. for (int i = 0; i < size; i++) linkLast((E)s.readObject()); } }
 public class ArrayList<E> extends AbstractList<E> implements List<E>, RandomAccess, Cloneable, java.io.Serializable{ private static final long serialVersionUID = 8683452581122892189L; // 序列版本号 private static final int DEFAULT_CAPACITY = 10; private static final Object[] EMPTY_ELEMENTDATA = {}; private transient Object[] elementData; //保存数据数组 private int size; // ArrayList中实际数据的数量 // ArrayList无参构造函数。默认容量是10。 public ArrayList() { super(); this.elementData = EMPTY_ELEMENTDATA; } // ArrayList带容量大小的构造函数。 public ArrayList(int initialCapacity) { super(); if (initialCapacity < 0) throw new IllegalArgumentException("Illegal Capacity: "+ initialCapacity); this.elementData = new Object[initialCapacity]; } // 创建一个包含collection的ArrayList public ArrayList(Collection<? extends E> c) { elementData = c.toArray(); size = elementData.length; if (elementData.getClass() != Object[].class) elementData = Arrays.copyOf(elementData, size, Object[].class); } //1增 // 将e添加到ArrayList中 public boolean add(E e) { ensureCapacityInternal(size + 1); elementData[size++] = e; return true; } // 将e添加到ArrayList的指定位置 public void add(int index, E element) { rangeCheckForAdd(index); ensureCapacityInternal(size + 1); System.arraycopy(elementData, index, elementData, index + 1, size - index); elementData[index] = element; size++; } // 将集合c追加到ArrayList中 public boolean addAll(Collection<? extends E> c) { Object[] a = c.toArray(); int numNew = a.length; ensureCapacityInternal(size + numNew); System.arraycopy(a, 0, elementData, size, numNew); size += numNew; return numNew != 0; } // 从index位置开始,将集合c添加到ArrayList public boolean addAll(int index, Collection<? extends E> c) { rangeCheckForAdd(index); Object[] a = c.toArray(); int numNew = a.length; ensureCapacityInternal(size + numNew); int numMoved = size - index; if (numMoved > 0) System.arraycopy(elementData, index, elementData, index + numNew, numMoved); System.arraycopy(a, 0, elementData, index, numNew); size += numNew; return numNew != 0; } //2删 // 删除ArrayList指定位置的元素 public E remove(int index) { rangeCheck(index); modCount++; E oldValue = elementData(index); int numMoved = size - index - 1; if (numMoved > 0) System.arraycopy(elementData, index+1, elementData, index, numMoved); elementData[--size] = null; return oldValue; } // 删除ArrayList的指定元素 public boolean remove(Object o) { if (o == null) { for (int index = 0; index < size; index++) if (elementData[index] == null) { fastRemove(index); return true; } } else { for (int index = 0; index < size; index++) if (o.equals(elementData[index])) { fastRemove(index); return true; } } return false; } // 快速删除第index个元素 private void fastRemove(int index) { modCount++; int numMoved = size - index - 1; if (numMoved > 0) System.arraycopy(elementData, index+1, elementData, index, numMoved); elementData[--size] = null; } // 清空ArrayList,将全部的元素设为null public void clear() { modCount++; for (int i = 0; i < size; i++) elementData[i] = null; size = 0; } // 删除fromIndex到toIndex之间的全部元素 protected void removeRange(int fromIndex, int toIndex) { modCount++; int numMoved = size - toIndex; System.arraycopy(elementData, toIndex, elementData, fromIndex, numMoved); int newSize = size - (toIndex-fromIndex); for (int i = newSize; i < size; i++) { elementData[i] = null; } size = newSize; } //3改 // 设置index位置的值为element public E set(int index, E element) { rangeCheck(index); E oldValue = elementData(index); elementData[index] = element; return oldValue; } //4查 // 返回ArrayList的实际大小 public int size() { return size; } //返回ArrayList是否为空 public boolean isEmpty() { return size == 0; } // ArrayList是否包含Object(o) public boolean contains(Object o) { return indexOf(o) >= 0; } // 正向查找,返回元素的索引值 public int indexOf(Object o) { if (o == null) { for (int i = 0; i < size; i++) if (elementData[i]==null) return i; } else { for (int i = 0; i < size; i++) if (o.equals(elementData[i])) return i; } return -1; } // 反向查找,返回元素的索引值 public int lastIndexOf(Object o) { if (o == null) { for (int i = size-1; i >= 0; i--) if (elementData[i]==null) return i; } else { for (int i = size-1; i >= 0; i--) if (o.equals(elementData[i])) return i; } return -1; } // 获取index位置的元素值 @SuppressWarnings("unchecked") E elementData(int index) { return (E) elementData[index]; } public E get(int index) { rangeCheck(index); return elementData(index); } //5其它 public Object[] toArray() { return Arrays.copyOf(elementData, size); } @SuppressWarnings("unchecked") public <T> T[] toArray(T[] a) { if (a.length < size) return (T[]) Arrays.copyOf(elementData, size, a.getClass()); System.arraycopy(elementData, 0, a, 0, size); if (a.length > size) a[size] = null; return a; } // 将当前容量值设为实际元素个数 public void trimToSize() { modCount++; if (size < elementData.length) { elementData = Arrays.copyOf(elementData, size); } } public void ensureCapacity(int minCapacity) { int minExpand = (elementData != EMPTY_ELEMENTDATA) ? 0 : DEFAULT_CAPACITY; if (minCapacity > minExpand) { ensureExplicitCapacity(minCapacity); } } private void ensureCapacityInternal(int minCapacity) { if (elementData == EMPTY_ELEMENTDATA) { minCapacity = Math.max(DEFAULT_CAPACITY, minCapacity); } ensureExplicitCapacity(minCapacity); } // 确定ArrarList的容量 private void ensureExplicitCapacity(int minCapacity) { modCount++; if (minCapacity - elementData.length > 0) grow(minCapacity); } private static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8; private void grow(int minCapacity) { int oldCapacity = elementData.length; int newCapacity = oldCapacity + (oldCapacity >> 1); if (newCapacity - minCapacity < 0) newCapacity = minCapacity; if (newCapacity - MAX_ARRAY_SIZE > 0) newCapacity = hugeCapacity(minCapacity); elementData = Arrays.copyOf(elementData, newCapacity); } private static int hugeCapacity(int minCapacity) { if (minCapacity < 0) throw new OutOfMemoryError(); return (minCapacity > MAX_ARRAY_SIZE) ? Integer.MAX_VALUE : MAX_ARRAY_SIZE; } public Object clone() { try { @SuppressWarnings("unchecked") ArrayList<E> v = (ArrayList<E>) super.clone(); v.elementData = Arrays.copyOf(elementData, size); v.modCount = 0; return v; } catch (CloneNotSupportedException e) { throw new InternalError(); } } private void rangeCheck(int index) { if (index >= size) throw new IndexOutOfBoundsException(outOfBoundsMsg(index)); } private void rangeCheckForAdd(int index) { if (index > size || index < 0) throw new IndexOutOfBoundsException(outOfBoundsMsg(index)); } private String outOfBoundsMsg(int index) { return "Index: "+index+", Size: "+size; } public boolean removeAll(Collection<?> c) { return batchRemove(c, false); } public boolean retainAll(Collection<?> c) { return batchRemove(c, true); } private boolean batchRemove(Collection<?> c, boolean complement) { final Object[] elementData = this.elementData; int r = 0, w = 0; boolean modified = false; try { for (; r < size; r++) if (c.contains(elementData[r]) == complement) elementData[w++] = elementData[r]; } finally { if (r != size) { System.arraycopy(elementData, r, elementData, w, size - r); w += size - r; } if (w != size) { for (int i = w; i < size; i++) elementData[i] = null; modCount += size - w; size = w; modified = true; } } return modified; } private void writeObject(java.io.ObjectOutputStream s) throws java.io.IOException{ int expectedModCount = modCount; s.defaultWriteObject(); s.writeInt(size); for (int i=0; i<size; i++) { s.writeObject(elementData[i]); } if (modCount != expectedModCount) { throw new ConcurrentModificationException(); } } private void readObject(java.io.ObjectInputStream s) throws java.io.IOException, ClassNotFoundException { elementData = EMPTY_ELEMENTDATA; s.defaultReadObject(); s.readInt(); if (size > 0) { ensureCapacityInternal(size); Object[] a = elementData; for (int i=0; i<size; i++) { a[i] = s.readObject(); } } } public ListIterator<E> listIterator(int index) { if (index < 0 || index > size) throw new IndexOutOfBoundsException("Index: "+index); return new ListItr(index); } public ListIterator<E> listIterator() { return new ListItr(0); } public Iterator<E> iterator() { return new Itr(); } private class Itr implements Iterator<E> { int cursor; int lastRet = -1; int expectedModCount = modCount; public boolean hasNext() { return cursor != size; } @SuppressWarnings("unchecked") public E next() { checkForComodification(); int i = cursor; if (i >= size) throw new NoSuchElementException(); Object[] elementData = ArrayList.this.elementData; if (i >= elementData.length) throw new ConcurrentModificationException(); cursor = i + 1; return (E) elementData[lastRet = i]; } public void remove() { if (lastRet < 0) throw new IllegalStateException(); checkForComodification(); try { ArrayList.this.remove(lastRet); cursor = lastRet; lastRet = -1; expectedModCount = modCount; } catch (IndexOutOfBoundsException ex) { throw new ConcurrentModificationException(); } } final void checkForComodification() { if (modCount != expectedModCount) throw new ConcurrentModificationException(); } } private class ListItr extends Itr implements ListIterator<E> { ListItr(int index) { super(); cursor = index; } public boolean hasPrevious() { return cursor != 0; } public int nextIndex() { return cursor; } public int previousIndex() { return cursor - 1; } @SuppressWarnings("unchecked") public E previous() { checkForComodification(); int i = cursor - 1; if (i < 0) throw new NoSuchElementException(); Object[] elementData = ArrayList.this.elementData; if (i >= elementData.length) throw new ConcurrentModificationException(); cursor = i; return (E) elementData[lastRet = i]; } public void set(E e) { if (lastRet < 0) throw new IllegalStateException(); checkForComodification(); try { ArrayList.this.set(lastRet, e); } catch (IndexOutOfBoundsException ex) { throw new ConcurrentModificationException(); } } public void add(E e) { checkForComodification(); try { int i = cursor; ArrayList.this.add(i, e); cursor = i + 1; lastRet = -1; expectedModCount = modCount; } catch (IndexOutOfBoundsException ex) { throw new ConcurrentModificationException(); } } } public List<E> subList(int fromIndex, int toIndex) { subListRangeCheck(fromIndex, toIndex, size); return new SubList(this, 0, fromIndex, toIndex); } static void subListRangeCheck(int fromIndex, int toIndex, int size) { if (fromIndex < 0) throw new IndexOutOfBoundsException("fromIndex = " + fromIndex); if (toIndex > size) throw new IndexOutOfBoundsException("toIndex = " + toIndex); if (fromIndex > toIndex) throw new IllegalArgumentException("fromIndex(" + fromIndex + ") > toIndex(" + toIndex + ")"); } private class SubList extends AbstractList<E> implements RandomAccess { private final AbstractList<E> parent; private final int parentOffset; private final int offset; int size; SubList(AbstractList<E> parent, int offset, int fromIndex, int toIndex) { this.parent = parent; this.parentOffset = fromIndex; this.offset = offset + fromIndex; this.size = toIndex - fromIndex; this.modCount = ArrayList.this.modCount; } public E set(int index, E e) { rangeCheck(index); checkForComodification(); E oldValue = ArrayList.this.elementData(offset + index); ArrayList.this.elementData[offset + index] = e; return oldValue; } public E get(int index) { rangeCheck(index); checkForComodification(); return ArrayList.this.elementData(offset + index); } public int size() { checkForComodification(); return this.size; } public void add(int index, E e) { rangeCheckForAdd(index); checkForComodification(); parent.add(parentOffset + index, e); this.modCount = parent.modCount; this.size++; } public E remove(int index) { rangeCheck(index); checkForComodification(); E result = parent.remove(parentOffset + index); this.modCount = parent.modCount; this.size--; return result; } protected void removeRange(int fromIndex, int toIndex) { checkForComodification(); parent.removeRange(parentOffset + fromIndex, parentOffset + toIndex); this.modCount = parent.modCount; this.size -= toIndex - fromIndex; } public boolean addAll(Collection<? extends E> c) { return addAll(this.size, c); } public boolean addAll(int index, Collection<? extends E> c) { rangeCheckForAdd(index); int cSize = c.size(); if (cSize==0) return false; checkForComodification(); parent.addAll(parentOffset + index, c); this.modCount = parent.modCount; this.size += cSize; return true; } public Iterator<E> iterator() { return listIterator(); } public ListIterator<E> listIterator(final int index) { checkForComodification(); rangeCheckForAdd(index); final int offset = this.offset; return new ListIterator<E>() { int cursor = index; int lastRet = -1; int expectedModCount = ArrayList.this.modCount; public boolean hasNext() { return cursor != SubList.this.size; } @SuppressWarnings("unchecked") public E next() { checkForComodification(); int i = cursor; if (i >= SubList.this.size) throw new NoSuchElementException(); Object[] elementData = ArrayList.this.elementData; if (offset + i >= elementData.length) throw new ConcurrentModificationException(); cursor = i + 1; return (E) elementData[offset + (lastRet = i)]; } public boolean hasPrevious() { return cursor != 0; } @SuppressWarnings("unchecked") public E previous() { checkForComodification(); int i = cursor - 1; if (i < 0) throw new NoSuchElementException(); Object[] elementData = ArrayList.this.elementData; if (offset + i >= elementData.length) throw new ConcurrentModificationException(); cursor = i; return (E) elementData[offset + (lastRet = i)]; } public int nextIndex() { return cursor; } public int previousIndex() { return cursor - 1; } public void remove() { if (lastRet < 0) throw new IllegalStateException(); checkForComodification(); try { SubList.this.remove(lastRet); cursor = lastRet; lastRet = -1; expectedModCount = ArrayList.this.modCount; } catch (IndexOutOfBoundsException ex) { throw new ConcurrentModificationException(); } } public void set(E e) { if (lastRet < 0) throw new IllegalStateException(); checkForComodification(); try { ArrayList.this.set(offset + lastRet, e); } catch (IndexOutOfBoundsException ex) { throw new ConcurrentModificationException(); } } public void add(E e) { checkForComodification(); try { int i = cursor; SubList.this.add(i, e); cursor = i + 1; lastRet = -1; expectedModCount = ArrayList.this.modCount; } catch (IndexOutOfBoundsException ex) { throw new ConcurrentModificationException(); } } final void checkForComodification() { if (expectedModCount != ArrayList.this.modCount) throw new ConcurrentModificationException(); } }; } public List<E> subList(int fromIndex, int toIndex) { subListRangeCheck(fromIndex, toIndex, size); return new SubList(this, offset, fromIndex, toIndex); } private void rangeCheck(int index) { if (index < 0 || index >= this.size) throw new IndexOutOfBoundsException(outOfBoundsMsg(index)); } private void rangeCheckForAdd(int index) { if (index < 0 || index > this.size) throw new IndexOutOfBoundsException(outOfBoundsMsg(index)); } private String outOfBoundsMsg(int index) { return "Index: "+index+", Size: "+this.size; } private void checkForComodification() { if (ArrayList.this.modCount != this.modCount) throw new ConcurrentModificationException(); } } }
public class HashSet<E> extends AbstractSet<E> implements Set<E>, Cloneable, java.io.Serializable{
    static final long serialVersionUID = -5024744406713321676L;
    private transient HashMap<E,Object> map;
    private static final Object PRESENT = new Object();

    public HashSet() {
        map = new HashMap<>();
    }

    public HashSet(Collection<? extends E> c) {
        map = new HashMap<>(Math.max((int) (c.size()/.75f) + 1, 16));
        addAll(c);
    }

    public HashSet(int initialCapacity, float loadFactor) {
        map = new HashMap<>(initialCapacity, loadFactor);
    }

    public HashSet(int initialCapacity) {
        map = new HashMap<>(initialCapacity);
    }

    HashSet(int initialCapacity, float loadFactor, boolean dummy) {
        map = new LinkedHashMap<>(initialCapacity, loadFactor);
    }
    
    //1增
    public boolean add(E e) {
        return map.put(e, PRESENT)==null;
    }
    
    //2删
    public boolean remove(Object o) {
        return map.remove(o)==PRESENT;
    }
    
    public void clear() {
        map.clear();
    }
    
    //3改
    
    //4查
    public int size() {
        return map.size();
    }

    public boolean isEmpty() {
        return map.isEmpty();
    }

    public boolean contains(Object o) {
        return map.containsKey(o);
    }
    
    public Iterator<E> iterator() {
        return map.keySet().iterator();
    }
    
    public Object clone() {
        try {
            HashSet<E> newSet = (HashSet<E>) super.clone();
            newSet.map = (HashMap<E, Object>) map.clone();
            return newSet;
        } catch (CloneNotSupportedException e) {
            throw new InternalError();
        }
    }

    private void writeObject(java.io.ObjectOutputStream s)
        throws java.io.IOException {
        s.defaultWriteObject();

        s.writeInt(map.capacity());
        s.writeFloat(map.loadFactor());

        s.writeInt(map.size());

        for (E e : map.keySet())
            s.writeObject(e);
    }

    private void readObject(java.io.ObjectInputStream s)
        throws java.io.IOException, ClassNotFoundException {
        s.defaultReadObject();

        int capacity = s.readInt();
        float loadFactor = s.readFloat();
        map = (((HashSet)this) instanceof LinkedHashSet ?
               new LinkedHashMap<E,Object>(capacity, loadFactor) :
               new HashMap<E,Object>(capacity, loadFactor));

        int size = s.readInt();

        for (int i=0; i<size; i++) {
            E e = (E) s.readObject();
            map.put(e, PRESENT);
        }
    }
}
public class TreeSet<E> extends AbstractSet<E> implements NavigableSet<E>, Cloneable, java.io.Serializable{
    private transient NavigableMap<E,Object> m;
    private static final Object PRESENT = new Object();

    TreeSet(NavigableMap<E,Object> m) {
        this.m = m;
    }

    public TreeSet() {
        this(new TreeMap<E,Object>());
    }

    public TreeSet(Comparator<? super E> comparator) {
        this(new TreeMap<>(comparator));
    }

    public TreeSet(Collection<? extends E> c) {
        this();
        addAll(c);
    }

    public TreeSet(SortedSet<E> s) {
        this(s.comparator());
        addAll(s);
    }

    public Iterator<E> iterator() {
        return m.navigableKeySet().iterator();
    }

    public Iterator<E> descendingIterator() {
        return m.descendingKeySet().iterator();
    }

    public NavigableSet<E> descendingSet() {
        return new TreeSet<>(m.descendingMap());
    }

    public int size() {
        return m.size();
    }

    public boolean isEmpty() {
        return m.isEmpty();
    }

    public boolean contains(Object o) {
        return m.containsKey(o);
    }

    public boolean add(E e) {
        return m.put(e, PRESENT)==null;
    }

    public boolean remove(Object o) {
        return m.remove(o)==PRESENT;
    }

    public void clear() {
        m.clear();
    }

    public  boolean addAll(Collection<? extends E> c) {
        if (m.size()==0 && c.size() > 0 &&
            c instanceof SortedSet &&
            m instanceof TreeMap) {
            SortedSet<? extends E> set = (SortedSet<? extends E>) c;
            TreeMap<E,Object> map = (TreeMap<E, Object>) m;
            Comparator<? super E> cc = (Comparator<? super E>) set.comparator();
            Comparator<? super E> mc = map.comparator();
            if (cc==mc || (cc != null && cc.equals(mc))) {
                map.addAllForTreeSet(set, PRESENT);
                return true;
            }
        }
        return super.addAll(c);
    }

    public NavigableSet<E> subSet(E fromElement, boolean fromInclusive,
                                  E toElement,   boolean toInclusive) {
        return new TreeSet<>(m.subMap(fromElement, fromInclusive,
                                       toElement,   toInclusive));
    }

    public NavigableSet<E> headSet(E toElement, boolean inclusive) {
        return new TreeSet<>(m.headMap(toElement, inclusive));
    }

    public NavigableSet<E> tailSet(E fromElement, boolean inclusive) {
        return new TreeSet<>(m.tailMap(fromElement, inclusive));
    }

    public SortedSet<E> subSet(E fromElement, E toElement) {
        return subSet(fromElement, true, toElement, false);
    }

    public SortedSet<E> headSet(E toElement) {
        return headSet(toElement, false);
    }

    public SortedSet<E> tailSet(E fromElement) {
        return tailSet(fromElement, true);
    }

    public Comparator<? super E> comparator() {
        return m.comparator();
    }

    public E first() {
        return m.firstKey();
    }

    public E last() {
        return m.lastKey();
    }

    public E lower(E e) {
        return m.lowerKey(e);
    }

    public E floor(E e) {
        return m.floorKey(e);
    }

    public E ceiling(E e) {
        return m.ceilingKey(e);
    }

    public E higher(E e) {
        return m.higherKey(e);
    }

    public E pollFirst() {
        Map.Entry<E,?> e = m.pollFirstEntry();
        return (e == null) ? null : e.getKey();
    }

    public E pollLast() {
        Map.Entry<E,?> e = m.pollLastEntry();
        return (e == null) ? null : e.getKey();
    }

    public Object clone() {
        TreeSet<E> clone = null;
        try {
            clone = (TreeSet<E>) super.clone();
        } catch (CloneNotSupportedException e) {
            throw new InternalError();
        }

        clone.m = new TreeMap<>(m);
        return clone;
    }

    private void writeObject(java.io.ObjectOutputStream s)
        throws java.io.IOException {
        s.defaultWriteObject();
        s.writeObject(m.comparator());
        s.writeInt(m.size());
        for (E e : m.keySet())
            s.writeObject(e);
    }

    private void readObject(java.io.ObjectInputStream s)
        throws java.io.IOException, ClassNotFoundException {
        s.defaultReadObject();

        Comparator<? super E> c = (Comparator<? super E>) s.readObject();

        TreeMap<E,Object> tm;
        if (c==null)
            tm = new TreeMap<>();
        else
            tm = new TreeMap<>(c);
        m = tm;

        int size = s.readInt();

        tm.readTreeSet(size, s, PRESENT);
    }

    private static final long serialVersionUID = -2479143000061671589L;
}
public interface Map<K,V> {
    //1增
    V put(K key, V value);//返回前一个和key关联的值,如果没有返回null.
    
    //2删
    void clear(); //清空map集合
    V remove(Object key); //根据指定的key删除这个键值对
    
    //3改
    
    //4查
    boolean isEmpty();
    boolean containsKey(Object key);
    boolean containsValue(Object value);
    int size();
    V get(Object key);
    
    void putAll(Map<? extends K, ? extends V> m);
    Set<K> keySet();
    Collection<V> values();
    Set<Map.Entry<K, V>> entrySet();
    interface Entry<K,V> {
        K getKey();
        V getValue();
        V setValue(V value);
        boolean equals(Object o);
        int hashCode();
    }
    
    boolean equals(Object o);
    int hashCode();

}
public class HashMap<K,V> extends AbstractMap<K,V> implements Map<K,V>, Cloneable, Serializable {
    static final int DEFAULT_INITIAL_CAPACITY = 1 << 4;   // 默认的初始容量(容量为HashMap中槽的数目)是16,且实际容量必须是2的整数次幂。
    static final int MAXIMUM_CAPACITY = 1 << 30; // 最大容量(必须是2的幂且小于2的30次方,传入容量过大将被这个值替换)  
    static final float DEFAULT_LOAD_FACTOR = 0.75f; // 默认加载因子为0.75   
    static final Entry<?,?>[] EMPTY_TABLE = {}; 
    transient Entry<K,V>[] table = (Entry<K,V>[]) EMPTY_TABLE; // 存储数据的Entry数组 每一个Entry本质上是一个单向链表
    transient int size; // HashMap的底层数组中已用槽的数量
    int threshold; // HashMap的阈值,用于判断是否需要调整HashMap的容量(threshold = 容量*加载因子)
    final float loadFactor; // 加载因子实际大小 
    transient int modCount; // HashMap被改变的次数    
    static final int ALTERNATIVE_HASHING_THRESHOLD_DEFAULT = Integer.MAX_VALUE;

    private static class Holder {

        static final int ALTERNATIVE_HASHING_THRESHOLD;

        static {
            String altThreshold = java.security.AccessController.doPrivileged(
                new sun.security.action.GetPropertyAction(
                    "jdk.map.althashing.threshold"));

            int threshold;
            try {
                threshold = (null != altThreshold)
                        ? Integer.parseInt(altThreshold)
                        : ALTERNATIVE_HASHING_THRESHOLD_DEFAULT;

                if (threshold == -1) {
                    threshold = Integer.MAX_VALUE;
                }

                if (threshold < 0) {
                    throw new IllegalArgumentException("value must be positive integer.");
                }
            } catch(IllegalArgumentException failed) {
                throw new Error("Illegal value for 'jdk.map.althashing.threshold'", failed);
            }

            ALTERNATIVE_HASHING_THRESHOLD = threshold;
        }
    }

    transient int hashSeed = 0;

    // 指定“容量大小”和“加载因子”的构造函数 
    public HashMap(int initialCapacity, float loadFactor) {
        if (initialCapacity < 0)
            throw new IllegalArgumentException("Illegal initial capacity: " +
                                               initialCapacity);
        if (initialCapacity > MAXIMUM_CAPACITY)
            initialCapacity = MAXIMUM_CAPACITY;
        if (loadFactor <= 0 || Float.isNaN(loadFactor))
            throw new IllegalArgumentException("Illegal load factor: " +
                                               loadFactor);

        this.loadFactor = loadFactor;
        threshold = initialCapacity;
        init();
    }

    // 指定“容量大小”的构造函数 
    public HashMap(int initialCapacity) {
        this(initialCapacity, DEFAULT_LOAD_FACTOR);
    }

    // 默认构造函数
    public HashMap() {
        this(DEFAULT_INITIAL_CAPACITY, DEFAULT_LOAD_FACTOR);
    }

    // 包含“子Map”的构造函数
    public HashMap(Map<? extends K, ? extends V> m) {
        this(Math.max((int) (m.size() / DEFAULT_LOAD_FACTOR) + 1,
                      DEFAULT_INITIAL_CAPACITY), DEFAULT_LOAD_FACTOR);
        inflateTable(threshold);
        putAllForCreate(m);
    }

    private static int roundUpToPowerOf2(int number) {
        return number >= MAXIMUM_CAPACITY
                ? MAXIMUM_CAPACITY
                : (number > 1) ? Integer.highestOneBit((number - 1) << 1) : 1;
    }

    private void inflateTable(int toSize) {
        int capacity = roundUpToPowerOf2(toSize);

        threshold = (int) Math.min(capacity * loadFactor, MAXIMUM_CAPACITY + 1);
        table = new Entry[capacity];
        initHashSeedAsNeeded(capacity);
    }

    void init() {
    }

    final boolean initHashSeedAsNeeded(int capacity) {
        boolean currentAltHashing = hashSeed != 0;
        boolean useAltHashing = sun.misc.VM.isBooted() &&
                (capacity >= Holder.ALTERNATIVE_HASHING_THRESHOLD);
        boolean switching = currentAltHashing ^ useAltHashing;
        if (switching) {
            hashSeed = useAltHashing
                ? sun.misc.Hashing.randomHashSeed(this)
                : 0;
        }
        return switching;
    }
    
    //求hash值的方法,重新计算hash值 
    final int hash(Object k) {
        int h = hashSeed;
        if (0 != h && k instanceof String) {
            return sun.misc.Hashing.stringHash32((String) k);
        }

        h ^= k.hashCode();
        h ^= (h >>> 20) ^ (h >>> 12);
        return h ^ (h >>> 7) ^ (h >>> 4);
    }

    // 返回h在数组中的索引值,这里用&代替取模,旨在提升效率   
    // h & (length-1)保证返回值的小于length
    static int indexFor(int h, int length) {
        return h & (length-1);
    }

    public int size() {
        return size;
    }

    public boolean isEmpty() {
        return size == 0;
    }

    // 获取key对应的value
    public V get(Object key) {
        if (key == null)
            return getForNullKey();
        Entry<K,V> entry = getEntry(key);

        return null == entry ? null : entry.getValue();
    }

    // 获取“key为null”的元素的值    
    // HashMap将“key为null”的元素存储在table[0]位置,但不一定是该链表的第一个位置!  
    private V getForNullKey() {
        if (size == 0) {
            return null;
        }
        for (Entry<K,V> e = table[0]; e != null; e = e.next) {
            if (e.key == null)
                return e.value;
        }
        return null;
    }

    // HashMap是否包含key 
    public boolean containsKey(Object key) {
        return getEntry(key) != null;
    }

    // 返回“键为key”的键值对
    final Entry<K,V> getEntry(Object key) {
        if (size == 0) {
            return null;
        }
        // 获取key的hash值 
        int hash = (key == null) ? 0 : hash(key);
        // 在“该hash值对应的链表”上查找“键值等于key”的元素    
        for (Entry<K,V> e = table[indexFor(hash, table.length)];
             e != null;
             e = e.next) {
            Object k;
            //判断key是否相同  
            if (e.hash == hash &&
                ((k = e.key) == key || (key != null && key.equals(k))))
                return e;
        }
        return null;
    }

    // 将“key-value”添加到HashMap中   
    public V put(K key, V value) {
        if (table == EMPTY_TABLE) {
            inflateTable(threshold);
        }
        // 若“key为null”,则将该键值对添加到table[0]中。  
        if (key == null)
            return putForNullKey(value);
        // 若“key不为null”,则计算该key的哈希值,然后将其添加到该哈希值对应的链表中。
        int hash = hash(key);
        int i = indexFor(hash, table.length);
        for (Entry<K,V> e = table[i]; e != null; e = e.next) {
            Object k;
            if (e.hash == hash && ((k = e.key) == key || key.equals(k))) {
                V oldValue = e.value;
                e.value = value;
                e.recordAccess(this);
                return oldValue;
            }
        }

        modCount++;
        //将key-value添加到table[i]处  
        addEntry(hash, key, value, i);
        return null;
    }

    //将“key为null”键值对添加到table[0]位置 
    private V putForNullKey(V value) {
        for (Entry<K,V> e = table[0]; e != null; e = e.next) {
            if (e.key == null) {
                V oldValue = e.value;
                e.value = value;
                e.recordAccess(this);
                return oldValue;
            }
        }
        modCount++;
        addEntry(0, null, value, 0);
        return null;
    }

    // 创建HashMap对应的“添加方法”,    
    // 它和put()不同。putForCreate()是内部方法,它被构造函数等调用,用来创建HashMap    
    // 而put()是对外提供的往HashMap中添加元素的方法。 
    private void putForCreate(K key, V value) {
        int hash = null == key ? 0 : hash(key);
        int i = indexFor(hash, table.length);

        for (Entry<K,V> e = table[i]; e != null; e = e.next) {
            Object k;
            if (e.hash == hash &&
                ((k = e.key) == key || (key != null && key.equals(k)))) {
                e.value = value;
                return;
            }
        }

        createEntry(hash, key, value, i);
    }

    // 将“m”中的全部元素都添加到HashMap中。    
    // 该方法被内部的构造HashMap的方法所调用。   
    private void putAllForCreate(Map<? extends K, ? extends V> m) {
        for (Map.Entry<? extends K, ? extends V> e : m.entrySet())
            putForCreate(e.getKey(), e.getValue());
    }

    // 重新调整HashMap的大小,newCapacity是调整后的容量 
    void resize(int newCapacity) {
        Entry[] oldTable = table;
        int oldCapacity = oldTable.length;
        //如果就容量已经达到了最大值,则不能再扩容,直接返回  
        if (oldCapacity == MAXIMUM_CAPACITY) {
            threshold = Integer.MAX_VALUE;
            return;
        }

        // 新建一个HashMap,将“旧HashMap”的全部元素添加到“新HashMap”中,    
        // 然后,将“新HashMap”赋值给“旧HashMap”。
        Entry[] newTable = new Entry[newCapacity];
        transfer(newTable, initHashSeedAsNeeded(newCapacity));
        table = newTable;
        threshold = (int)Math.min(newCapacity * loadFactor, MAXIMUM_CAPACITY + 1);
    }

    // 将HashMap中的全部元素都添加到newTable中 
    void transfer(Entry[] newTable, boolean rehash) {
        int newCapacity = newTable.length;
        for (Entry<K,V> e : table) {
            while(null != e) {
                Entry<K,V> next = e.next;
                if (rehash) {
                    e.hash = null == e.key ? 0 : hash(e.key);
                }
                int i = indexFor(e.hash, newCapacity);
                e.next = newTable[i];
                newTable[i] = e;
                e = next;
            }
        }
    }

    // 将"m"的全部元素都添加到HashMap中
    public void putAll(Map<? extends K, ? extends V> m) {
        int numKeysToBeAdded = m.size();
        if (numKeysToBeAdded == 0)
            return;

        if (table == EMPTY_TABLE) {
            inflateTable((int) Math.max(numKeysToBeAdded * loadFactor, threshold));
        }

        if (numKeysToBeAdded > threshold) {
            int targetCapacity = (int)(numKeysToBeAdded / loadFactor + 1);
            if (targetCapacity > MAXIMUM_CAPACITY)
                targetCapacity = MAXIMUM_CAPACITY;
            int newCapacity = table.length;
            while (newCapacity < targetCapacity)
                newCapacity <<= 1;
            if (newCapacity > table.length)
                resize(newCapacity);
        }

        for (Map.Entry<? extends K, ? extends V> e : m.entrySet())
            put(e.getKey(), e.getValue());
    }

    // 删除“键为key”元素 
    public V remove(Object key) {
        Entry<K,V> e = removeEntryForKey(key);
        return (e == null ? null : e.value);
    }

    final Entry<K,V> removeEntryForKey(Object key) {
        if (size == 0) {
            return null;
        }
        // 获取哈希值。若key为null,则哈希值为0;否则调用hash()进行计算 
        int hash = (key == null) ? 0 : hash(key);
        int i = indexFor(hash, table.length);
        Entry<K,V> prev = table[i];
        Entry<K,V> e = prev;

        // 删除链表中“键为key”的元素    
        // 本质是“删除单向链表中的节点”    
        while (e != null) {
            Entry<K,V> next = e.next;
            Object k;
            if (e.hash == hash &&
                ((k = e.key) == key || (key != null && key.equals(k)))) {
                modCount++;
                size--;
                if (prev == e)
                    table[i] = next;
                else
                    prev.next = next;
                e.recordRemoval(this);
                return e;
            }
            prev = e;
            e = next;
        }

        return e;
    }

    // 删除“键值对”
    final Entry<K,V> removeMapping(Object o) {
        if (size == 0 || !(o instanceof Map.Entry))
            return null;

        Map.Entry<K,V> entry = (Map.Entry<K,V>) o;
        Object key = entry.getKey();
        int hash = (key == null) ? 0 : hash(key);
        int i = indexFor(hash, table.length);
        Entry<K,V> prev = table[i];
        Entry<K,V> e = prev;

        while (e != null) {
            Entry<K,V> next = e.next;
            if (e.hash == hash && e.equals(entry)) {
                modCount++;
                size--;
                if (prev == e)
                    table[i] = next;
                else
                    prev.next = next;
                e.recordRemoval(this);
                return e;
            }
            prev = e;
            e = next;
        }

        return e;
    }

    // 清空HashMap,将所有的元素设为null  
    public void clear() {
        modCount++;
        Arrays.fill(table, null);
        size = 0;
    }

    // 是否包含“值为value”的元素 
    public boolean containsValue(Object value) {
        if (value == null)
            return containsNullValue();

        Entry[] tab = table;
        for (int i = 0; i < tab.length ; i++)
            for (Entry e = tab[i] ; e != null ; e = e.next)
                if (value.equals(e.value))
                    return true;
        return false;
    }

    // 是否包含null值  
    private boolean containsNullValue() {
        Entry[] tab = table;
        for (int i = 0; i < tab.length ; i++)
            for (Entry e = tab[i] ; e != null ; e = e.next)
                if (e.value == null)
                    return true;
        return false;
    }

    // 克隆一个HashMap,并返回Object对象
    public Object clone() {
        HashMap<K,V> result = null;
        try {
            result = (HashMap<K,V>)super.clone();
        } catch (CloneNotSupportedException e) {
        }
        if (result.table != EMPTY_TABLE) {
            result.inflateTable(Math.min(
                (int) Math.min(
                    size * Math.min(1 / loadFactor, 4.0f),
                    HashMap.MAXIMUM_CAPACITY),
               table.length));
        }
        result.entrySet = null;
        result.modCount = 0;
        result.size = 0;
        result.init();
        result.putAllForCreate(this);

        return result;
    }

    // Entry是单向链表 它是 “HashMap链式存储法”对应的链表。  
    static class Entry<K,V> implements Map.Entry<K,V> {
        final K key;
        V value;
        Entry<K,V> next; // 指向下一个节点 
        int hash;

        // 构造函数 输入参数包括"哈希值(h)", "键(k)", "值(v)", "下一节点(n)"  
        Entry(int h, K k, V v, Entry<K,V> n) {
            value = v;
            next = n;
            key = k;
            hash = h;
        }

        public final K getKey() {
            return key;
        }

        public final V getValue() {
            return value;
        }

        public final V setValue(V newValue) {
            V oldValue = value;
            value = newValue;
            return oldValue;
        }

        // 判断两个Entry是否相等    
        // 若两个Entry的“key”和“value”都相等,则返回true。    
        // 否则,返回false 
        public final boolean equals(Object o) {
            if (!(o instanceof Map.Entry))
                return false;
            Map.Entry e = (Map.Entry)o;
            Object k1 = getKey();
            Object k2 = e.getKey();
            if (k1 == k2 || (k1 != null && k1.equals(k2))) {
                Object v1 = getValue();
                Object v2 = e.getValue();
                if (v1 == v2 || (v1 != null && v1.equals(v2)))
                    return true;
            }
            return false;
        }

        public final int hashCode() {
            return Objects.hashCode(getKey()) ^ Objects.hashCode(getValue());
        }

        public final String toString() {
            return getKey() + "=" + getValue();
        }

        // 当向HashMap中添加元素时,绘调用recordAccess()。 
        void recordAccess(HashMap<K,V> m) {
        }

        // 当从HashMap中删除元素时,绘调用recordRemoval()
        void recordRemoval(HashMap<K,V> m) {
        }
    }

    // 新增Entry。将“key-value”插入指定位置,bucketIndex是位置索引
    void addEntry(int hash, K key, V value, int bucketIndex) {
        if ((size >= threshold) && (null != table[bucketIndex])) {
            resize(2 * table.length);
            hash = (null != key) ? hash(key) : 0;
            bucketIndex = indexFor(hash, table.length);
        }

        createEntry(hash, key, value, bucketIndex);
    }

    // 创建Entry。将“key-value”插入指定位置
    void createEntry(int hash, K key, V value, int bucketIndex) {
        Entry<K,V> e = table[bucketIndex];
        table[bucketIndex] = new Entry<>(hash, key, value, e);
        size++;
    }

    // HashIterator是HashMap迭代器的抽象出来的父类,实现了公共函数
    private abstract class HashIterator<E> implements Iterator<E> {
        Entry<K,V> next;        // next entry to return
        int expectedModCount;   // For fast-fail
        int index;              // current slot
        Entry<K,V> current;     // current entry

        HashIterator() {
            expectedModCount = modCount;
            if (size > 0) { // advance to first entry
                Entry[] t = table;
                while (index < t.length && (next = t[index++]) == null)
                    ;
            }
        }

        public final boolean hasNext() {
            return next != null;
        }

        final Entry<K,V> nextEntry() {
            if (modCount != expectedModCount)
                throw new ConcurrentModificationException();
            Entry<K,V> e = next;
            if (e == null)
                throw new NoSuchElementException();

            if ((next = e.next) == null) {
                Entry[] t = table;
                while (index < t.length && (next = t[index++]) == null)
                    ;
            }
            current = e;
            return e;
        }

        public void remove() {
            if (current == null)
                throw new IllegalStateException();
            if (modCount != expectedModCount)
                throw new ConcurrentModificationException();
            Object k = current.key;
            current = null;
            HashMap.this.removeEntryForKey(k);
            expectedModCount = modCount;
        }
    }

    private final class ValueIterator extends HashIterator<V> {
        public V next() {
            return nextEntry().value;
        }
    }

    private final class KeyIterator extends HashIterator<K> {
        public K next() {
            return nextEntry().getKey();
        }
    }

    private final class EntryIterator extends HashIterator<Map.Entry<K,V>> {
        public Map.Entry<K,V> next() {
            return nextEntry();
        }
    }

    Iterator<K> newKeyIterator()   {
        return new KeyIterator();
    }
    Iterator<V> newValueIterator()   {
        return new ValueIterator();
    }
    Iterator<Map.Entry<K,V>> newEntryIterator()   {
        return new EntryIterator();
    }

    private transient Set<Map.Entry<K,V>> entrySet = null;

    public Set<K> keySet() {
        Set<K> ks = keySet;
        return (ks != null ? ks : (keySet = new KeySet()));
    }

    // Key对应的集合    
    // KeySet继承于AbstractSet,说明该集合中没有重复的Key
    private final class KeySet extends AbstractSet<K> {
        public Iterator<K> iterator() {
            return newKeyIterator();
        }
        public int size() {
            return size;
        }
        public boolean contains(Object o) {
            return containsKey(o);
        }
        public boolean remove(Object o) {
            return HashMap.this.removeEntryForKey(o) != null;
        }
        public void clear() {
            HashMap.this.clear();
        }
    }

    // 返回“value集合”,实际上返回的是一个Values对象 
    public Collection<V> values() {
        Collection<V> vs = values;
        return (vs != null ? vs : (values = new Values()));
    }

    // “value集合”    
    // Values继承于AbstractCollection,不同于“KeySet继承于AbstractSet”,    
    // Values中的元素能够重复。因为不同的key可以指向相同的value。
    private final class Values extends AbstractCollection<V> {
        public Iterator<V> iterator() {
            return newValueIterator();
        }
        public int size() {
            return size;
        }
        public boolean contains(Object o) {
            return containsValue(o);
        }
        public void clear() {
            HashMap.this.clear();
        }
    }

    // 返回“HashMap的Entry集合”  
    public Set<Map.Entry<K,V>> entrySet() {
        return entrySet0();
    }

    // 返回“HashMap的Entry集合”,它实际是返回一个EntrySet对象 
    private Set<Map.Entry<K,V>> entrySet0() {
        Set<Map.Entry<K,V>> es = entrySet;
        return es != null ? es : (entrySet = new EntrySet());
    }

    // EntrySet对应的集合    
    // EntrySet继承于AbstractSet,说明该集合中没有重复的EntrySet。
    private final class EntrySet extends AbstractSet<Map.Entry<K,V>> {
        public Iterator<Map.Entry<K,V>> iterator() {
            return newEntryIterator();
        }
        public boolean contains(Object o) {
            if (!(o instanceof Map.Entry))
                return false;
            Map.Entry<K,V> e = (Map.Entry<K,V>) o;
            Entry<K,V> candidate = getEntry(e.getKey());
            return candidate != null && candidate.equals(e);
        }
        public boolean remove(Object o) {
            return removeMapping(o) != null;
        }
        public int size() {
            return size;
        }
        public void clear() {
            HashMap.this.clear();
        }
    }

    // java.io.Serializable的写入函数    
    // 将HashMap的“总的容量,实际容量,所有的Entry”都写入到输出流中 
    private void writeObject(java.io.ObjectOutputStream s) throws IOException {
        s.defaultWriteObject();
        if (table==EMPTY_TABLE) {
            s.writeInt(roundUpToPowerOf2(threshold));
        } else {
           s.writeInt(table.length);
        }
        s.writeInt(size);
        if (size > 0) {
            for(Map.Entry<K,V> e : entrySet0()) {
                s.writeObject(e.getKey());
                s.writeObject(e.getValue());
            }
        }
    }

    private static final long serialVersionUID = 362498820763181265L;

    // java.io.Serializable的读取函数:根据写入方式读出    
    // 将HashMap的“总的容量,实际容量,所有的Entry”依次读出  
    private void readObject(java.io.ObjectInputStream s)
         throws IOException, ClassNotFoundException {
        s.defaultReadObject();
        if (loadFactor <= 0 || Float.isNaN(loadFactor)) {
            throw new InvalidObjectException("Illegal load factor: " +
                                               loadFactor);
        }

        table = (Entry<K,V>[]) EMPTY_TABLE;

        s.readInt(); // ignored.

        int mappings = s.readInt();
        if (mappings < 0)
            throw new InvalidObjectException("Illegal mappings count: " +
                                               mappings);

        int capacity = (int) Math.min(
                    mappings * Math.min(1 / loadFactor, 4.0f),
                    HashMap.MAXIMUM_CAPACITY);

        if (mappings > 0) {
            inflateTable(capacity);
        } else {
            threshold = capacity;
        }

        init(); 

        for (int i = 0; i < mappings; i++) {
            K key = (K) s.readObject();
            V value = (V) s.readObject();
            putForCreate(key, value);
        }
    }

    // 返回“HashMap总的容量” 
    int   capacity()     { return table.length; }
    // 返回“HashMap的加载因子”  
    float loadFactor()   { return loadFactor;   }
}
public class Hashtable<K,V> extends Dictionary<K,V> implements Map<K,V>, Cloneable, java.io.Serializable {

    private transient Entry<?,?>[] table; //保存key-value的数组 Hashtable同样采用单链表解决冲突,每一个Entry本质上是一个单向链表
    private transient int count; //键值对的数量
    private int threshold; //阈值,用于判断是否需要调整Hashtable的容量(threshold = 容量*加载因子)
    private float loadFactor; //加载因子
    private transient int modCount = 0; //Hashtable被改变的次数,用于fail-fast机制的实现
    private static final long serialVersionUID = 1421746759512286392L; //序列版本号

    // 指定“容量大小”和“加载因子”的构造函数
    public Hashtable(int initialCapacity, float loadFactor) {
        if (initialCapacity < 0)
            throw new IllegalArgumentException("Illegal Capacity: "+
                    initialCapacity);
        if (loadFactor <= 0 || Float.isNaN(loadFactor))
            throw new IllegalArgumentException("Illegal Load: "+loadFactor);

        if (initialCapacity==0)
            initialCapacity = 1;
        this.loadFactor = loadFactor;
        table = new Entry<?,?>[initialCapacity];
        threshold = (int)Math.min(initialCapacity * loadFactor, MAX_ARRAY_SIZE + 1);
    }

    // 指定“容量大小”的构造函数
    public Hashtable(int initialCapacity) {
        this(initialCapacity, 0.75f);
    }

    // 默认构造函数 容量大小是11;加载因子是0.75
    public Hashtable() {
        this(11, 0.75f);
    }

    // 包含“子Map”的构造函数
    public Hashtable(Map<? extends K, ? extends V> t) {
        this(Math.max(2*t.size(), 11), 0.75f);
        putAll(t);
    }

    public synchronized int size() {
        return count;
    }

    public synchronized boolean isEmpty() {
        return count == 0;
    }

    // 返回“所有key”的枚举对象
    public synchronized Enumeration<K> keys() {
        return this.<K>getEnumeration(KEYS);
    }

    // 返回“所有value”的枚举对象
    public synchronized Enumeration<V> elements() {
        return this.<V>getEnumeration(VALUES);
    }

    // 判断Hashtable是否包含“值(value)”
    public synchronized boolean contains(Object value) {
        //注意,Hashtable中的value不能是null,若是null的话,抛出异常!
        if (value == null) {
            throw new NullPointerException();
        }

        // 从后向前遍历table数组中的元素(Entry)
        // 对于每个Entry(单向链表),逐个遍历,判断节点的值是否等于value
        Entry<?,?> tab[] = table;
        for (int i = tab.length ; i-- > 0 ;) {
            for (Entry<?,?> e = tab[i] ; e != null ; e = e.next) {
                if (e.value.equals(value)) {
                    return true;
                }
            }
        }
        return false;
    }

    public boolean containsValue(Object value) {
        return contains(value);
    }

    //判断Hashtable是否包含key
    public synchronized boolean containsKey(Object key) {
        Entry<?,?> tab[] = table;
        //计算hash值,直接用key的hashCode代替
        int hash = key.hashCode();
        // 计算在数组中的索引值
        int index = (hash & 0x7FFFFFFF) % tab.length;
        // 找到“key对应的Entry(链表)”,然后在链表中找出“哈希值”和“键值”与key都相等的元素
        for (Entry<?,?> e = tab[index] ; e != null ; e = e.next) {
            if ((e.hash == hash) && e.key.equals(key)) {
                return true;
            }
        }
        return false;
    }

    // 返回key对应的value,没有的话返回null
    @SuppressWarnings("unchecked")
    public synchronized V get(Object key) {
        Entry<?,?> tab[] = table;
        int hash = key.hashCode();
        int index = (hash & 0x7FFFFFFF) % tab.length;
        for (Entry<?,?> e = tab[index] ; e != null ; e = e.next) {
            if ((e.hash == hash) && e.key.equals(key)) {
                return (V)e.value;
            }
        }
        return null;
    }

    private static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;

    //调整Hashtable的长度,将长度变成原来的2倍+1
    @SuppressWarnings("unchecked")
    protected void rehash() {
        int oldCapacity = table.length;
        Entry<?,?>[] oldMap = table;

        //创建新容量大小的Entry数组
        int newCapacity = (oldCapacity << 1) + 1;
        if (newCapacity - MAX_ARRAY_SIZE > 0) {
            if (oldCapacity == MAX_ARRAY_SIZE)
                // Keep running with MAX_ARRAY_SIZE buckets
                return;
            newCapacity = MAX_ARRAY_SIZE;
        }
        Entry<?,?>[] newMap = new Entry<?,?>[newCapacity];

        modCount++;
        threshold = (int)Math.min(newCapacity * loadFactor, MAX_ARRAY_SIZE + 1);
        table = newMap;

        //将“旧的Hashtable”中的元素复制到“新的Hashtable”中
        for (int i = oldCapacity ; i-- > 0 ;) {
            for (Entry<K,V> old = (Entry<K,V>)oldMap[i] ; old != null ; ) {
                Entry<K,V> e = old;
                old = old.next;

                int index = (e.hash & 0x7FFFFFFF) % newCapacity;
                e.next = (Entry<K,V>)newMap[index];
                newMap[index] = e;
            }
        }
    }

    private void addEntry(int hash, K key, V value, int index) {
        modCount++;

        Entry<?,?> tab[] = table;
        if (count >= threshold) {
            // Rehash the table if the threshold is exceeded
            rehash();

            tab = table;
            hash = key.hashCode();
            index = (hash & 0x7FFFFFFF) % tab.length;
        }

        // Creates the new entry.
        @SuppressWarnings("unchecked")
        Entry<K,V> e = (Entry<K,V>) tab[index];
        tab[index] = new Entry<>(hash, key, value, e);
        count++;
    }

    // 将“key-value”添加到Hashtable中
    public synchronized V put(K key, V value) {
        // Hashtable中不能插入value为null的元素!!!
        if (value == null) {
            throw new NullPointerException();
        }

        // 若“Hashtable中已存在键为key的键值对”,则用“新的value”替换“旧的value”
        Entry<?,?> tab[] = table;
        int hash = key.hashCode();
        int index = (hash & 0x7FFFFFFF) % tab.length;
        @SuppressWarnings("unchecked")
        Entry<K,V> entry = (Entry<K,V>)tab[index];
        for(; entry != null ; entry = entry.next) {
            if ((entry.hash == hash) && entry.key.equals(key)) {
                V old = entry.value;
                entry.value = value;
                return old;
            }
        }

        // 若“Hashtable中不存在键为key的键值对”,
        addEntry(hash, key, value, index);
        return null;
    }

    // 删除Hashtable中键为key的元素
    public synchronized V remove(Object key) {
        Entry<?,?> tab[] = table;
        int hash = key.hashCode();
        int index = (hash & 0x7FFFFFFF) % tab.length;
        @SuppressWarnings("unchecked")
        Entry<K,V> e = (Entry<K,V>)tab[index];
        for(Entry<K,V> prev = null ; e != null ; prev = e, e = e.next) {
            if ((e.hash == hash) && e.key.equals(key)) {
                modCount++;
                if (prev != null) {
                    prev.next = e.next;
                } else {
                    tab[index] = e.next;
                }
                count--;
                V oldValue = e.value;
                e.value = null;
                return oldValue;
            }
        }
        return null;
    }

    // 将“Map(t)”的中全部元素逐一添加到Hashtable中
    public synchronized void putAll(Map<? extends K, ? extends V> t) {
        for (Map.Entry<? extends K, ? extends V> e : t.entrySet())
            put(e.getKey(), e.getValue());
    }

    // 清空Hashtable
    // 将Hashtable的table数组的值全部设为null
    public synchronized void clear() {
        Entry<?,?> tab[] = table;
        modCount++;
        for (int index = tab.length; --index >= 0; )
            tab[index] = null;
        count = 0;
    }

    // 克隆一个Hashtable,并以Object的形式返回。
    public synchronized Object clone() {
        try {
            Hashtable<?,?> t = (Hashtable<?,?>)super.clone();
            t.table = new Entry<?,?>[table.length];
            for (int i = table.length ; i-- > 0 ; ) {
                t.table[i] = (table[i] != null)
                        ? (Entry<?,?>) table[i].clone() : null;
            }
            t.keySet = null;
            t.entrySet = null;
            t.values = null;
            t.modCount = 0;
            return t;
        } catch (CloneNotSupportedException e) {
            // this shouldn't happen, since we are Cloneable
            throw new InternalError(e);
        }
    }

    /**
     * Returns a string representation of this <tt>Hashtable</tt> object
     * in the form of a set of entries, enclosed in braces and separated
     * by the ASCII characters "<tt>,&nbsp;</tt>" (comma and space). Each
     * entry is rendered as the key, an equals sign <tt>=</tt>, and the
     * associated element, where the <tt>toString</tt> method is used to
     * convert the key and element to strings.
     *
     * @return  a string representation of this hashtable
     */
    public synchronized String toString() {
        int max = size() - 1;
        if (max == -1)
            return "{}";

        StringBuilder sb = new StringBuilder();
        Iterator<Map.Entry<K,V>> it = entrySet().iterator();

        sb.append('{');
        for (int i = 0; ; i++) {
            Map.Entry<K,V> e = it.next();
            K key = e.getKey();
            V value = e.getValue();
            sb.append(key   == this ? "(this Map)" : key.toString());
            sb.append('=');
            sb.append(value == this ? "(this Map)" : value.toString());

            if (i == max)
                return sb.append('}').toString();
            sb.append(", ");
        }
    }

    // 获取Hashtable的枚举类对象
    private <T> Enumeration<T> getEnumeration(int type) {
        if (count == 0) {
            return Collections.emptyEnumeration();
        } else {
            return new Enumerator<>(type, false);
        }
    }

    // 获取Hashtable的迭代器
    private <T> Iterator<T> getIterator(int type) {
        if (count == 0) {
            return Collections.emptyIterator();
        } else {
            return new Enumerator<>(type, true);
        }
    }

    private transient volatile Set<K> keySet; // Hashtable的“key的集合”。它是一个Set,没有重复元素
    private transient volatile Set<Map.Entry<K,V>> entrySet; // Hashtable的“key-value的集合”。它是一个Set,没有重复元素
    private transient volatile Collection<V> values; // Hashtable的“key-value的集合”。它是一个Collection,可以有重复元素

    // 返回一个被synchronizedSet封装后的KeySet对象
    public Set<K> keySet() {
        if (keySet == null)
            keySet = Collections.synchronizedSet(new KeySet(), this);
        return keySet;
    }

    // Hashtable的Key的Set集合。
    private class KeySet extends AbstractSet<K> {
        public Iterator<K> iterator() {
            return getIterator(KEYS);
        }
        public int size() {
            return count;
        }
        public boolean contains(Object o) {
            return containsKey(o);
        }
        public boolean remove(Object o) {
            return Hashtable.this.remove(o) != null;
        }
        public void clear() {
            Hashtable.this.clear();
        }
    }

    // 返回一个被synchronizedSet封装后的EntrySet对象
    public Set<Map.Entry<K,V>> entrySet() {
        if (entrySet==null)
            entrySet = Collections.synchronizedSet(new EntrySet(), this);
        return entrySet;
    }

    // Hashtable的Entry的Set集合。
    private class EntrySet extends AbstractSet<Map.Entry<K,V>> {
        public Iterator<Map.Entry<K,V>> iterator() {
            return getIterator(ENTRIES);
        }

        public boolean add(Map.Entry<K,V> o) {
            return super.add(o);
        }

        public boolean contains(Object o) {
            if (!(o instanceof Map.Entry))
                return false;
            Map.Entry<?,?> entry = (Map.Entry<?,?>)o;
            Object key = entry.getKey();
            Entry<?,?>[] tab = table;
            int hash = key.hashCode();
            int index = (hash & 0x7FFFFFFF) % tab.length;

            for (Entry<?,?> e = tab[index]; e != null; e = e.next)
                if (e.hash==hash && e.equals(entry))
                    return true;
            return false;
        }

        public boolean remove(Object o) {
            if (!(o instanceof Map.Entry))
                return false;
            Map.Entry<?,?> entry = (Map.Entry<?,?>) o;
            Object key = entry.getKey();
            Entry<?,?>[] tab = table;
            int hash = key.hashCode();
            int index = (hash & 0x7FFFFFFF) % tab.length;

            @SuppressWarnings("unchecked")
            Entry<K,V> e = (Entry<K,V>)tab[index];
            for(Entry<K,V> prev = null; e != null; prev = e, e = e.next) {
                if (e.hash==hash && e.equals(entry)) {
                    modCount++;
                    if (prev != null)
                        prev.next = e.next;
                    else
                        tab[index] = e.next;

                    count--;
                    e.value = null;
                    return true;
                }
            }
            return false;
        }

        public int size() {
            return count;
        }

        public void clear() {
            Hashtable.this.clear();
        }
    }

    // 返回一个被synchronizedCollection封装后的ValueCollection对象
    public Collection<V> values() {
        if (values==null)
            values = Collections.synchronizedCollection(new ValueCollection(),
                    this);
        return values;
    }

    // Hashtable的value的Collection集合。
    private class ValueCollection extends AbstractCollection<V> {
        public Iterator<V> iterator() {
            return getIterator(VALUES);
        }
        public int size() {
            return count;
        }
        public boolean contains(Object o) {
            return containsValue(o);
        }
        public void clear() {
            Hashtable.this.clear();
        }
    }

    public synchronized boolean equals(Object o) {
        if (o == this)
            return true;

        if (!(o instanceof Map))
            return false;
        Map<?,?> t = (Map<?,?>) o;
        if (t.size() != size())
            return false;

        try {
            Iterator<Map.Entry<K,V>> i = entrySet().iterator();
            while (i.hasNext()) {
                Map.Entry<K,V> e = i.next();
                K key = e.getKey();
                V value = e.getValue();
                if (value == null) {
                    if (!(t.get(key)==null && t.containsKey(key)))
                        return false;
                } else {
                    if (!value.equals(t.get(key)))
                        return false;
                }
            }
        } catch (ClassCastException unused)   {
            return false;
        } catch (NullPointerException unused) {
            return false;
        }

        return true;
    }

    // 计算Entry的hashCode
    // 若 Hashtable的实际大小为0 或者 加载因子<0,则返回0。
    // 否则,返回“Hashtable中的每个Entry的key和value的异或值 的总和”。
    public synchronized int hashCode() {
        int h = 0;
        if (count == 0 || loadFactor < 0)
            return h;

        loadFactor = -loadFactor;
        Entry<?,?>[] tab = table;
        for (Entry<?,?> entry : tab) {
            while (entry != null) {
                h += entry.hashCode();
                entry = entry.next;
            }
        }

        loadFactor = -loadFactor;

        return h;
    }

    @Override
    public synchronized V getOrDefault(Object key, V defaultValue) {
        V result = get(key);
        return (null == result) ? defaultValue : result;
    }

    @SuppressWarnings("unchecked")
    @Override
    public synchronized void forEach(BiConsumer<? super K, ? super V> action) {
        Objects.requireNonNull(action);     // explicit check required in case
        // table is empty.
        final int expectedModCount = modCount;

        Entry<?, ?>[] tab = table;
        for (Entry<?, ?> entry : tab) {
            while (entry != null) {
                action.accept((K)entry.key, (V)entry.value);
                entry = entry.next;

                if (expectedModCount != modCount) {
                    throw new ConcurrentModificationException();
                }
            }
        }
    }

    @SuppressWarnings("unchecked")
    @Override
    public synchronized void replaceAll(BiFunction<? super K, ? super V, ? extends V> function) {
        Objects.requireNonNull(function);     // explicit check required in case
        // table is empty.
        final int expectedModCount = modCount;

        Entry<K, V>[] tab = (Entry<K, V>[])table;
        for (Entry<K, V> entry : tab) {
            while (entry != null) {
                entry.value = Objects.requireNonNull(
                        function.apply(entry.key, entry.value));
                entry = entry.next;

                if (expectedModCount != modCount) {
                    throw new ConcurrentModificationException();
                }
            }
        }
    }

    @Override
    public synchronized V putIfAbsent(K key, V value) {
        Objects.requireNonNull(value);

        // Makes sure the key is not already in the hashtable.
        Entry<?,?> tab[] = table;
        int hash = key.hashCode();
        int index = (hash & 0x7FFFFFFF) % tab.length;
        @SuppressWarnings("unchecked")
        Entry<K,V> entry = (Entry<K,V>)tab[index];
        for (; entry != null; entry = entry.next) {
            if ((entry.hash == hash) && entry.key.equals(key)) {
                V old = entry.value;
                if (old == null) {
                    entry.value = value;
                }
                return old;
            }
        }

        addEntry(hash, key, value, index);
        return null;
    }

    @Override
    public synchronized boolean remove(Object key, Object value) {
        Objects.requireNonNull(value);

        Entry<?,?> tab[] = table;
        int hash = key.hashCode();
        int index = (hash & 0x7FFFFFFF) % tab.length;
        @SuppressWarnings("unchecked")
        Entry<K,V> e = (Entry<K,V>)tab[index];
        for (Entry<K,V> prev = null; e != null; prev = e, e = e.next) {
            if ((e.hash == hash) && e.key.equals(key) && e.value.equals(value)) {
                modCount++;
                if (prev != null) {
                    prev.next = e.next;
                } else {
                    tab[index] = e.next;
                }
                count--;
                e.value = null;
                return true;
            }
        }
        return false;
    }

    @Override
    public synchronized boolean replace(K key, V oldValue, V newValue) {
        Objects.requireNonNull(oldValue);
        Objects.requireNonNull(newValue);
        Entry<?,?> tab[] = table;
        int hash = key.hashCode();
        int index = (hash & 0x7FFFFFFF) % tab.length;
        @SuppressWarnings("unchecked")
        Entry<K,V> e = (Entry<K,V>)tab[index];
        for (; e != null; e = e.next) {
            if ((e.hash == hash) && e.key.equals(key)) {
                if (e.value.equals(oldValue)) {
                    e.value = newValue;
                    return true;
                } else {
                    return false;
                }
            }
        }
        return false;
    }

    @Override
    public synchronized V replace(K key, V value) {
        Objects.requireNonNull(value);
        Entry<?,?> tab[] = table;
        int hash = key.hashCode();
        int index = (hash & 0x7FFFFFFF) % tab.length;
        @SuppressWarnings("unchecked")
        Entry<K,V> e = (Entry<K,V>)tab[index];
        for (; e != null; e = e.next) {
            if ((e.hash == hash) && e.key.equals(key)) {
                V oldValue = e.value;
                e.value = value;
                return oldValue;
            }
        }
        return null;
    }

    @Override
    public synchronized V computeIfAbsent(K key, Function<? super K, ? extends V> mappingFunction) {
        Objects.requireNonNull(mappingFunction);

        Entry<?,?> tab[] = table;
        int hash = key.hashCode();
        int index = (hash & 0x7FFFFFFF) % tab.length;
        @SuppressWarnings("unchecked")
        Entry<K,V> e = (Entry<K,V>)tab[index];
        for (; e != null; e = e.next) {
            if (e.hash == hash && e.key.equals(key)) {
                // Hashtable not accept null value
                return e.value;
            }
        }

        V newValue = mappingFunction.apply(key);
        if (newValue != null) {
            addEntry(hash, key, newValue, index);
        }

        return newValue;
    }

    @Override
    public synchronized V computeIfPresent(K key, BiFunction<? super K, ? super V, ? extends V> remappingFunction) {
        Objects.requireNonNull(remappingFunction);

        Entry<?,?> tab[] = table;
        int hash = key.hashCode();
        int index = (hash & 0x7FFFFFFF) % tab.length;
        @SuppressWarnings("unchecked")
        Entry<K,V> e = (Entry<K,V>)tab[index];
        for (Entry<K,V> prev = null; e != null; prev = e, e = e.next) {
            if (e.hash == hash && e.key.equals(key)) {
                V newValue = remappingFunction.apply(key, e.value);
                if (newValue == null) {
                    modCount++;
                    if (prev != null) {
                        prev.next = e.next;
                    } else {
                        tab[index] = e.next;
                    }
                    count--;
                } else {
                    e.value = newValue;
                }
                return newValue;
            }
        }
        return null;
    }

    @Override
    public synchronized V compute(K key, BiFunction<? super K, ? super V, ? extends V> remappingFunction) {
        Objects.requireNonNull(remappingFunction);

        Entry<?,?> tab[] = table;
        int hash = key.hashCode();
        int index = (hash & 0x7FFFFFFF) % tab.length;
        @SuppressWarnings("unchecked")
        Entry<K,V> e = (Entry<K,V>)tab[index];
        for (Entry<K,V> prev = null; e != null; prev = e, e = e.next) {
            if (e.hash == hash && Objects.equals(e.key, key)) {
                V newValue = remappingFunction.apply(key, e.value);
                if (newValue == null) {
                    modCount++;
                    if (prev != null) {
                        prev.next = e.next;
                    } else {
                        tab[index] = e.next;
                    }
                    count--;
                } else {
                    e.value = newValue;
                }
                return newValue;
            }
        }

        V newValue = remappingFunction.apply(key, null);
        if (newValue != null) {
            addEntry(hash, key, newValue, index);
        }

        return newValue;
    }

    @Override
    public synchronized V merge(K key, V value, BiFunction<? super V, ? super V, ? extends V> remappingFunction) {
        Objects.requireNonNull(remappingFunction);

        Entry<?,?> tab[] = table;
        int hash = key.hashCode();
        int index = (hash & 0x7FFFFFFF) % tab.length;
        @SuppressWarnings("unchecked")
        Entry<K,V> e = (Entry<K,V>)tab[index];
        for (Entry<K,V> prev = null; e != null; prev = e, e = e.next) {
            if (e.hash == hash && e.key.equals(key)) {
                V newValue = remappingFunction.apply(e.value, value);
                if (newValue == null) {
                    modCount++;
                    if (prev != null) {
                        prev.next = e.next;
                    } else {
                        tab[index] = e.next;
                    }
                    count--;
                } else {
                    e.value = newValue;
                }
                return newValue;
            }
        }

        if (value != null) {
            addEntry(hash, key, value, index);
        }

        return value;
    }

    private void writeObject(java.io.ObjectOutputStream s)
            throws IOException {
        Entry<Object, Object> entryStack = null;

        synchronized (this) {
            // Write out the length, threshold, loadfactor
            s.defaultWriteObject();

            // Write out length, count of elements
            s.writeInt(table.length);
            s.writeInt(count);

            // Stack copies of the entries in the table
            for (int index = 0; index < table.length; index++) {
                Entry<?,?> entry = table[index];

                while (entry != null) {
                    entryStack =
                            new Entry<>(0, entry.key, entry.value, entryStack);
                    entry = entry.next;
                }
            }
        }

        // Write out the key/value objects from the stacked entries
        while (entryStack != null) {
            s.writeObject(entryStack.key);
            s.writeObject(entryStack.value);
            entryStack = entryStack.next;
        }
    }

    private void readObject(java.io.ObjectInputStream s)
            throws IOException, ClassNotFoundException {
        s.defaultReadObject();

        int origlength = s.readInt();
        int elements = s.readInt();
        
        int length = (int)(elements * loadFactor) + (elements / 20) + 3;
        if (length > elements && (length & 1) == 0)
            length--;
        if (origlength > 0 && length > origlength)
            length = origlength;
        table = new Entry<?,?>[length];
        threshold = (int)Math.min(length * loadFactor, MAX_ARRAY_SIZE + 1);
        count = 0;

        // Read the number of elements and then all the key/value objects
        for (; elements > 0; elements--) {
            @SuppressWarnings("unchecked")
            K key = (K)s.readObject();
            @SuppressWarnings("unchecked")
            V value = (V)s.readObject();
            // synch could be eliminated for performance
            reconstitutionPut(table, key, value);
        }
    }

    private void reconstitutionPut(Entry<?,?>[] tab, K key, V value)
            throws StreamCorruptedException
    {
        if (value == null) {
            throw new java.io.StreamCorruptedException();
        }
        // Makes sure the key is not already in the hashtable.
        // This should not happen in deserialized version.
        int hash = key.hashCode();
        int index = (hash & 0x7FFFFFFF) % tab.length;
        for (Entry<?,?> e = tab[index] ; e != null ; e = e.next) {
            if ((e.hash == hash) && e.key.equals(key)) {
                throw new java.io.StreamCorruptedException();
            }
        }
        // Creates the new entry.
        @SuppressWarnings("unchecked")
        Entry<K,V> e = (Entry<K,V>)tab[index];
        tab[index] = new Entry<>(hash, key, value, e);
        count++;
    }

    // Hashtable的Entry节点,它本质上是一个单向链表。
    private static class Entry<K,V> implements Map.Entry<K,V> {
        final int hash;
        final K key;
        V value;
        Entry<K,V> next;// 指向的下一个Entry,即链表的下一个节点

        protected Entry(int hash, K key, V value, Entry<K,V> next) {
            this.hash = hash;
            this.key =  key;
            this.value = value;
            this.next = next;
        }

        @SuppressWarnings("unchecked")
        protected Object clone() {
            return new Entry<>(hash, key, value,
                    (next==null ? null : (Entry<K,V>) next.clone()));
        }

        public K getKey() {
            return key;
        }

        public V getValue() {
            return value;
        }

        public V setValue(V value) {
            if (value == null)
                throw new NullPointerException();

            V oldValue = this.value;
            this.value = value;
            return oldValue;
        }

        public boolean equals(Object o) {
            if (!(o instanceof Map.Entry))
                return false;
            Map.Entry<?,?> e = (Map.Entry<?,?>)o;

            return (key==null ? e.getKey()==null : key.equals(e.getKey())) &&
                    (value==null ? e.getValue()==null : value.equals(e.getValue()));
        }

        public int hashCode() {
            return hash ^ Objects.hashCode(value);
        }

        public String toString() {
            return key.toString()+"="+value.toString();
        }
    }

    // Types of Enumerations/Iterations
    private static final int KEYS = 0;
    private static final int VALUES = 1;
    private static final int ENTRIES = 2;

    // Enumerator的作用是提供了“通过elements()遍历Hashtable的接口” 和 “通过entrySet()遍历Hashtable的接口”。
    private class Enumerator<T> implements Enumeration<T>, Iterator<T> {
        Entry<?,?>[] table = Hashtable.this.table;
        int index = table.length;
        Entry<?,?> entry;
        Entry<?,?> lastReturned;
        int type;

        boolean iterator;
        protected int expectedModCount = modCount;// 在将Enumerator当作迭代器使用时会用到,用来实现fail-fast机制。   

        Enumerator(int type, boolean iterator) {
            this.type = type;
            this.iterator = iterator;
        }

        public boolean hasMoreElements() {
            Entry<?,?> e = entry;
            int i = index;
            Entry<?,?>[] t = table;
            /* Use locals for faster loop iteration */
            while (e == null && i > 0) {
                e = t[--i];
            }
            entry = e;
            index = i;
            return e != null;
        }

        @SuppressWarnings("unchecked")
        public T nextElement() {
            Entry<?,?> et = entry;
            int i = index;
            Entry<?,?>[] t = table;
            /* Use locals for faster loop iteration */
            while (et == null && i > 0) {
                et = t[--i];
            }
            entry = et;
            index = i;
            if (et != null) {
                Entry<?,?> e = lastReturned = entry;
                entry = e.next;
                return type == KEYS ? (T)e.key : (type == VALUES ? (T)e.value : (T)e);
            }
            throw new NoSuchElementException("Hashtable Enumerator");
        }

        // Iterator methods
        public boolean hasNext() {
            return hasMoreElements();
        }

        public T next() {
            if (modCount != expectedModCount)
                throw new ConcurrentModificationException();
            return nextElement();
        }

        public void remove() {
            if (!iterator)
                throw new UnsupportedOperationException();
            if (lastReturned == null)
                throw new IllegalStateException("Hashtable Enumerator");
            if (modCount != expectedModCount)
                throw new ConcurrentModificationException();

            synchronized(Hashtable.this) {
                Entry<?,?>[] tab = Hashtable.this.table;
                int index = (lastReturned.hash & 0x7FFFFFFF) % tab.length;

                @SuppressWarnings("unchecked")
                Entry<K,V> e = (Entry<K,V>)tab[index];
                for(Entry<K,V> prev = null; e != null; prev = e, e = e.next) {
                    if (e == lastReturned) {
                        modCount++;
                        expectedModCount++;
                        if (prev == null)
                            tab[index] = e.next;
                        else
                            prev.next = e.next;
                        count--;
                        lastReturned = null;
                        return;
                    }
                }
                throw new ConcurrentModificationException();
            }
        }
    }
}

 

集合类

类名实现思路
ArrayList 
LinkedList 
Vector 
HashMap 
HashTable 
LinkedHashMap 

并发包concurrent

类名实现思路
ConcurrentHashMap 
AbstractQueuedSynchronizer 
ReentrantLock 
    原文作者:幻奕
    原文地址: https://www.cnblogs.com/huanyi0723/p/6171068.html
    本文转自网络文章,转载此文章仅为分享知识,如有侵权,请联系博主进行删除。
点赞