E. Different Subsets For All Tuples
题目连接:
http://www.codeforces.com/contest/660/problem/E
Description
For a sequence a of n integers between 1 and m, inclusive, denote f(a) as the number of distinct subsequences of a (including the empty subsequence).
You are given two positive integers n and m. Let S be the set of all sequences of length n consisting of numbers from 1 to m. Compute the sum f(a) over all a in S modulo 109 + 7.
Input
The only line contains two integers n and m (1 ≤ n, m ≤ 106) — the number of elements in arrays and the upper bound for elements.
Output
Print the only integer c — the desired sum modulo 109 + 7.
Sample Input
1 3
Sample Output
6
Hint
题意
现在定义f(a)表示这个a串里面所有不相同的子序列的个数
现在给你n,m,让你用字符集为m,去构造出长度为n的串
然后让你算出所有f(a)的累加
题解:
考虑dp
dp[i][j]表示长度为i,以字符j结尾的答案是多少
dp[i][j]=sigma(dp[i-1][k]*2-dp[pre[j]-1][k])
然后这个玩意儿显然对于任意的j的都是一样的,而且pre[j]前面的每个位置都是可能的,这里的dp是个前缀和,所以直接扣除就可以了
那么直接化简为:dp[i]=dp[i-1]*(2m-1)
但是这个dp是没有考虑空串的
那么在加上空串就好了,所以答案就是
dp[i] = dp[i-1]*(2m-1)+m^(i-1)
代码
#include<bits/stdc++.h>
using namespace std;
const int mod = 1e9+7;
int main()
{
int n,m;
scanf("%d%d",&n,&m);
long long ans = 2*m;
long long tmp = 1;
for(int i=2;i<=n;i++)
{
tmp = tmp * m % mod;
ans = (ans * (2 * m - 1) % mod + tmp + mod) % mod;
}
cout<<ans<<endl;
}