Minimum Inversion Number
Time Limit: 1 Sec Memory Limit: 256 MB
题目连接
http://acm.hdu.edu.cn/showproblem.php?pid=1394
Description
The inversion number of a given number sequence a1, a2, …, an is the number of pairs (ai, aj) that satisfy i < j and ai > aj.
For a given sequence of numbers a1, a2, …, an, if we move the first m >= 0 numbers to the end of the seqence, we will obtain another sequence. There are totally n such sequences as the following:
a1, a2, …, an-1, an (where m = 0 – the initial seqence)
a2, a3, …, an, a1 (where m = 1)
a3, a4, …, an, a1, a2 (where m = 2)
…
an, a1, a2, …, an-1 (where m = n-1)
You are asked to write a program to find the minimum inversion number out of the above sequences.
Input
The input consists of a number of test cases. Each case consists of two lines: the first line contains a positive integer n (n <= 5000); the next line contains a permutation of the n integers from 0 to n-1.
Output
For each case, output the minimum inversion number on a single line.
Sample Input
10
1 3 6 9 0 8 5 7 4 2
Sample Output
16
HINT
题意
这个区间可以变,就是可以把第一个数扔到最后去,然后这样变呀变,问这种变化下,最小的逆序数数是多少
题解:
啊,最大的数为n,把第一个数扔到最后,那么逆序数减少了num[i]-1,但是却增加了n-num[i],那就随便搞搞就好啦~
代码:
//qscqesze #include <cstdio> #include <cmath> #include <cstring> #include <ctime> #include <iostream> #include <algorithm> #include <set> #include <vector> #include <sstream> #include <queue> #include <typeinfo> #include <fstream> #include <map> typedef long long ll; using namespace std; //freopen("D.in","r",stdin); //freopen("D.out","w",stdout); #define sspeed ios_base::sync_with_stdio(0);cin.tie(0) #define maxn 100001 #define mod 10007 #define eps 1e-9 const int inf=0x7fffffff; //无限大 /* inline ll read() { int x=0,f=1;char ch=getchar(); while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();} while(ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getchar();} return x*f; } */ //************************************************************************************** int d[maxn]; int c[maxn]; int n; int t; inline int read() { int x=0,f=1;char ch=getchar(); while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();} while(ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getchar();} return x*f; } int lowbit(int x) { return x&-x; } void update(int x,int y) { while(x<=t) { d[x]+=y; x+=lowbit(x); } } int sum(int x) { int s=0; while(x>0) { s+=d[x]; x-=lowbit(x); } return s; } int num[maxn]; int main() { while(scanf("%d",&n)!=EOF) { memset(d,0,sizeof(d)); memset(num,0,sizeof(num)); memset(c,0,sizeof(c)); //n=read(); int ans=0; t=n; for(int i=0;i<n;i++) { num[i]=read(); num[i]++; ans+=num[i]-sum(num[i]-1)-1; update(num[i],1); } int tmp=ans; for(int i=0;i<n;i++) { tmp+=n-1-2*num[i]+2; ans=min(tmp,ans); } cout<<ans<<endl; } }
,
Minimum Inversion Number
Time Limit: 1 Sec Memory Limit: 256 MB
题目连接
http://acm.hdu.edu.cn/showproblem.php?pid=1394
Description
The inversion number of a given number sequence a1, a2, …, an is the number of pairs (ai, aj) that satisfy i < j and ai > aj.
For a given sequence of numbers a1, a2, …, an, if we move the first m >= 0 numbers to the end of the seqence, we will obtain another sequence. There are totally n such sequences as the following:
a1, a2, …, an-1, an (where m = 0 – the initial seqence)
a2, a3, …, an, a1 (where m = 1)
a3, a4, …, an, a1, a2 (where m = 2)
…
an, a1, a2, …, an-1 (where m = n-1)
You are asked to write a program to find the minimum inversion number out of the above sequences.
Input
The input consists of a number of test cases. Each case consists of two lines: the first line contains a positive integer n (n <= 5000); the next line contains a permutation of the n integers from 0 to n-1.
Output
For each case, output the minimum inversion number on a single line.
Sample Input
10
1 3 6 9 0 8 5 7 4 2
Sample Output
16
HINT
题意
这个区间可以变,就是可以把第一个数扔到最后去,然后这样变呀变,问这种变化下,最小的逆序数数是多少
题解:
啊,最大的数为n,把第一个数扔到最后,那么逆序数减少了num[i]-1,但是却增加了n-num[i],那就随便搞搞就好啦~