最近在搞单点登录的设计,在设计中需要一个Token令牌的加密传输,这个令牌在整个连接单点的各个站中起着连接认证作用,如果被仿造将会有不可预计的损失,但是这个Token是要可逆的。所以像那种md5,sha之类的不可逆加密就没法用了,然后可逆的加密主要是分为对称加密和非对称加密。
- 对称加密:用加密的钥匙来解密,比如DES,AES的加解密。
- 非对称加密:一个钥匙加密,用另一个钥匙解密。
直接看下面的方法:
1、首先生成密钥对
/// <summary> /// RSA加密的密匙结构 公钥和私匙 /// </summary> public struct RSAKey { public string PublicKey { get; set; } public string PrivateKey { get; set; } } #region 得到RSA密匙对 /// <summary> /// 得到RSA密匙对 /// </summary> /// <returns></returns> public static RSAKey GetRASKey() { RSACryptoServiceProvider.UseMachineKeyStore = true; RSACryptoServiceProvider rsaProvider = new RSACryptoServiceProvider(DWKEYSIZE); RSAParameters p = rsaProvider.ExportParameters(true); return new RSAKey() { PublicKey = ComponentKey(p.Exponent, p.Modulus), PrivateKey = ComponentKey(p.D, p.Modulus) }; } #endregion #region 将密匙组合成base64字符串 /// <summary> /// 将密钥组合成base64编码字符串 /// </summary> private static string ComponentKey(byte[] b1, byte[] b2) { List<byte> list = new List<byte>(); list.Add((byte)b1.Length); list.AddRange(b1); list.AddRange(b2); byte[] b = list.ToArray<byte>(); return Convert.ToBase64String(b); } /// <summary> /// 从base64字符串,解析原来的密钥 /// </summary> private static void ResolveKey(string key, out byte[] b1, out byte[] b2) { //从base64字符串 解析成原来的字节数组 byte[] b = Convert.FromBase64String(key); //初始化参数的数组长度 b1 = new byte[b[0]]; b2 = new byte[b.Length - b[0] - 1]; //将相应位置是值放进相应的数组 for (int n = 1, i = 0, j = 0; n < b.Length; n++) { if (n <= b[0]) { b1[i++] = b[n]; } else { b2[j++] = b[n]; } } } #endregion
简要的说明一下上面这段代码,做了3件事:生成RSA密码,把公钥和私钥分别转为密钥字符串,把密钥字符串转为对应的公私钥。
为什么多了一个公私钥和字符串之间的相互转换,太蛋疼的动作,好吧,我懂你。
2、公有的明文加解密算法
#region 字符串加密解密 公开方法 /// <summary> /// 字符串加密 /// </summary> /// <param name="source">源字符串 明文</param> /// <param name="key">密匙</param> /// <returns>加密遇到错误将会返回原字符串</returns> public static string EncryptString(string source, string key) { string encryptString = string.Empty; byte[] d; byte[] n; try { if (!CheckSourceValidate(source)) { throw new Exception("source string too long"); } //解析这个密钥 ResolveKey(key, out d, out n); BigInteger biN = new BigInteger(n); BigInteger biD = new BigInteger(d); encryptString = EncryptString(source, biD, biN); } catch { encryptString = source; } return encryptString; } /// <summary> /// 字符串解密 /// </summary> /// <param name="encryptString">密文</param> /// <param name="key">密钥</param> /// <returns>遇到解密失败将会返回原字符串</returns> public static string DecryptString(string encryptString, string key) { string source = string.Empty; byte[] e; byte[] n; try { //解析这个密钥 ResolveKey(key, out e, out n); BigInteger biE = new BigInteger(e); BigInteger biN = new BigInteger(n); source = DecryptString(encryptString, biE, biN); } catch { source = encryptString; } return source; } #endregion
3、私有的加解密算法
#region 字符串加密解密 私有 实现加解密的实现方法 /// <summary> /// 用指定的密匙加密 /// </summary> /// <param name="source">明文</param> /// <param name="d">可以是RSACryptoServiceProvider生成的D</param> /// <param name="n">可以是RSACryptoServiceProvider生成的Modulus</param> /// <returns>返回密文</returns> private static string EncryptString(string source, BigInteger d, BigInteger n) { int len = source.Length; int len1 = 0; int blockLen = 0; if ((len % 128) == 0) len1 = len / 128; else len1 = len / 128 + 1; string block = ""; StringBuilder result = new StringBuilder(); for (int i = 0; i < len1; i++) { if (len >= 128) blockLen = 128; else blockLen = len; block = source.Substring(i * 128, blockLen); byte[] oText = System.Text.Encoding.Default.GetBytes(block); BigInteger biText = new BigInteger(oText); BigInteger biEnText = biText.modPow(d, n); string temp = biEnText.ToHexString(); result.Append(temp).Append("@"); len -= blockLen; } return result.ToString().TrimEnd('@'); } /// <summary> /// 用指定的密匙加密 /// </summary> /// <param name="source">密文</param> /// <param name="e">可以是RSACryptoServiceProvider生成的Exponent</param> /// <param name="n">可以是RSACryptoServiceProvider生成的Modulus</param> /// <returns>返回明文</returns> private static string DecryptString(string encryptString, BigInteger e, BigInteger n) { StringBuilder result = new StringBuilder(); string[] strarr1 = encryptString.Split(new char[] { '@' }, StringSplitOptions.RemoveEmptyEntries); for (int i = 0; i < strarr1.Length; i++) { string block = strarr1[i]; BigInteger biText = new BigInteger(block, 16); BigInteger biEnText = biText.modPow(e, n); string temp = System.Text.Encoding.Default.GetString(biEnText.getBytes()); result.Append(temp); } return result.ToString(); } #endregion
4、使用方式
string str = "{\"sc\":\"his51\",\"no\":\"1\",\"na\":\"管理员\"}{\"sc\":\"@his51\",\"no\":\"1\",\"na\":\"管理员\"}{\"sc\":\"his51\",\"no\":\"1\",\"na\":\"管员\"}{\"sc\":\"his522"; RSAHelper.RSAKey keyPair = RSAHelper.GetRASKey(); Console.WriteLine("公钥:" + keyPair.PublicKey + "\r\n"); Console.WriteLine("私钥:" + keyPair.PrivateKey + "\r\n"); string en = RSAHelper.EncryptString(str, keyPair.PrivateKey); Console.WriteLine("加密后:"+en + "\r\n"); Console.WriteLine("解密:"+RSAHelper.DecryptString(en, keyPair.PublicKey) + "\r\n"); Console.ReadKey();
附件:RSAtest.rar
附:
都说RSA解密效率太低,这里附加一个表:
序号 | 原文件大小(KB) | 加密后文件大小(KB) | 加密用时(秒) | 解密用时(秒) |
1 | 6 | 6 | 0 | 1 |
2 | 12 | 12 | 0 | 3 |
3 | 24 | 24 | 0 | 5 |
4 | 45 | 45 | 0 | 10 |
5 | 90 | 90 | 1 | 21 |
6 | 180 | 180 | 2 | 40 |
7 | 360 | 360 | 2 | 98 |
8 | 720 | 721 | 2 | 165 |
9 | 1440 | 1440 | 5 | 325 |
由于Token才几百个字节,效率上没测试过解密效果,但安全和这若干毫秒哪个更重要?答案不言而明。