HDU 1402 A * B Problem Plus (FFT求高精度乘法)

A * B Problem Plus

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 9413    Accepted Submission(s): 1468

Problem Description Calculate A * B.  

 

Input Each line will contain two integers A and B. Process to end of file.

Note: the length of each integer will not exceed 50000.  

 

Output For each case, output A * B in one line.  

 

Sample Input 1 2 1000 2  

 

Sample Output 2 2000  

 

Author DOOM III  

 

Recommend DOOM III  

 

 

 

 

神奇的FFT。

如果是乘法,位数为n和位数为m的相乘,需要n*m次的乘法运算。

FFT在数字信号处理学过,但是第一次用来做这类题目,神奇啊。

乘法其实就是做线性卷积。

用DFT得方法可以求循环卷积,但是当循环卷积长度LN+M-1,就可以做线性卷积了。

使用FFT将两个数列转换成傅里叶域,在这的乘积就是时域的卷积。

 

给几个学习的链接吧:

http://wenku.baidu.com/view/8bfb0bd476a20029bd642d85.html  (这主要看那个FFT的流程图

http://wlsyzx.yzu.edu.cn/kcwz/szxhcl/kechenneirong/jiaoan/jiaoan3.htm   这有DFT的原理。

 

整理了个模板,感觉很赞!

#include <stdio.h>
#include <string.h>
#include <iostream>
#include <algorithm>
#include <math.h>
using namespace std;

const double PI = acos(-1.0);
//复数结构体
struct complex
{
    double r,i;
    complex(double _r = 0.0,double _i = 0.0)
    {
        r = _r; i = _i;
    }
    complex operator +(const complex &b)
    {
        return complex(r+b.r,i+b.i);
    }
    complex operator -(const complex &b)
    {
        return complex(r-b.r,i-b.i);
    }
    complex operator *(const complex &b)
    {
        return complex(r*b.r-i*b.i,r*b.i+i*b.r);
    }
};
/*
 * 进行FFT和IFFT前的反转变换。
 * 位置i和 (i二进制反转后位置)互换
 * len必须去2的幂
 */
void change(complex y[],int len)
{
    int i,j,k;
    for(i = 1, j = len/2;i < len-1; i++)
    {
        if(i < j)swap(y[i],y[j]);
        //交换互为小标反转的元素,i<j保证交换一次
        //i做正常的+1,j左反转类型的+1,始终保持i和j是反转的
        k = len/2;
        while( j >= k)
        {
            j -= k;
            k /= 2;
        }
        if(j < k) j += k;
    }
}
/*
 * 做FFT
 * len必须为2^k形式,
 * on==1时是DFT,on==-1时是IDFT
 */
void fft(complex y[],int len,int on)
{
    change(y,len);
    for(int h = 2; h <= len; h <<= 1)
    {
        complex wn(cos(-on*2*PI/h),sin(-on*2*PI/h));
        for(int j = 0;j < len;j+=h)
        {
            complex w(1,0);
            for(int k = j;k < j+h/2;k++)
            {
                complex u = y[k];
                complex t = w*y[k+h/2];
                y[k] = u+t;
                y[k+h/2] = u-t;
                w = w*wn;
            }
        }
    }
    if(on == -1)
        for(int i = 0;i < len;i++)
            y[i].r /= len;
}
const int MAXN = 200010;
complex x1[MAXN],x2[MAXN];
char str1[MAXN/2],str2[MAXN/2];
int sum[MAXN];
int main()
{
    while(scanf("%s%s",str1,str2)==2)
    {
        int len1 = strlen(str1);
        int len2 = strlen(str2);
        int len = 1;
        while(len < len1*2 || len < len2*2)len<<=1;
        for(int i = 0;i < len1;i++)
            x1[i] = complex(str1[len1-1-i]-'0',0);
        for(int i = len1;i < len;i++)
            x1[i] = complex(0,0);
        for(int i = 0;i < len2;i++)
            x2[i] = complex(str2[len2-1-i]-'0',0);
        for(int i = len2;i < len;i++)
            x2[i] = complex(0,0);
        //求DFT
        fft(x1,len,1);
        fft(x2,len,1);
        for(int i = 0;i < len;i++)
            x1[i] = x1[i]*x2[i];
        fft(x1,len,-1);
        for(int i = 0;i < len;i++)
            sum[i] = (int)(x1[i].r+0.5);
        for(int i = 0;i < len;i++)
        {
            sum[i+1]+=sum[i]/10;
            sum[i]%=10;
        }
        len = len1+len2-1;
        while(sum[len] <= 0 && len > 0)len--;
        for(int i = len;i >= 0;i--)
            printf("%c",sum[i]+'0');
        printf("\n");
    }
    return 0;
}

 

 

 

 

 

    原文作者:算法小白
    原文地址: https://www.cnblogs.com/kuangbin/p/3210389.html
    本文转自网络文章,转载此文章仅为分享知识,如有侵权,请联系博主进行删除。
点赞