local单机模式:
结果xshell可见:
./bin/spark-submit –class org.apache.spark.examples.SparkPi –master local[1] ./lib/spark-examples-1.3.1-hadoop2.4.0.jar 100
Standalone集群模式:
需要的配置项
(1)slaves文件
(2)spark-env.sh
export JAVA_HOME=/usr/soft/jdk1.7.0_71
export SPARK_MASTER_IP=spark001
export SPARK_MASTER_PORT=7077
export SPARK_WORKER_CORES=1
export SPARK_WORKER_INSTANCES=1
export SPARK_WORKER_MEMORY=1g
standalone集群模式:
之client模式:
结果xshell可见:
./bin/spark-submit –class org.apache.spark.examples.SparkPi –master spark://spark001:7077 –executor-memory 1G –total-executor-cores 1 ./lib/spark-examples-1.3.1-hadoop2.4.0.jar 100
standalone集群模式:
之cluster模式:
结果spark001:8080里面可见!
./bin/spark-submit –class org.apache.spark.examples.SparkPi –master spark://spark001:7077 –deploy-mode cluster –supervise –executor-memory 1G –total-executor-cores 1 ./lib/spark-examples-1.3.1-hadoop2.4.0.jar 100
Yarn集群模式:
需要的配置项
(1)spark-env.sh
export HADOOP_CONF_DIR=$HADOOP_INSTALL/etc/hadoop
export YARN_CONF_DIR=$HADOOP_INSTALL/etc/hadoop
export SPARK_HOME=/usr/hadoopsoft/spark-1.3.1-bin-hadoop2.4
export SPARK_JAR=/usr/hadoopsoft/spark-1.3.1-bin-hadoop2.4/lib/spark-assembly-1.3.1-hadoop2.4.0.jar
export PATH=$SPARK_HOME/bin:$PATH
(2)~/.bash_profile
配置好hadoop环境变量
Yarn集群模式:
之client模式:
结果xshell可见:
./bin/spark-submit –class org.apache.spark.examples.SparkPi –master yarn-client –executor-memory 1G –num-executors 1 ./lib/spark-examples-1.3.1-hadoop2.4.0.jar 100
Yarn集群模式:
之cluster模式:
结果spark001:8088里面可见!
./bin/spark-submit –class org.apache.spark.examples.SparkPi –master yarn-cluster –executor-memory 1G –num-executors 1 ./lib/spark-examples-1.3.1-hadoop2.4.0.jar 100