题目链接:BZOJ – 3564
题目分析
求最小椭圆覆盖,题目给定了椭圆的长轴与 x 轴正方向的夹角,给定了椭圆长轴与短轴的比值。
那么先将所有点旋转一个角度,使椭圆长轴与 x 轴平行,再将所有点的 x 坐标除以长轴与短轴的比值,然后就直接做最小圆覆盖了。
随机增量法,一定别忘了 random_shuffle 。
代码
#include <iostream> #include <cstdlib> #include <cstring> #include <cstdio> #include <cmath> #include <algorithm> using namespace std; #define PI 3.14159265358979323846 #define Vector Point typedef double LF; const int MaxN = 50000 + 5; const LF Eps = 1e-9; int n; LF Alpha, SinA, CosA; struct Point { LF x, y; Point() {} Point(LF a, LF b) { x = a; y = b; } void Rotate(LF SinA, LF CosA) { LF tx, ty; tx = CosA * x - SinA * y; ty = SinA * x + CosA * y; x = tx; y = ty; } } P[MaxN]; inline LF Sqr(LF x) {return x * x;} inline LF Dis(Point p1, Point p2) { return sqrt(Sqr(p1.x - p2.x) + Sqr(p1.y - p2.y)); } Point operator + (Point p1, Point p2) {return Point(p1.x + p2.x, p1.y + p2.y);} Point operator - (Point p1, Point p2) {return Point(p1.x - p2.x, p1.y - p2.y);} Point operator * (Point p, LF t) {return Point(p.x * t, p.y * t);} Point operator / (Point p, LF t) {return Point(p.x / t, p.y / t);} struct Line { Point p; Vector v; Line() {} Line(Point p1, Point p2) { p = p1; v = p2 - p1; } } L1, L2; struct Circle { Point o; LF r; bool InCircle(Point p) { return Dis(o, p) <= r + Eps; } } C; inline LF Cross(Vector v1, Vector v2) { return v1.x * v2.y - v2.x * v1.y; } Point Intersection(Line l1, Line l2) { Vector u = l2.p - l1.p; LF t = Cross(u, l2.v) / Cross(l1.v, l2.v); return l1.p + (l1.v * t); } Vector Turn90(Vector v) { return Vector(-v.y, v.x); } Line Verticle(Point p1, Point p2) { Line ret; ret.p = (p1 + p2) / 2.0; ret.v = Turn90(p2 - p1); return ret; } int main() { srand(51405102); scanf("%d", &n); int a, b; for (int i = 1; i <= n; ++i) { scanf("%d%d", &a, &b); P[i] = Point((LF)a, (LF)b); } random_shuffle(P + 1, P + n + 1); int ad, p; scanf("%d", &ad); Alpha = (LF)(-ad) / (LF)180 * PI; SinA = sin(Alpha); CosA = cos(Alpha); scanf("%d", &p); for (int i = 1; i <= n; ++i) { P[i].Rotate(SinA, CosA); P[i].x /= (LF)p; } C.o = P[1]; C.r = 0; for (int i = 1; i <= n; ++i) { if (C.InCircle(P[i])) continue; C.o = P[i]; C.r = 0; for (int j = 1; j < i; ++j) { if (C.InCircle(P[j])) continue; C.o = (P[i] + P[j]) / 2.0; C.r = Dis(C.o, P[j]); for (int k = 1; k < j; ++k) { if (C.InCircle(P[k])) continue; L1 = Verticle(P[i], P[k]); L2 = Verticle(P[j], P[k]); C.o = Intersection(L1, L2); C.r = Dis(C.o, P[k]); } } } printf("%.3lf\n", C.r); return 0; }