F. The Sum of the k-th Powers
题目连接:
http://www.codeforces.com/contest/622/problem/F
Description
There are well-known formulas: , , . Also mathematicians found similar formulas for higher degrees.
Find the value of the sum modulo 109 + 7 (so you should find the remainder after dividing the answer by the value 109 + 7).
Input
The only line contains two integers n, k (1 ≤ n ≤ 109, 0 ≤ k ≤ 106).
Output
Print the only integer a — the remainder after dividing the value of the sum by the value 109 + 7.
Sample Input
4 1
Sample Output
10
Hint
题意
让你计算1^k+2^k+….+n^k
题解:
拉格朗日插值法
答案等于\[{P}_{x} = \sum_{i}^{k+2}({P}_{i}\prod_{j=1,j\neq i}^{k+2}\frac{n-j}{i-j})\]
最后的答案就等于P(n)
我们预处理(n-j)的阶乘,再预处理下面的阶乘就好了
对于这样,对于每一个i,我们都能够O(logn)来计算了(logn拿来求逆元)
代码
#include<bits/stdc++.h>
using namespace std;
const int mod = 1e9+7;
const int maxn = 1e6+7;
long long quickpow(long long m,long long n,long long k)//返回m^n%k
{
long long b = 1;
while (n > 0)
{
if (n & 1)
b = (b*m)%k;
n = n >> 1 ;
m = (m*m)%k;
}
return b;
}
long long p[maxn];
long long fac[maxn];
int n,k;
int main()
{
fac[0]=1;
for(int i=1;i<maxn;i++)
fac[i]=(fac[i-1]*i)%mod;
scanf("%d%d",&n,&k);
p[0]=0;
for(int i=1;i<=k+2;i++)
p[i]=(p[i-1]+quickpow(i,k,mod))%mod;
if(n<=k+2)
{
printf("%d\n",p[n]);
return 0;
}
long long cur = 1;
for(int i=1;i<=k+2;i++)
cur=(cur*(n-i))%mod;
long long ans = 0;
for(int i=1;i<=k+2;i++)
{
long long tmp = quickpow(fac[k+2-i]%mod*fac[i-1]%mod,mod-2,mod);
long long tmp2 = quickpow(n-i,mod-2,mod);
if((k+2-i)%2)tmp=-tmp;
ans =(ans + p[i]*cur%mod*tmp%mod*tmp2)%mod;
}
cout<<ans<<endl;
}