sparkstreaming实时写入hive

最近一直在研究presto接口hive和mysql的一些使用和功能,因此,我在想是否能将数据实时的写入到hive呢,刚好公司项目有需求数据实时写入到hive中,对此,我特定实现了一下。

pom文件

spark-streaming-kafka-0-10_2.112.1.0

spark-core_2.11

spark-sql_2.11

scala-library

采用的是scala2.11.8

实现逻辑:

实时的获取kafka中的数据,然后保存偏移量,实时的写入到hive中

实现过程如下:

以下代码是针对topic的分区只有一个的情况下:

object FamilyBandService {

val logger = LoggerFactory.getLogger(this.getClass)

def main(args: Array[String]): Unit = {

val conf =new SparkConf().setAppName(s”${this.getClass.getSimpleName}”).setMaster(“local[*]”)

conf.set(“spark.defalut.parallelism”,”500″)

//每秒钟每个分区kafka拉取消息的速率

      .set(“spark.streaming.kafka.maxRatePerPartition”,”500″)

// 序列化

      .set(“spark.serilizer”,”org.apache.spark.serializer.KryoSerializer”)

// 建议开启rdd的压缩

      .set(“spark.rdd.compress”,”true”)

val sc =new SparkContext(conf)

val ssc =new StreamingContext(sc,Seconds(3))

val brokers = PropertyUtil.getInstance().getProperty(“brokerList”,””)  //配置文件读取工具类需自行编写

val groupId = PropertyUtil.getInstance().getProperty(“groupid”,””)

val topic = PropertyUtil.getInstance().getProperty(“topic”,””)

var topics =Array(topic)

Logger.getLogger(“org”).setLevel(Level.ERROR) //临时测试的时候只开启error级别,方便排错。

//封装参数

    val kafkaParams =Map[String, Object](

“bootstrap.servers” -> brokers,

“key.deserializer” ->classOf[StringDeserializer],

“value.deserializer” ->classOf[StringDeserializer],

“group.id” -> groupId,

“auto.offset.reset” ->”latest”,

“enable.auto.commit” -> (false: java.lang.Boolean))

//从redis中获取到偏移量

    val offsets: Long = RedisUtil.hashGet(“offset”,”offsets”).toLong

val topicPartition: TopicPartition =new TopicPartition(topic,0)

val partitionoffsets:Map[TopicPartition, Long] =Map(topicPartition -> offsets)

//获取到实时流对象

    val kafkaStream =if (offsets ==0) {

KafkaUtils.createDirectStream[String,String](

ssc,

PreferConsistent,  //这里有3种模式,一般情况下,都是使用PreferConsistent

//LocationStrategies.PreferConsistent:将在可用的执行器之间均匀分配分区。

//PreferBrokers  执行程序与Kafka代理所在的主机相同,将更喜欢在该分区的Kafka leader上安排分区

//PreferFixed 如果您在分区之间的负载有显着偏差,这允许您指定分区到主机的显式映射(任何未指定的分区将使用一致的位置)。

Subscribe[String,String](topics, kafkaParams) //消息订阅

)

}else {

KafkaUtils.createDirectStream[String,String](

ssc,

PreferConsistent,

Subscribe[String,String](topics, kafkaParams, partitionoffsets)  //此种方式是针对具体某个分区或者topic只有一个分区的情况

)

}

//业务处理

    kafkaStream.foreachRDD(rdd => {

val ranges = rdd.asInstanceOf[HasOffsetRanges].offsetRanges  //获取到分区和偏移量信息

val events: RDD[Some[String]] = rdd.map(x => {

val data = x.value()

Some(data)

})

val session = SQLContextSingleton.getSparkSession(events.sparkContext)  //构建一个Sparksession的单例

session.sql(“set hive.exec.dynamic.partition=true”)      //配置hive支持动态分区

session.sql(“set hive.exec.dynamic.partition.mode=nonstrict”)   //配置hive动态分区为非严格模式

//如果将数据转换为Seq(xxxx),然后倒入隐式转换import session.implicalit._  是否能实现呢,答案是否定的。

val dataRow = events.map(line => {                                           //构建row

val temp = line.get.split(“###”)                                                   

Row(temp(0), temp(1), temp(2), temp(3), temp(4), temp(5))

})

//”deviceid”,”code”,”time”,”info”,”sdkversion”,”appversion”

 val structType =StructType(Array(                          //确定字段的类别

StructField(“deviceid”, StringType,true),

StructField(“code”, StringType,true),

StructField(“time”, StringType,true),

StructField(“info”, StringType,true),

StructField(“sdkversion”, StringType,true),

StructField(“appversion”, StringType,true)

))

val df = session.createDataFrame(dataRow, structType)   //构建df

df.createOrReplaceTempView(“jk_device_info”)

session.sql(“insert into test.jk_device_info select * from jk_device_info”)

for (rs <- ranges) {

//实时保存偏移量到redis

        val value = rs.untilOffset.toString

RedisUtil.hashSet(“offset”,”offsets”, value)   //偏移量保存

println(s”the offset:${value}”)

}

})

println(“xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx”)

ssc.start()

ssc.awaitTermination()

}

}

上面说到了单分区情况下的实时写入hive的情况,此种情况要求数据具有很高的时序性,但是并发会受到影响。那么我们采用多分区的情况下,如何实现呢,代码如下:

//单分区情况

/*    //从redis中获取到偏移量

val offsets: Long = RedisUtil.hashGet(“offset”, “offsets”).toLong    //redis工具类需要自行编写

val topicPartition: TopicPartition = new TopicPartition(topic, 0)

val partitionoffsets: Map[TopicPartition, Long] = Map(topicPartition -> offsets)*/

//多分区情况

val partitions = 3

 var fromdbOffset =Map[TopicPartition, Long]()

for (partition <-0 until partitions) {

val topicPartition =new TopicPartition(topic, partition)

val offsets = RedisUtil.hashGet(“offset”,s”${topic}_${partition}”).toLong

fromdbOffset += (topicPartition -> offsets)

}

//获取到实时流对象

    val kafkaStream =if (fromdbOffset.size==0) {

KafkaUtils.createDirectStream[String,String](

ssc,

PreferConsistent,

Subscribe[String,String](topics, kafkaParams)

)

}else {

KafkaUtils.createDirectStream[String,String](

ssc,

PreferConsistent,

//        Subscribe[String, String](topics, kafkaParams, partitionoffsets) 订阅具体某个分区

        ConsumerStrategies.Assign[String,String](fromdbOffset.keys, kafkaParams, fromdbOffset)

)

}

针对Assign 和 Subscribe ,我们来看下官方源码

Assign:

//2个参数

def Assign[K,V](

topicPartitions:Iterable[TopicPartition],

kafkaParams: collection.Map[String, Object]): ConsumerStrategy[K,V] = {

new Assign[K,V](

new ju.ArrayList(topicPartitions.asJavaCollection),

new ju.HashMap[String, Object](kafkaParams.asJava),

ju.Collections.emptyMap[TopicPartition, jl.Long]())

}

//3个参数

def Assign[K,V](

topicPartitions:Iterable[TopicPartition],

kafkaParams: collection.Map[String, Object],

offsets: collection.Map[TopicPartition, Long]): ConsumerStrategy[K,V] = {

new Assign[K,V](

new ju.ArrayList(topicPartitions.asJavaCollection),

new ju.HashMap[String, Object](kafkaParams.asJava),

new ju.HashMap[TopicPartition, jl.Long](offsets.mapValues(l =>new jl.Long(l)).asJava))

}

Subscribe :

2个参数

def Subscribe[K,V](

topics:Iterable[jl.String],

kafkaParams: collection.Map[String, Object]): ConsumerStrategy[K,V] = {

new Subscribe[K,V](

new ju.ArrayList(topics.asJavaCollection),

new ju.HashMap[String, Object](kafkaParams.asJava),

ju.Collections.emptyMap[TopicPartition, jl.Long]())

}

3个参数

def Subscribe[K,V](

topics:Iterable[jl.String],

kafkaParams: collection.Map[String, Object],

offsets: collection.Map[TopicPartition, Long]): ConsumerStrategy[K,V] = {

new Subscribe[K,V](

new ju.ArrayList(topics.asJavaCollection),

new ju.HashMap[String, Object](kafkaParams.asJava),

new ju.HashMap[TopicPartition, jl.Long](offsets.mapValues(l =>new jl.Long(l)).asJava))

}

经过对比,我们发现,区别就在第一个参数上,一个为topics,一个为topicPartitions

SQLContextSingleton单例

def getSparkSession(sc: SparkContext): SparkSession = {

if (sparkSession ==null) {

sparkSession = SparkSession

.builder()

.enableHiveSupport()

.master(“local[*]”)

.config(sc.getConf)

.config(“spark.files.openCostInBytes”, PropertyUtil.getInstance().getProperty(“spark.files.openCostInBytes”))

//連接到hive元數據庫

      .config(“hive.metastore.uris”,”thrift://192.168.1.61:9083″)

//–files hdfs:///user/processuser/hive-site.xml 集群上運行需要指定hive-site.xml的位置

      .config(“spark.sql.warehouse.dir”,”hdfs://192.168.1.61:8020/user/hive/warehouse”)

.getOrCreate()

}

sparkSession

}

如果需要连接到hive必须要注意的几个事项:

1,指定hive的元数据地址

2,指定spark.sql.warehouse.dir的数据存储位置

3,enableHiveSupport()

4,resource下要放hive-site.xml文件

xml文件需要配置的信息,以下信息均可从集群的配置中得到:

hive.exec.scratchdir

hive.metastore.warehouse.dir

hive.querylog.location

hive.metastore.uris    

javax.jdo.option.ConnectionURL

javax.jdo.option.ConnectionDriverName

javax.jdo.option.ConnectionUserName

javax.jdo.option.ConnectionPassword

5,本地执行要指定hadoop的目录

System.setProperty(“hadoop.home.dir”, PropertyUtil.getInstance().getProperty(“localMode”))

#hadoop info

localMode=D://hadoop-2.6.5//hadoop-2.6.5

clusterMode=file://usr//hdp//2.6.2.0-205//hadoop

    原文作者:会飞的蜗牛66666
    原文地址: https://www.jianshu.com/p/9fee0fa68983
    本文转自网络文章,转载此文章仅为分享知识,如有侵权,请联系博主进行删除。
点赞