hive自定义函数和transform

hive自定义函数(udf:user-defined function)

例1:
对于以下数据

1367775,10
1363426,10
1371235,10
1371237,10
1371236,10
1376888,10
1382132,10

1367775   beijing    10
1363426   beijing    10
1371235   shanghai   10
1371237   shanghai   10
1361236   beijing    10
1366888   beijing    10
1382132   shenzhen   10
写一个函数得到省份名

1、开发一个java类,继承UDF(聚合函数继承UDAF)并重载evaluate方法

package bigdata.udf

import org.apache.hadoop.hive.ql.exec.UDF;
                                 //继承类
public class ToLowerCase(GetProvince) extends UDF{
//加载一个字典表
    public static HashMap<Integer,String> provinceMap=new HashMap<Integer,String>
    static {
        provinceMap.put("136","beijing");
        provinceMap.put("137","shanghai");
        provinceMap.put("138","shenzhen");
    }


    //必须是public        //重载evaluate方法根据不同的输入判断调用那个函数
    public String evaluate(String field){
        String result = field.toLowerCase();
        return result;
    }
           //返回值           //输入
    public String evaluate(int phonenbr){
        String pnb = String.valueOf(phonenbr);
        return provinceMap.get(pnb.substring(0,3))== null?"huoxin":provinceMap.get(pnb.substring(0,3));
    }   
}

2、打成jar包上传到服务器
3、将jar包添加到hive的classpath
add JAR /home/hadoop/udf.jar;
4、创建临时函数与开发好的java class 关联
create temporary function getprovince as 'bigdata.udf.ToLowerCase';
5、hql中使用

create table t_flow(phonenbr int,flow int)
row format delimited //使用自带的serde:S erDe是Serialize/Deserilize的简称,目的是用于序列化和反序列化。S erDe能为表指定列,且对列指定相应的数据。
fields terminated by ',';
load data local inpath '/home/hadoop/flow.dat' into table t_flow;

select phonenbr,getprovince(phonenbr),flow from t_flow;

例2:

create table t_json(line string)
row format delimited;
load data local inpath '' into table t_json;
select * from t_json limit 10;

class JsonParser
package bigdata.udf;
import org.apache.hadoop.hive.ql.exec.UDF;
import parquet.org.codehaus.jackson.map.ObjectMapper;
public class JsonParser extends UDF {  //alt+/ctrl+shift+o导包
//Window - Preferences - Java - Editor - Templates,这里你可以看到所有的eclipse的快捷方式
//alt+/补全   
    public String evaluate(String jsonline){  //输入jsonline返回string
        ObjectMapper objectMapper = new ObjectMapper();
        try{
            MovieRateBean bean = ObjectMapper.readValue(jsonline,MovieRateBean);
            return bean.toString();
        }catch(Exception e){
        }
        return "";
    }   
}

MovieRateBean

package bigdata.udf;
public class MovieRateBean{
    private String movie;
    private String rate;
    private String timeStamp;
    private String uid;
    
    //alt+shift+s
    public String getMovie(){
        return movie;
    }
    public String setMovie(String movie){
        this.movie = movie;
    }
    public String getRate(){
        return rate;
    }
    public void setRate(String rate){
        this.rate = rate;
    }
    public String getTimeStamp(){
        return timestamp;
    }
    public void setTimeStamp(String timeStamp){
        this.timeStamp = timeStamp;
    }
    public String getUid(){
        return uid;
    }
    public void setUid(String uid){
        this.uid = uid;
    }
    
    public String toString(){
    
        return this.movie + "\t" + this.rate + "\t" +this.timeStamp + "\t" + this.uid();
    }
}

javabean:这个类是public的,还要有一个无参数的构造函数。第二,属性是private的,必须通过get 和set 方法进行访问。第三,支持“事件”,例如addXXXXListener(XXXEvent e),可以处理各种事件,比如鼠标点击,键盘响应等等。第四,提供一个反射机制。第五,可以序列化/反序列化的,这样,我就可以被方便的存储,转移了。

bin/beeline -u jdbc:hive2://localhost:10000 -n hadoop
add JAR /home/hadoop/udf.jar;
create temporary function parsejson as 'bigdata.udf.JsonParser';
select parsejson(line) form t_json limit 10;

但是只有一个字段,如何把它分为四个字段

//insert overwrite table t_rating
create table t_rating as
select split(parsejson(line),'\t')[0]as movieid,
split(parsejson(line),'\t')[1] as rate,
split(parsejson(line),'\t')[2] as timestring,
split(parsejson(line),'\t')[3] as uid 
from t_json;

内置json函数
select get_json_object(line,'$.movie') as moive,
get_json_object(line,'$.rate') as rate  from rat_json limit 10;

Transform实现

提供了在sql中调用自写脚本(python或shell脚本)的功能,适合hive中没有的功能又不想写udf的情况。
1.加载rating.json文件到hive的一个原始表

create table t_json(line string)
row format delimited;
load data local inpath '' into table t_json;
select * from t_json limit 10;

2.需要解析json数据成四个字段,插入一张新表t_rating
内置json函数

set hive.support.sql11.reserved.keywords=false;##不然识不出timeStamp
hive> create table t_rating as
    > select get_json_object(line,'$.movie') as moive,get_json_object(line,'$.rate') as rate,get_json_object(line,'$.timeStamp') as timeStamp,get_json_object(line,'$.uid') as uid from t_json;

3.使用transform+python的方式转换unixtime为weekday
先编辑一个python脚本文件,然后将文件加入hive的classpath下:

vi weekday_mapper.py
#!/bin/python
import sys
import datetime

for line in sys.stdin:
    line = line.strip()//去空格
    movieid,rate,timestring,uid = line.split('\t')
    weekday=datetime.datetime.fromtimestamp(float(timestring)).isoweekday()
    print '\t'.join([movieid,rating,str(weekday),userid])  //相当于后面用/t串起来

add file weekday_mapper.py;
create table u_data_new(
    movieid int,
    rating int,
    weekday int,
    userid int)
row format delimited
fields terminated by '/t';

insert overwrite table u_data_new
//create table u_data_new as
select
    transform(movieid,rate,timestring,uid)
    using'python weekday_mapper.py'
    as(movieid,rating,weekday,userid)
from t_rating;

报错:生无可恋
ERROR : Ended Job = job_local1691136619_0009 with errors
Error: Error while processing statement: FAILED: Execution Error, return code 2 from org.apache.hadoop.hive.ql.exec.mr.MapRedTask (state=08S01,code=2)

select distinct(weekday) from u_data_new limit 10;
    原文作者:pamperxg
    原文地址: https://www.jianshu.com/p/2dde2a402179
    本文转自网络文章,转载此文章仅为分享知识,如有侵权,请联系博主进行删除。
点赞